
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

INCREMENTAL CHECKPOINTING WITH APPLICATION TO
DISTRIBUTED DISCRETE EVENT SIMULATION

Thomas Huining Feng
Edward A. Lee

Center for Hybrid and Embedded Software Systems (CHESS)
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720, U.S.A.
ABSTRACT

Checkpointing is widely used in robust fault-tolerant appli-
cations. We present an efficient incremental checkpointing
mechanism. It requires to record only the state changes
and not the complete state. After the creation of a check-
point, state changes are logged incrementally as records
in memory, with which an application can spontaneously
roll back later. This incrementalism allows us to imple-
ment checkpointing with high performance. Only small
constant time is required for checkpoint creation and state
recording. Rollback requires linear time in the number
of recorded state changes, which is bounded by the num-
ber of state variables times the number of checkpoints.
We implement a Java source transformer that automatically
converts an existing application into a behavior-preserving
one with checkpointing functionality. This transformation
is application-independent and application-transparent. A
wide range of applications can benefit from this technique.
Currently, it has been used for distributed discrete event
simulation using the Time Warp technique.

1 INTRODUCTION

Checkpointing is a recovery technique widely used in robust
fault-tolerant applications. For example, many contempo-
rary database applications have built-in recovery mecha-
nisms, with which they can recover data from unintended
destructive operations, storage failure, or program crash.
Safety-critical applications also employ recovery mecha-
nisms to ensure that once unexpected situations occur, they
can still restore sensible states and continue to function cor-
rectly. These applications create checkpoints during normal
execution. Those checkpoints record the information neces-
sary to recover the states in case of certain types of failure.
The types of tolerable failure are very application-dependent.
For example, document editing applications may attempt to
1001-4244-0501-7/06/$20.00 ©2006 IEEE
tolerate software bugs, but they generally assume protected
memory segments and disks to be reliable storage; database
applications may tolerate some disk failure by using Re-
dundant Array of Independent/Inexpensive Disks (RAID)
or system backups; safety-critical applications do not rely
on any single type of storage, but make use of various
kinds of storage devices to ensure maximum fault-tolerance
capability.

We develop an incremental checkpointing mechanism
here. It does not require to take snapshots of the complete ex-
ecution state. The applications can execute asynchronously
with their checkpointing systems. The application states are
changed during the execution. Every independent change is
recorded in the most recent checkpoint at a small constant
cost. Later, the applications can spontaneously restore their
state by rolling back to the checkpoints.

We have employed this incremental checkpointing
mechanism in our modeling and simulation environment,
Ptolemy II (Brooks et al. 2005). Instead of restricting the
mechanism to be applicable for Ptolemy II only, we view
this use case as a concrete example of a rich set of poten-
tial applications. Therefore, application-independence is an
important property that we try to pursue. Besides this, our
implementation is also application-transparent so that ap-
plication designers need not consider low-level checkpoint-
ing details. To achieve these goals, we take the program
refactoring (Fowler 1999) approach, and invent a source
to source transformer. It accepts the source of existing
applications, and outputs behavior-preserving applications
with extra functions for checkpointing. Very little human
interaction is required in this process.

The rest of the paper is organized as follows: Section
2 offers an overview of our checkpointing strategy. In Sec-
tion 3, the source transformation is discussed. In Section
4, operations for checkpoint management are provided so
that the applications can spontaneously interact with their
checkpointing systems at run time. Our simulation environ-
4

Feng and Lee
ment is presented in Section 5 as an application. Related
work is studied in Section 6. Section 7 concludes this work.

2 OVERVIEW OF THE CHECKPOINTING
STRATEGY

Application-independence and application-transparency
(Strom and Yemini 1985) are two important goals of our
checkpointing strategy:

• Application-independence: We make no assump-
tion on the nature of the target applications. The
analysis and transformation method is generally
applicable to the source of many existing applica-
tions. Currently, we have an implementation for
arbitrary Java programs, but other languages can
also be supported using similar techniques.

• Application-transparency: We try to free applica-
tion designers from considering low-level check-
pointing details. In some other checkpointing ap-
proaches (Lawall and Muller 2000), the designers
are required to manually construct their applica-
tions in a special way for checkpointing. This is
not required in our approach. A program analyzer
is implemented to automatically extract state infor-
mation. With this information, behavior-preserving
applications can be generated with the program
transformer.

2.1 The Problem

State recovery is commonly required in applications. How-
ever, there is no uniform definition of application state.
General-purpose applications usually consider the contents
of their accessible memory as their state, because this mem-
ory contains the objects that they operate on. For example,
simulation environments store the run-time model state in
memory, and document editing applications store documents
in memory when they are edited by the users. For these
applications, it is sufficient to record the history of memory
writes in the checkpoints.

Our research aims to develop an efficient checkpointing
mechanism for the above-described applications. We do not
try to handle the state of external devices. For checkpointing
of these states, we fall back to the traditional approach by
requiring the programmers to provide extra methods.

We further assume that the affected applications them-
selves issue checkpoint and rollback requests. Our simu-
lation environment is one such example. It simulates dis-
tributed discrete event models using Time Warp (Jefferson
1985). It requests to roll back its own state when a causality
conflict is detected. Document editing applications can be
another example. They allow users to undo some editing
operations. Under this assumption of spontaneity, we do not
1005
address the problem caused by arbitrary unexpected crash
that completely invalidates the running application.

2.2 A Program Analysis and Transformation Approach

The state needs to be discovered before a mechanism can
be provided to record it. Because we define the state to be
the contents of application-accessible memory, we can use
a program analyzer that statically analyzes memory access
in the source code. For applications written in object-
oriented languages such as Java, the state is accessed by
means of object fields. We currently only consider private
fields as application state. This assumption is not necessary
for the correctness of this technique, but it allows us to
simplify the analyzer design. Because private fields can
only be modified in the Java files that define them, the
analyzer can precisely detect all the modification sites in
those files. (Public fields and protected fields can also be
supported, either by extending the analyzer to analyze all
the Java files, or by transforming them into private fields
with get/set methods generated.)

At run time, the checkpointing system maintains the
application state once a checkpoint is created. We consider
the checkpointing system’s private memory as a stable stor-
age invisible from the application itself. State changes are
logged in that memory.

Extra code is required to log the changes. This code is
scattered throughout the application. It is hard and error-
prone for the programmers themselves to write this code
by hand. Therefore, we develop a program transformer that
exploits the information from the analyzer, and automatically
inserts this extra code at the program points where state is
change.

3 SOURCE TRANSFORMATION

In this section, a program transformation method is presented
for Java. It automatically inserts checkpointing code at the
program points where state can be changed at run time. This
is essentially an aspect-oriented programming (Kiczales et al.
1997) approach, as we define the aspects and also provide
a tool to weave those aspects with the target programs.

Though we currently assume that the applications are
written in Java, our method is generally applicable to other
languages with some assumptions. Specifically, we assume
no pointer aliasing, no pointer arithmetic, and automatic
memory management (available in some libraries such as
Boehm’s garbage collector — see Boehm and Demers 1997).
These assumptions may be met by some C++ applications.

3.1 Analysis

Our method starts with an analysis phase. The analyzer
performs an intra-procedural analysis on all the Java classes

Feng and Lee
that need checkpointing. It extracts the following informa-
tion:

1. All the private fields of those classes and their
types.

2. All the operations in the code that can modify the
private fields.

3. The class hierarchy. (Not all private fields are
explicitly defined in the classes. Some of them
may be implicitly inherited from superclasses.)

There are commonalities between this analyzer and the
a Java compiler. In a Java compiler, information types 1
and 3 are obtained from the type checker, while type 2 is
examined by the scoping and visibility checker.

3.2 Assignment Transformation

Assignments may modify program state. Intuitive exam-
ples of assignment transformations are given in Table 1.
The assignments in the original source are transformed to
calls of auxiliary methods. In Example 1, where a is a
private field of type int, the assignment a = b becomes
a call to $ASSIGN$a with argument b. $ASSIGN$a is
automatically generated for the current class:

private int $ASSIGN$a(int newValue) {
... // Record the old value of a.
return a = newValue;

}

This method records the old value of a, assigns the
new value to it, and then returns the new value. It precisely
models the observable effect of an assignment expression
in Java.

For object assignments, the transformer generates the
same auxiliary methods. This means that only object pointers
are stored for the checkpoints. (Object assignments in Java
are essentially pointer assignments.) Cloning or deep copy is
not necessary. Therefore, the cost for logging an assignment
is always a small constant, no matter what type the field
has.

In operational semantics, the following rule formally
defines Java assignments:

< e,σ >⇓ n
< x = e,σ >⇓ σ [x := n]

(1)

According to this rule, if expression e is evaluated to number
n in the abstract program state σ , then the new state after
executing x = e is the same as σ , except that the value of
variable x becomes n (denoted by σ [x := n]).

In the transformed code, we can imagine that a check-
point is used to record the change history. We may use
100
Table 1: Examples of Assignment Transformations.

1 a = b;
1’ $ASSIGN$a(b);
2 f(a = b);
2’ f($ASSIGN$a(b));
3 f(..).a = b;
3’ f(..).$ASSIGN$a(b);
4 f(a = b, g(c = d));
4’ f($ASSIGN$a(b), g($ASSIGN$c(d)));

ϕ to denote the current checkpoint. (The application may
create a sequence of checkpoints at run time, and the latest
one among them is current.) We can now define new rules
that correspond to the auxiliary methods for assignments:

< e,(σ ,ϕ) >⇓ n σ(x) == n0 ϕ(x) == unde f ined
< x = e,(σ ,ϕ) >⇓ (σ [x := n],ϕ[x := n0])

(2)

< e,(σ ,ϕ) >⇓ n ϕ(x) == n0

< x = e,(σ ,ϕ) >⇓ (σ [x := n],ϕ)
. (3)

We extend the program state from σ to tuple (σ ,ϕ). In
Rule (2), we define that if all the following conditions are
satisfied, then the new state after the assignment is the same
as (σ ,ϕ), except that σ(x) becomes n (the new value), and
ϕ(x) becomes n0 (the old value):

1. Expression e evaluates to n in state (σ ,ϕ);
2. The old value of x is n0; and
3. x does not have an old value recorded in ϕ .

On the contrary, if an old value of x has already been
recorded in ϕ , Rule (3) applies. In this case, σ updates, but
ϕ remains the same. Rule (3) is defined mainly for efficiency
(both time and space). For each checkpoint, there is only
one execution point ep to which the program can roll back,
so there is no need to store the old value more than once.
To retain multiple execution points {ep1,ep2, . . . ,epn} for
rollback, a sequence of checkpoints can be created, and the
states are recorded in them incrementally.

3.3 Special Expressions with Side-Effects

Some Java expressions have side-effects similar to assign-
ments. For example, operators such as “+=” and “++”
update their operands. When they are found in the pro-
gram, auxiliary methods are created to simulate them after
recording the old values. Their operational semantics can
be defined similarly.
6

Feng and Lee
3.4 The Data Structure

The checkpointing system uses multiple stacks to keep track
of the change history of program states. Figure 1 shows an
example with two private fields. A different stack is allocated
for each. At run time, assignments update these fields
sequentially. Asynchronously, the program also creates a
sequence of checkpoints. In this example, Assign1 is an
assignment tofield1. No record is kept for this assignment
simply because no checkpoint exists at the beginning. When
Assign2 modifies field2, a record is kept in field2’s
stackrecord2. This is necessary, becausecheckpoint1
is created before this, and a later rollback requires field2’s
old value. The current checkpoint is associated with this
record in the stack. Later, rollback with this checkpoint or
earlier checkpoints will use this record.

Figure 1: Using Two Stacks to Record the Change History
of Two Private Fields.

For checkpoint2, however, no record needs to be
added, because checkpoint2 and checkpoint3 are
semantically equivalent. Assign3 and Assign5 are
two more assignments to field2. A record is kept for
Assign3 but not for Assign5, because none of the check-
points will require field2’s value before Assign5.

At the end of this example, if the program rolls back to
checkpoint2 or checkpoint3, the effect of Assign3
and Assign4 has to be canceled with the records in
the stacks. If it rolls back to checkpoint1 instead,
Assign2 and Assign4 need to be undone, but the record
for Assign3 will simply be discarded.

Conceptually, a different stack is allocated with every
private field (except arrays, discussed below). Globally,
the checkpointing system also uses a stack to store all the
checkpoints that have been created. For space efficiency,
we do not allocate stacks for provably unmodified fields.
1007
3.5 Arrays

Array assignments may require special handling, because
an array can be modified in different ways as shown in this
example:

int[][] buffer;
...
buffer = new int[2][];
buffer[0] = new int[2];
buffer[0][1] = 2;

Here, buffer is assigned to with 0, 1, or 2 indices.
A different auxiliary method is needed for each case:

int[][] buffer;
...
$ASSIGN$buffer(new int[2][]);
$ASSIGN$buffer(0, new int[2]);
$ASSIGN$buffer(0, 1, 2);

The first auxiliary method has type signature “int[][]
$ASSIGN$buffer(int[][])”, and is the same as the
one introduced before. The second one, which takes one
more argument as the array’s first index, assigns a new value
(of type int[]) to the element referred to. The third one
takes two index arguments. These auxiliary methods use
different stacks to record the old values. The indices are
also recorded, so that the changes can be undone for the
affected elements only.

Array aliasing is also problematic. An array field can
be aliased with another name, possibly appearing as a local
variable or as a formal parameter to a method. (Objects
can also be aliased. However, to directly modify an aliased
object, the Java program still needs to explicitly access its
fields. This can be captured without specialty. For example,
o.a = b will be transformed to o.$ASSIGN$a(b) if o.a
is private, regardless of whether o is a local variable.) In
our approach, before an array is aliased, its contents are
backed up in the memory with another auxiliary method. It
performs a possibly multi-dimensional copy for the array.
This copy is linear in the array size. In practice, usually
only a small part of the array will actually change after
the aliasing. A full copy may not be necessary. On-going
research on alias analysis helps to predict the changed part
of an aliased array (Diwan, McKinley, and Moss 1998).
However, the complexity of a precise analysis may be
unacceptable. Therefore, we do not include alias analysis
in our current implementation.

Feng and Lee
3.6 Class Substitution

Applications may also store their states in native Java objects,
such as hash tables and linked lists. These hidden states
also need to be recovered.

We decide not to modify the existing Java library.
Instead, we obtain part of its source code, and apply the same
transformation to it. The generated classes are packaged
specially for checkpointing. When the transformer detects
instantiations of the state-keeping classes in the Java library,
it substitutes them with the classes in the checkpointing
package.

Random number generators are useful in applications
such as simulators for probabilistic models. Note that
Random is also a native Java class with a state, which
is the current random seed. With its transformed version,
the checkpointing system is able to roll back the random
seed. The same sequence of random numbers will be gener-
ated after the rollback. Simulators may exploit this property,
and reproduce the probabilistic simulations.

3.7 Soundness under Assumptions

We argue that our checkpointing approach is sound under
some assumptions. By soundness we mean that no ob-
servable difference remains in the program states after a
rollback. The internal state of the Java Virtual Machine
(JVM) may become different, but we ignore this difference
as long as it cannot be observed by the program itself. Note
that the internal state of the checkpointing system itself is
not observable from the program, either.

Our assumptions are:

• States are only stored in private non-static fields.
(It is dangerous to roll back static fields in a multi-
threaded environment.)

• If states in external devices (e.g., hard disks, net-
work and human interaction devices) need to be
rolled back, extra methods are provided by the
programmers to handle them.

• If state-keeping classes in libraries (such as the Java
standard library) need to be rolled back, they are
transformed, and class substitution is performed in
the application source code.

• All checkpointing operations, including checkpoint
creation, state recording, and rollback, are per-
formed atomically.

A proof of soundness can be obtained by a thorough
study of all the Java language features that a program may
use to change its states or observe the changes.
1008
4 CHECKPOINT MANAGEMENT

During execution, the applications can create checkpoints or
roll back to previously created checkpoints. This is achieved
by directly invoking methods in the checkpointing system.

4.1 Checkpoint Creation

The transformer adds method “CheckpointObject
GETCHECKPOINT()” to each transformed class. This
method returns the checkpoint object for any instance of that
class. A checkpoint object monitors a set of Java objects
at run time. Its method “long createCheckpoint()”
is used to create checkpoints for those Java objects. This
method increases the global checkpointing timestamp (an in-
creasing static long value). The new timestamp is returned
as a checkpoint handle, a globally unique identifier for the
newly created checkpoint. This checkpointing operation
takes only small constant time.

The checkpoint objects monitor disjoint sets of Java
objects. In our implementation, we define these sets of Java
objects to be the basic unit of checkpointing and rollback
operations.

4.2 Unification of Checkpoint Objects

At run time, checkpoint objects monitor changing sets of Java
objects. Two sets may be unified so that only one checkpoint
object remains to monitor the new set. A motivating example
for this situation is given below. In this example, a is a
private object field of the current class; b is another object
of a compatible type.

a = b;
// Create a checkpoint.
long handle =
GETCHECKPOINT$().createCheckpoint();

b.i = 1;
// Roll back.
GETCHECKPOINT$().rollback(handle);

After the transformation, the above piece of code be-
comes:

$ASSIGN$a(b);
// Create a checkpoint.
long handle =
GETCHECKPOINT$().createCheckpoint();

b.$ASSIGN$i(1);
// Roll back.
GETCHECKPOINT$().rollback(handle);

Assume that this object (the object on which the
method is invoked) and b are initially monitored by two

Feng and Lee
different checkpoint objects. If no extra care is taken, after
the rollback, the state of b will not be restored because it
belongs to another set that does not contain this object.
As a consequence, the change of b.i is still observable
from this object with a.i. The naive solution of simply
changing b’s checkpoint object when it is assigned to a will
not work in general, because the objects that b refers to may
still contain observable changes. A correct solution requires
that the auxiliary method $ASSIGN$a unify the two sets
of Java objects, and form a new checkpoint object that
monitors the union set. Therefore, the rollback operation
in this example is actually called on the unified checkpoint
object.

The use of multiple checkpoint objects allows the pro-
gram to record and roll back only part of its state. For
example, a simulator may decide to roll back the memory
contents corresponding to the running model’s state, but
keep the state changes in other components such as user
interface and debugger. In this case, it will only roll back
the checkpoint object that monitors the model’s simulation
state.

4.3 Rollback and Discard

As discussed above, the rollback operation affects only the
set monitored by the checkpoint object. The changed private
fields are traversed in a depth-first search (DFS). Their old
values are restored with the values in their stacks. After
rollback, the used checkpoint and other newer ones are
discarded. The memory allocated for the records will be
reclaimed by the Java garbage collector.

The discard operation is similar to rollback, except that
it only discards the records without restoring the values.
The memory will also be reclaimed.

Rollback and discard, unlike other checkpointing oper-
ations that take constant time, have linear complexity in the
number of changes recorded after the checkpoint creation
time. Therefore, applications aiming for high performance
should not invoke these operations frequently.

5 APPLICATION: A SIMULATION FRAMEWORK
FOR EMBEDDED SYSTEMS

Our checkpointing technique has many applications. The
simulation environment, Ptolemy II, developed at EECS,
UC Berkeley, is an example of an application. It is a Java-
based framework for model-based design and simulation
of embedded systems. The need for a dynamic state re-
covery mechanism arises as we develop distributed discrete
event simulation using Time Warp (Jefferson 1985). In our
system, distributed collaborating components in the model
keep track of their local virtual times, with which their
event handlers decide whether events are imminent. The
system also keeps track of the Global Virtual Time (GVT), a
1009
lower bound of the local times. We allow the local times to
differ from each other. The faster components do computa-
tions in advance, optimistically assuming this is safe. This
type of simulation may yield a significant performance im-
provement (compared to traditional distributed simulations
where components advance time synchronously). However,
as a consequence, the faster components may receive events
sent in their past from slower ones, giving rise to causality
conflicts. To maintain global consistency, on receiving past
events, the components must recover their previous state by
undoing the optimistic computations. (These components
should also cancel the messages sent as the outcome of
the computations, but here we do not address a specific
mechanism to achieve this. The reader is referred to Das
et al. 1994.)

We take the program transformation approach to provide
state recovery for the simulator. In our case, the programs
are in fact distributed models constructed by connecting
basic building blocks written in Java. The transformation
tool takes any existing model, and converts it into a new one
with checkpointing functionality. In a simulation, the new
model may create a checkpoint every time its components
process events or advance their local times. When a past
event is received, the affected component rolls back with a
previously created checkpoint. This rollback precisely sets
back its local time to the event time, which is always greater
than or equal to GVT. This time-advancing guarantee helps
to avoid Domino Effect (Strom and Yemini 1985).

Whenever the whole system advances the GVT, the
components discard the older checkpoints to reclaim mem-
ory.

6 RELATED WORK

Software recovery or fault-tolerance is being actively studied
by a number of researchers. Serialization is a straightfor-
ward method. Many contemporary languages, such as Java
and C#, provide built-in serialization mechanisms. How-
ever, these require the programmers to explicitly define the
methods to record the states into output streams and con-
versely, to restore the states from input streams. Some of
the drawbacks are listed below:

• It places extra burden on the programmers by re-
quiring them to implement the serialization and
deserialization methods;

• It is not efficient enough, because the contents of
objects and arrays, instead of their references, are
stored in the streams.

• It is difficult to determine what portion of the
state will change in the future. To be exhaustive,
programmers usually take a conservative approach
by serializing the entire state.

Feng and Lee
Unlike serialization, incremental backup has been im-
plemented in many database systems such as Berkeley
DB (Olson, Bostic, and Seltzer 1999), Oracle (Greenwald,
Stackowiak, and Stern 2001) and MySQL. It is an efficient
backup technique that makes it possible to restore external
data after a system crash. Because it has the assumption that
data are stored externally, it does not solve the problem of
discovering and recording the application state in memory.

Software transactional memory (STM) (Shavit and
Touitou 1995) is another related technique. It provides
transactions which guarantee atomic reads and writes to
shared memory. In a parallel system, before a process can
write to a shared memory block, it starts a transaction.
In the transaction, the write is performed on a separate
copy invisible from other processes. When the write is
finished, a test-and-commit operation is issued. It commits
the write only if the shared memory block has not been
modified concurrently by other processes. We believe that
this approach is in a sense orthogonal to ours. It guarantees
atomicity, but a committed change cannot be rolled back.
In our approach, atomicity is not guaranteed, but the state
can always roll back (provided that there is enough memory
for the records).

There has been research on incremental state saving
for C++ and executable code. For example, in Steinman
(1993) an efficient state saving mechanism is provided for
C++. However, it cannot be used for Java without change.
Moreover, reference manipulations are not guaranteed to
be rollbackable. Dynamic data structures, such as lists and
trees, need special treatment. C++ templates are used in
Bruce (1995) and Rönngren, Liljenstam, Ayani, and Montag-
nat (1996) to capture state changes in the source. However,
many other languages do not support templates, and heavy
use of templates significantly increases compile time and
code size. In West and Panesar (1996), executable code
is directly analyzed and modified to capture state changes.
However, due to the loss of source-level information, it
is not easy to detect states precisely. The vase variaty of
executable formats also limits its application.

A Java-based incremental checkpointing mechanism
similar to ours is independently proposed in Lawall and
Muller (2000). It can be considered as incremental se-
rialization for Java. Programmers need to provide extra
methods to incrementally record states in output streams.
Compared to their approach, our incremental checkpointing
mechanism has these advantages:

• No extra methods need to be provided by program-
mers. The transformer automatically generates the
auxiliary methods.

• States are automatically determined by the program
analyzer. Programmers need not identify the fields
that will change in the future.
101
• We do not record state in streams. Instead, we
store only object fields’ old references in memory
when they are assigned to. As a result, every state
change incurs only a constant overhead.

7 CONCLUSION

Many applications, including our distributed simulation en-
vironment with Time Warp, require run-time state recovery.
An incremental checkpointing mechanism is developed here.
This mechanism is based on program analysis and transfor-
mation. We automate this process with a tool that takes Java
source code as input, and outputs new code that supports
incremental checkpointing. The transformed applications
can create checkpoints and recover their states dynamically.
Programmers are thus freed from dealing with checkpointing
details. Frequently performed operations, such as check-
point creation and state recording, take only small constant
time. Rollback and discard are the less frequently performed
operations that take linear time in the number of recorded
state changes, which is bounded by the number of state
variables times the number of checkpoints.

ACKNOWLEDGMENTS

This paper describes work that is part of the Ptolemy project,
which is supported by the National Science Foundation
(NSF award number CCR-00225610), and CHESS (the
Center for Hybrid and Embedded Software Systems), which
receives support from NSF and the following companies:
Agilent, DGIST, General Motors, Hewlett Packard, Infineon,
Microsoft, and Toyota.

REFERENCES

Boehm, H.-J., and A. J. Demers. 1997. A garbage collec-
tor for C and C++. <http://www.hpl.hp.com/
personal/Hans_Boehm/gc/>.

Brooks, C., E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng. 2005. Ptolemy II - heterogeneous con-
current modeling and design in Java. Technical Report
UCB/ERL M05/21, EECS, UC Berkeley.

Bruce, D. 1995. The treatment of state in optimistic sys-
tems. In Proceedings of the 9th Workshop on Parallel
and Distributed Simulation, 40–49: IEEE Computer
Society.

Das, S., R. Fujimoto, K. Panesar, D. Allison, and M. Hy-
binette. 1994. GTW: a time warp system for shared
memory multiprocessors. In Proceedings of the 26th
Winter Simulation Conference, 1332–1339.

Diwan, A., K. S. McKinley, and J. E. B. Moss. 1998. Type-
based alias analysis. In PLDI ’98: Proceedings of
the ACM SIGPLAN 1998 Conference on Programming
0

Feng and Lee
Language Design and Implementation, 106–117. New
York, NY, USA: ACM Press.

Fowler, M. 1999. Refactoring: improving the design of exist-
ing code. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Greenwald, R., R. Stackowiak, and J. Stern. 2001, June.
Oracle essentials: Oracle9 i, Oracle8 i and Oracle8.
2nd edition. O’Reilly & Associates, Inc.

Jefferson, D. R. 1985. Virtual time. ACM Transactions on
Programming Language and Systems 7 (3): 404–425.

Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. 1997. Aspect-
oriented programming. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming, ed.
M. Akşit and S. Matsuoka, Volume 1241, 220–242.
Berlin, Heidelberg, and New York: Springer-Verlag.

Lawall, J. L., and G. Muller. 2000. Efficient incremental
checkpointing of Java programs. In Proceedings of the
International Conference on Dependable Systems and
Networks, 61–70. New York, NY, USA: IEEE.

Olson, M. A., K. Bostic, and M. I. Seltzer. 1999. Berke-
ley DB. In USENIX Annual Technical Conference,
FREENIX Track, 183–191.

Rönngren, R., M. Liljenstam, R. Ayani, and J. Montagnat.
1996. Transparent incremental state saving in time warp
parallel discrete event simulation. In Proceedings of the
Workshop on Parallel and Distributed Simulation, 70–
77.

Shavit, N., and D. Touitou. 1995. Software transactional
memory. In Symposium on Principles of Distributed
Computing, 204–213.

Steinman, J. S. 1993. Incremental state saving in SPEEDES
using C++. In Proceedings of the Winter Simulation
Conference, 687–696.

Strom, R., and S. Yemini. 1985. Optimistic recovery in dis-
tributed systems. ACM Transactions on Programming
Language and Systems 3 (3): 204–226.

West, D., and K. Panesar. 1996. Automatic incremental state
saving. In Proceedings of the Workshop on Parallel and
Distributed Simulation, 78–85.

AUTHOR BIOGRAPHIES

THOMAS HUINING FENG is a Ph.D. student at the
Electrical Engineering and Computer Sciences (EECS)
department at U.C. Berkeley. He is a member of the
Berkeley Ptolemy project, headed by Prof. Edward A.
Lee. His research interests include heterogeneous mod-
eling and simulation, distributed systems and Time Warp
simulation, automatic program analysis and transformation,
software fault tolerance, and software engineering. He
obtained his Bachelor’s degree from Nanjing University
in China, and his Master’s degree (M.Sc) from McGill
1011
University in Canada. His e-mail address is <tfeng@
eecs.berkeley.edu>, and his web page is <http:
//ptolemy.eecs.berkeley.edu/˜tfeng/>.

EDWARD A. LEE is a Professor and Chair of the Electrical
Engineering and Computer Sciences (EECS) department at
U.C. Berkeley. His research interests center on design, mod-
eling, and simulation of embedded, real-time computational
systems. He is a director of Chess, the Berkeley Center for
Hybrid and Embedded Software Systems, and is the director
of the Berkeley Ptolemy project. He is co-author of five
books and numerous papers. He has led the development of
several influential open-source software packages, including
Ptolemy, Ptolemy II, HyVisual, and VisualSense. His bache-
lors degree (B.S.) is from Yale University (1979), his masters
(S.M.) from MIT (1981), and his Ph.D. from U.C. Berkeley
(1986). From 1979 to 1982 he was a member of technical
staff at Bell Telephone Laboratories in Holmdel, New Jersey,
in the Advanced Data Communications Laboratory. He is
a co-founder of BDTI, Inc., where he is currently a Senior
Technical Advisor, and has consulted for a number of other
companies. He is a Fellow of the IEEE, was an NSF Presi-
dential Young Investigator, and won the 1997 Frederick Em-
mons Terman Award for Engineering Education. His e-mail
address is <eal@eecs.berkeley.edu>, and his web
page is <http://ptolemy.eecs.berkeley.edu/
˜eal/>.

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

