
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

ELIMINATING REMOTE MESSAGE PASSING IN OPTIMISTIC SIMULATION

David W. Bauer Jr.

The MITRE Corporation

7525 Colshire Drive

McLean, VA 22102, U.S.A.

Christopher D. Carothers

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, NY 12180, U.S.A.
ABSTRACT

This paper introduces an algorithm for parallel simulation

capable of executing the critical path without a priori knowl-

edge of the model being executed. This algorithm is founded

on the observation that each initial event in a model causes

a stream of events to be generated for execution. By fo-

cusing on the parallelization of event streams, rather than

logical processes, we have created a new simulation engine

optimized for large scale models (i.e., models with 1 million

LPs or more).

1 INTRODUCTION

Since Chandy and Misra (1979), Misra (1986), and Jefferson

and Sowizral (1982), parallel discrete event simulation has

primarily been built around the concept of event list man-

agement. A logical process (LP) creates and sends events to

other LPs in the system. LPs are then mapped to process-

ing elements (PEs) for parallelization. Creating a parallel

simulation executive capable of generating good speedup in

the execution of generic models has been somewhat more

elusive.

As the number of processors used in the computation

is increased, the relative performance of simulation engines

decreases due to the overhead of parallelizing the model.

Several high performance simulation engines have reduced

this overhead significantly (Carothers, Bauer and Pearce

2002; Das et al. 1994; Nicol 1988, 2002; Preiss 1989; Riley

2003; Syzmanski et al. 2003). However, when compared

to linear, the performance is generally lacking for difficult

benchmarks such as PHOLD (Fujimoto 1990).

The critical path of events for a model identifies the

opportunities that exist for parallelizing the model. Sim-

ulators that attempt to generically parallelize models have

always been confounded when it comes to parallelizing the

critical path, because it varies from model to model. Sev-

eral techniques have been proposed by (Berry and Jefferson

1985, Lin 1992, Zhou et al. 2002) for critical path analysis.
9951-4244-0501-7/06/$20.00 ©2006 IEEE
Amdahl’s law states that for the fraction f of computa-

tion that cannot benefit from parallelization, the maximum

speedup obtainable converges to 1/ f . Events sent remotely

between processors characterize areas of a model that must

be serialized. We propose a parallel discrete event algo-

rithm that generically and automatically parallelizes the

critical path as defined by the model mapping of LPs to

PEs. Our main observation is that in large-scale models, as

additional processing power is applied to a model, speedup

in typical event list managed simulators must decrease as

the remote event rate increases. By eliminating contention

due to remote events we expect to achieve a more efficient

parallelization for models.

Computer architecture is quickly expanding making

the idea of personal supercomputers a reality. Advanced

Micro Devices (AMD) and Intel have released their first

versions of dual-core processor technology in the Opteron

and Xeon families, respectively. Soon quad-core processors

will become available, and motherboards to support multiple

quad-core processors. In addition, HyperTransport technol-

ogy (Wikipedia 2006) is enabling manufacturers to connect

multiple motherboards within a single computing platform

via a high bandwidth, low latency bus. The supercomputing

culture was changed with the advent of (primarily) Linux-

based cluster computing platforms. These technologies will

transform the culture again by overcoming the high latencies

that continue to exist in high performance networks.

Our results are gathered on a quad-processor dual-core

Opteron system, and show that for large-scale models (i.e.,

models with greater than 1 million LPs) an improvement can

be gained using our approach. We compare performance

against ROSS (Carothers, Bauer, and Pearce 2002) and

show an improvement of ∼29% in a 10 million LP PHOLD

benchmark.

In this paper we introduce a new algorithm for the

parallelization of the critical path in its general form by

eliminating the passing of events between remote proces-

sors. In the following sections we will define the problem

(Section 2), outline the algorithm applied to the problem

Bauer and Carothers
(Section 3), and provide a detailed performance analysis

of the Adirondack stream simulator versus ROSS (Sec-

tion 4). We follow-up with comments for related work,

future work and a conclusion (Sections 5, 6 and 7). We

have affectionately named our implementation Adirondack

for the numerous streams contained in the Adirondack State

Park in New York.

2 PROBLEM DEFINITION

As additional processors are utilized in a parallel system,

overhead due to parallelization increases. In ROSS, the only

locks that appear in the scheduler are located around event

(including cancel event) sends, and in the synchronization

algorithm. For synchronization, ROSS, GTW and Adiron-

dack all employ Fujimoto’s algorithm for shared memory

multiprocessors (Fujimoto 1990) and are implementations

of the optimistic synchronization algorithm. This algorithm

executes asynchronous with event execution and the global

virtual time (GVT) algorithm does not become a perfor-

mance bottleneck. The traditional approach towards discrete

event simulation, namely event list management, does how-

ever. Overhead waiting for contention to be resolved on the

inbound event queue for a PE increases with the number of

processors. Cancelation events typically comprise a small

portion of the total events executed and are less important

to optimize.

As an example, the benchmark model PHOLD selects

the destination for an event from a uniform distribution

around the number of total LPs in the model. Figure 1

shows that the probability of the destination entity being

mapped to a remote processor increases logarithmically as

the system is parallelized, with a limit at 100%. With the

exception of embarrassingly parallel models, this behavior

is exhibited in varying degrees by many models, and so

the mapping of LPs to processors becomes a performance

bottleneck.

Resolving this bottleneck typically involves model spe-

cific information to properly map the LPs to the PEs for the

purposes of reducing the rate at which remote events are

generated. This problem is generally left for the modeler

to resolve. Contention between execution threads occurs

during model execution most frequently when events are

sent between processors. To address this inefficiency for all

models requires we take a different approach towards event

list management, specifically, where contention is placed

within the system.

3 OVERVIEW OF STREAM SIMULATION

Stream simulation is an algorithm for parallelizing a discrete

event simulator based on event streams, rather than passing

events between remote processors. In a stream simulator,

there are zero remote events.
996
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 32 16 8 4 2 1

%
 R

e
m

o
te

 E
v
e

n
ts

Processors

Increasing Parallelism, Increasing Contention

Figure 1: PHOLD Remote Event Rate Increases Logarith-

mically as Processors Are Added.

The problem of contention arises when a processor must

stall, waiting for access to another processor’s inbound event

queue. While this is a relatively inexpensive operation, it

falls into the common case for the execution of any model.

One approach towards resolving this contention might be to

aggregate events on the sending processor’s side. When the

queue becomes free, the local list of pending events could

be sent. The problem with this and other similar approaches

in general is that the frequency of rolling back would be

increased due to events which have arrived “late” in the

optimistic execution of an LP. Our solution is based on the

observation that traditional Time Warp systems parallelize

models based on the LP-PE mapping, rather than on the

causal ordering of events that naturally occurs within any

model.

An event stream is defined as an initial event created

by a model, and all of the events that are caused caused as a

consequence of that event. We emphasize “caused” to denote

no logical correlation between the perceived meaning of an

event in a model and the definition of an event stream.

When a simulator executes an event, that result of that

computation is zero or more new events being created in

the model. If an initial event is ε , then the set of events

that are created as a consequence form ε ′. The set of events

created as a consequence of executing all ε ′ events forms

the set ε ′′, and so on until model termination.

Using the definition of an event stream, a stream sim-

ulator parallelizes a model by mapping event streams to

processors for execution. Because an event stream is pro-

cessed entirely within a single processor, zero events are

remotely passed between processors.

Bauer and Carothers
3.1 Parallel Algorithm

In a typical event list managed simulator, events sent be-

tween LPs are determined by the LP to PE mapping, and

this mapping is defined by the model. When two LPs

communicate and are mapped to different processors, the

corresponding event is considered to be a remote event.

Events are passed between PEs, and the local causality

constraint (Lamport 1978, 1979) is enforced within the do-

main of the PE, namely through event lists. In a typical

shared memory Time Warp implementation, such as ROSS

(Carothers et al. 2002) or GTW (Das et al. 1994), PEs must

obtain a lock on an inbound event queue on the remote

PE before adding that event to the list. Each PE is then

responsible for adding those events to a local priority queue

that causally orders the events for processing by that PE. All

other simulator facilities are handled in a similar manner

(i.e., fossil collection and rollback).

In a stream simulator, parallelization is correlated to

event streams, rather than PEs. Events never migrate be-

tween remote processors in a stream simulator. Rather, for

each event initialized on a PE, that event and all successive

events in that stream will remain local to the PE to which

it was mapped by the model. We must continue to ensure

that the causality constraint is preserved by each PE as each

event is processed. Generally, this means that each event’s

destination LP must be locked prior to execution, and the

LP rolled back if necessary to ensure the event is executed

in the correct time-stamp order.

Usually, this approach would lead to inefficient execu-

tion, as contention around LP states could be long-lived.

In the case of large-scale models however, this is not the

case. In fact, models where the number is CPUs is relatively

low (less than 100) and the number of model LPs is high

(greater than 1 million) yields a very low probability of

two or more processors attempting to execute events for the

same LP at any time in the system. In a stream simulator,

as the model size grows, the probability that contention

will occur decreases.

To illustrate these probabilities, we must consider the

event populations being simulated. For these purposes,

PHOLD is a significantly difficult model and easily illus-

trated, because event destinations are uniformly distributed

over the LP population.

In ROSS an event population has the possibility of

generating contention in the system based upon the event

destination. When an event’s destination LP is mapped to

a remote processor, as shown in Figure 2, contention may

occur.

P(Contention) = α

[

1 −
1

ρ

]

(1)

where ρ = total CPUS, and α = remote event rate.
997
Figure 2: Contention in ROSS (η is the Number of LPs,

and ρ is the Number of Processors).

Equation (1) states that as the number of CPUs uti-

lized increases, the amount of contention for a fixed model

increases. The α coefficient represents the amount of re-

mote message passing for a given model. When α = 1 (no

remote events are sent by the model), then the probability

of contention is zero. Conversely, when α = 0, (uniform

distribution of event destination LP over set of LPs), then

nearly every event will be sent remotely and the probabil-

ity of contention approaches 100%. Our algorithm applies

in those cases where α is approaching one; we are con-

cerned with models that exhibit high remote event rates.

The PHOLD model exhibits the worst-case behavior and

for the remainder of this discussion, α is implied.

In Adirondack, the event destination PE is independent

of the executing PE. The probability of contention occurs

around the LP state, and not the LP to PE mapping. Con-

tention is determined by the probability that two or more

processors are executing an event for the same destination

LP only. The events dequeued for execution in the PE

array define the size of the problem. Figure 3 illustrates

the combinatorial nature of the problem. If the size of the

LP array is η , and the size of the PE array is ρ , then the

complete space is defined by ηρ . Equation (3) illustrates

that no contention occurs in those cases where each LP des-

tination value is unique in the PE array. This is equivalent

to the more general problem of determining the number of

ways of obtaining an ordered subset of elements from a

set of elements (Uspensky 1937). For example, there are

4!/2!−12 two-subsets of {1, 2, 3, 4}, namely {1, 2}, {1,

3}, {1, 4}, {2, 1}, {2, 3}, {2, 4}, {3, 1}, {3, 2}, {3, 4},

{4, 1}, {4, 2}, and {4, 3}.

Again assuming the worst case where all processors are

perfectly synchronized, contention occurs when 2 or more

processors are attempting to commit an event to the same

Bauer and Carothers
Figure 3: Combinatorial Nature of Contention in Adiron-

dack.

LP. From this, the probability of contention be defined by

the equations:

P(Contention) = 1 −
P(No Contention)

P(Total)
, (2)

P(No Contention) = ηCρ =
η !

(η −ρ)!
(3)

where η = total LPs, and ρ = total CPUs,

P(Total) = η
ρ , (4)

P(Contention) = 1 −

η!
(η−ρ)!

ηρ
. (5)

Our conclusion is that as the model size grows, con-

tention decreases in a stream simulator for large scale models

where η � ρ . The complete relationship is given by Equa-

tion (6).

P(Contention) =











approaching 0 if η � ρ ,

1 if η <= ρ ,

0 < P < 1, if η > ρ

(6)

Figure 4 is plotted for ρ = 8 to illustrate that this function

is decreasing. The probability of contention is undefined for

the sequential case. Equation (6) converges slowly to zero,

and for η = 10,000, the probability of contention is less

than 0.003%, and this formulation is valid for large-scale

models.
998
Figure 4: Equation (5), Plotted for ρ = 8 (Probability of

Contention is 1 for η = 1, and Decreasing for η > 1).

3.2 Kernel Processes

Adirondack was developed from the ROSS source code.

Consequently, both simulators contain an additional data

structure for aggregating LP fossil collection, the kernel

process (KP). Typically, LPs are mapped by the model to

PEs. In these simulators, LPs are mapped to KPs, and

KPs to PEs. For reverse computation, event states, rather

than LP states are maintained for each GVT epoch. The

events are stored in a processed event queue within the

KP. Having a lower number of KPs relative to the number

of LPs leads to efficient fossil collection by reducing the

number of processed event queues that must be searched.

Kernel processes were introduced in (Carothers, Bauer, and

Pearce 2002).

There is a trade-off in Adirondack between a lower

number of KPs for efficient fossil collection, and a higher

number of KPs to reduce contention. We have previously

shown that the overhead of fossil collection is a limiting

factor in the scalability of ROSS. KPs were introduced as a

scalable mechanism to reduce that cost by aggregating the

LP’s processed event queues. In the performance section

we analyze the impact of varying the number of KPs in

Adirondack to illustrate this trade-off.

3.2.1 Rolling Back

Rollbacks support optimistic execution within the Time

Warp executive when the causality constraint is violated

(Jefferson 1982). Optimistic execution allows each pro-

cessor to commit events as quickly as possible, and then

rollback those events when an out of order event (i.e., strag-

gler event delayed in the system) is detected. Simulators

Bauer and Carothers
like ROSS perform these tasks internal to a PE, and so only

one CPU is ever operating on the LPs mapped to it.

Because Adirondack allows any processor to commit

any event for any LP, straggler events may still occur.

Straggler events happen when parallel streams cross at an LP

and the streams are out of phase. Unlike ROSS, contention is

introduced because LPs must be locked not only during the

forward execution of events, but in the reverse computation

of events as well. To avoid event streams from migrating

across PEs, events canceled as part of a rollback still must

be placed in the cancel queue of the PE that originally

committed the event.

Because we can no longer rely on the PE priority

queue to enforce the causality constraint, we must check

for rollback just prior to event execution at an LP. This

does not introduce additional rollbacks, rather, it changes

the location where the causality constraint is examined.

3.2.2 Fossil Collection

Fossil collection also occurs at the LP level. Like ROSS,

Adirondack utilizes reverse computation (Carothers, Peru-

malla, and Fujimoto 1999) rather than state-saving tech-

niques to support rollback. Therefore, Adirondack saves

events rather than LP states. These events must be routinely

fossil collected in order for the model to continue advancing.

After an event is committed by an LP, that event is then

added to the processed event queue for that LP.

The asynchronous nature of the GVT algorithm allows

for one processor to perform fossil collection while another

continues to process events (or some other engine facility).

Fossil collection then becomes a point of contention in a

stream simulator. Fortunately, fossil collection of an LP’s

processed event queue can be done by the PE that LP is

mapped to, and that PE only. While processor execution is

asynchronous, fossil collection is a relatively synchronized

event, tied to the GVT computation. These intervals should

be sparse in relation to the number of events processed per

GVT interval, and the cost amortized over the runtime.

4 PERFORMANCE STUDY

4.1 Computing Testbed and Experiment Setup

All experiments were conducted on a quad-processor, dual-

core AMD Opteron server configured with 32GBs of RAM.

The AMD Opteron 800-series chip enables 64-bit comput-

ing, and provides up to 24GB/s peak bandwidth per processor

using HyperTransport technology. The DDR DRAM mem-

ory controller is 128-bits wide and provides up to 6.4GB/s of

bandwidth per processor. Our RAM configuration consisted

of 4GB sticks of 400MHz DDR ECC RAM in 8 banks.

The simulation executive had the following configura-

tion parameters. Optimistic event memory was computed
999
in each case by Equation (7).

dη/ρe∗ γ ∗ c. (7)

Here, η is the total number of LPs, and ρ is the

number of processors used for parallelization. Also, γ was

the number of initial events per LP, was fixed at 1 for all

experiments. We also have a constant factor c, that was

fixed at 2.

GVT batch and interval parameters were set at 1024 and

8 respectively. Thus, up to 8,192 events will be processed

between GVT epochs for both systems. These settings

where determined to yield the highest level of performance

for both systems on this particular computing testbed.

Because Adirondack was implemented from the ROSS

source code, major facilities such as GVT computation, fos-

sil collection, rollback, priority queues (Brown 1998) and

random number generators (L’Ecuyer and Andres 1997)

were identical. Additions to the scheduler including place

mutexes around the rollback, fossil collection and event ex-

ecution calls. Events were not sent remotely in Adirondack,

so all event sends were simply enqueued directly into the

calling PEs priority queue.

4.2 RC-PHOLD Model

The model used is a synthetic workload model called

PHOLD. This commonly used benchmark has been mod-

ified to support reverse-computation and is configured to

have minimal Logical Process (LP) state, message sizes

and event processing. The forward computation of events

involves computing two random numbers: one used to

compute the time-stamp offset and one used to compute the

destination LP for the next event in a stream.

Reverse computation involves “un-doing” an LPs ran-

dom number generator (RNG) in order to restore its state. Be-

cause the RNG is perfectly reversible (LEcuyer and Andres

1997), the reverse computation restores seed state by com-

puting the perfect inverse function as described in Carothers,

Bauer, and Pearce (2002). The destination LP is determined

by calling a uniformly distributed random number generator

in the range of 0 to number of LPs - 1. The other call

determines the offset timestamp for events and is exponen-

tially distributed with a mean of 1.0; the model terminates

at timestamp 100. For all experiment runs, we mapped LPs

to Processing Elements (PE) in a round robin fashion. Each

simulation run contained either 10 or 20 million LPs, and

the number of Kernel Processes (KP) was varied from 1,000

to 1,000,000 by factors of 10. The message population per

LP is 1.

This model is a pathological benchmark which has

minimal event granularity while producing a configurable

number of remote events which can result in thrashing

rollbacks. In Carothers, Bauer, and Pearce (2002), KPs

Bauer and Carothers
where introduced as an aggregation structure for reducing

LP fossil collection and rollback.

4.3 RC-PHOLD Performance Data

The data for our initial performance comparison between

Adirondack and ROSS using the quad processor dual-core

Opteron server is presented in Figure 5. The event rate is

shown as a function of the number of CPUs utilized for

parallelization for both Adirondack and ROSS. The model

is configured for 20 million LPs, and 100 thousand KPs for

each experiment.

Figure 5: RC-PHOLD: 20 million LPs, 100,000 KPs.

It is important to note that on an eight processor system,

we would likely achieve higher performance results in either

simulator using fewer KPs. Because we are limited in the

hardware available to us, we are attempting to model the

system as though we had a much larger number of CPUs. A

system with more CPUs would benefit from a larger set of

KPs. As a consequence, fossil collection is not optimally

efficient for the models presented here. Note that it is

equally inefficient in both ROSS and Adirondack, so the

comparisons are fair.

The performance for Adirondack begins to exceed that

of ROSS as more processors added to the system, as ex-

pected. We did not observe a large difference in the perfor-

mance for this model. Also, we were limited in the hardware

available to us and and for our purposes a machine with 16

or 32 CPUs would have been more suitable. Finally, this

server appeared to go into swap after allocating only 12GB

of its available 32GB of RAM, so we could not go beyond

20 million LPs and 100 thousand KPs.

In Figure 6 we reduce the model size to 10 million LPs

and 10 thousand KPs. ROSS performed about the same as

in the previous model size. However, Adirondack showed

a marked improvement, increasing performance by ∼29%.
1000
Figure 6: RC-PHOLD: 10 Million LPs, 10,000 KPs.

We believe that with a smaller number of KPs, Adirondack

and ROSS are both able to perform fossil collection much

more efficiently than before. However, ROSS still suffers

from a high probability of contention, and so performance

does not improve. Adirondack has a infinitesimally small

probability of contention (< 0.003%), and so performance

increases in correspondence to the improvement in fossil

collection. From Equation (1), the probability of contention

in ROSS was 87.5%.

4.4 KP Performance

We now investigate the trade-off that occurs between fossil

collection and contention. Kernel processes were developed

as a method for aggregating fossil collection, but Adirondack

defines contention at the KP level. A lower number of KPs

is desirable for efficient fossil collection; a higher number

of KPs is desirable for reducing contention.

Figures 7 and 8 illustrate the performance of ROSS

versus Adirondack as the number of KPs are varied in the

system. In the 4-CPU case, overhead due to contention is

small in comparison to the amount overhead due to fossil

collection, and so ROSS and Adirondack perform about

the same. In the 1,000 KP experiment ROSS outperforms

Adirondack significantly, because there are not enough KPs

in the system for the stream parallel algorithm to operate

efficiently.

In the 8-CPU case, contention begins to become more

of an issue for ROSS in general, and again for Adirondack in

the 1,000 KP experiment. As the number of KPs grows, and

the number of processors grow, the stream parallel algorithm

becomes more efficient and Adirondack outperforms ROSS.

Using either model, as the number of KPs approaches

the same order of magnitude as the number of LPs, we

begin to see the effects of inefficient fossil collection, as

Bauer and Carothers
Figure 7: 4 CPU, Variable KPs.

observed in Carothers, Bauer, and Pearce (2002). As fossil

collection dominates the computation, Adirondack drops

below ROSS because of contention added around KP for

the fossil collection routine.

There is a clear trade-off between minimizing con-

tention and minimizing fossil collection overheads. We

have shown that for significantly large scale models addi-

tional performance can be gained by achieving the proper

balance of these two effects. In the 8-CPU, 10 million LP

case, we had a performance gain of ∼ 29%.

We believe in a system with a higher number of CPUs

(i.e., 16 or 32) the model partition per CPU decreases

further, reducing the overhead of fossil collection per CPU.

In addition, it is clear that a system with more CPUs would

yield more contention, and benefit from this approach.

5 RELATED WORK

In Nicol and Liu (2002), a technique for composite syn-

chronization of global and local protocols was introduced

that relied on the classification of communication channels

within the model. This technique characterized the model

as a collection of sub-models, and clustered LPs into time

lines for synchronization. Channels were classified as either

synchronous or asynchronous, and time lines were allowed

to “flow” across processors.

A global event queue was used in Prasad and Naquib

(1995) to reduce rollback frequency and improve simulator

efficiency for medium and coarse grained models. Similar to

stream simulation, any processor was able to commit events

for any destination LP, as long as that would not lead to

contention. Contention was resolved using one of a parallel

heap implementation (Prasad et al. 1994) or performing

batch dequeue operations for all processors.
100
Figure 8: 8 CPU, Variable KPs.

Srinivasan and Reynolds (1998) showed that near per-

fect state information protocols could outperform traditional

Time Warps systems. They introduced the Elastic Time Al-

gorithm that dynamically adapted to fit the model being

simulated. This approach extends earlier ideas put forth

by Reynolds (1988) who proposed that there are in fact

multiple approaches to parallel and distributed simulation

beyond conservative or optimistic methods.

In Zimmerman and Chandy (2005) an parallel algo-

rithm for correlating streams of data is presented. Here,

computational graphs are pipelined to achieve a highly ef-

ficient system that integrates multiple data streams. These

systems are also referred to as data fusion systems and are

applied to the problem of threat detection and opportunities.

6 FUTURE WORK

Future work would involve extending this parallel algorithm

to a distributed cluster computing environment. Adirondack

defines a stream as an initial LP event and the set of events

caused by that event over the runtime of the model. We

believe this definition could be extended logically to a dis-

tributed system where event streams could be initialized

throughout the runtime. Then, events sent between re-

mote processors on unique systems would create new event

streams on the remote machine.

The trade-off of large numbers of KPs to support stream

simulation hampers the benefits of KP aggregation in the

fossil collection routines. We would like to investigate

decoupling these facilities in some way within the system to

achieve an efficient parallel algorithm that does not impact

fossil collection. Doing so could yield a system with a

broader range of performance.
1

Bauer and Carothers
7 CONCLUSIONS

We have identified a new parallel algorithm for discrete event

simulation that executes the critical path of a model without

a priori knowledge. We have implemented this algorithm

in a simulator named Adirondack and shown how this new

algorithm eliminates the passing of events between remote

processors. In addition we have shown that the performance

of this simulator is relatively equivalent to an existing state

of the art optimistic simulation system, ROSS.

REFERENCES

Berry, O., and D. Jefferson. 1985. Critical path analysis of

distributed simulation. In Proceedings of the 1985 SCS

Multiconference on Distributed Simulation, 57-60.

Brown, R. 1988. Calendar queues: a fast O(1) priority queue

implementation for the simulation event set problem.

Communications of the ACM 31(10):1220-1227.

Cai, W. T., and S. J. Turner. 1990. An algorithm for

distributed discrete event simulation - the carrier null

message approach. In Proceedings of the SCS Multi-

conference on Distributed Simulation, 3-8.

Carothers, C. D., D. Bauer, and S. Pearce. 2002. Ross:

a high-performance, low memory, modular time warp

system. Journal of Parallel and Distributed Computing.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto.

1999. The effect of state-saving in optimistic simula-

tion on a cache-coherent non-uniform memory access

architecture. In Proceedings of the 1999 Winter Simu-

lation Conference.

Chandy, K. M., and J. Misra. 1979. Distributed simulation:

a case study in design and verification of distributed

programs. IEEE Transactions on Software Engineering,

SE-5(5):440-452. 1979.

Das, S., R. M. Fujimoto, K. Panesar, D. Allison, and M.

Hybinette. 1994. GTW: a time warp simulator for

shared memory multiprocessors. In Proceedings of the

1994 Winter Simulation Conference, 1332-1339.

Fujimoto, R. M. 1990. Parallel discrete event simulation.

Communications of the ACM 33:31-52.

Fujimoto, R. M. 1990. Performance of time warp under

synthetic workload. In Proceedings of the SCS Multi-

conference on Distributed Simulation, 22:1.

Fujimoto, R. M. 2000. Parallel and distributed simulation

systems. In Wiley Series on Parallel and Distributed

Computing, 51-95. Wiley-Interscience.

Jefferson, D. R., and H. Sowizral. 1982. Fast concurrent

simulation using the time warp mechanism. Technical

Report N-1906-AF, RAND Corporation.

Lamport, L. 1978. Time, clocks, and the ordering of events

in a distributed system. Communications of the ACM

21:558-565.
1002
Lamport, L. 1979. How to make a multiprocessor compute

that correctly executes multiprocess programs. IEEE

Transactions on Computers 28(9):690–691.

L’Ecuyer, P., and T. H. Andres. 1997. A random number

generator based on the combination of four LCGs.

Mathematics of Computer Simulation 44(1):99-107.

Lin, Y. B. 1992. Parallelism analyzers for parallel dis-

crete event simulation. Transactions on Modeling and

Computer Simulation (TOMACS) 2(3).

Misra, J. 1986. Distributed discrete event simulation. Pro-

ceedings of the ACM Computing Survey 18:39-65.

Nicol, D., and J. Liu. 2002. Composite synchronization for

parallel distributed event simulation. IEEE Transactions

on Parallel and Distributed Systems 13(5).

Nicol, D. M. 1988. Parallel discrete-event simulation of

FCFS stochastic queueing networks. SIGPLAN Notice

23:124-137.

Prasad, S. K., and B. Naquib. 1995. Effectiveness of

global event queues in rollback reduction and dynamic

load balancing in optimistic discrete event simulation.

In Proceedings of the 9th Workshop on Parallel and

Distributed Simulation. 187-190. Lake Placid, NY.

Prasad, S. K., S. Sawant, B. Naqib, and D. Harsch. 1994.

Performance of parallel heap com- pared with par-

allelized calendar queue and con- current heap on a

shared memory computer. Technical Report Jan-9-94-

1, Department of Mathematics and Computer Science,

Georgia State University, Atlanta, GA.

Preiss, B. R. 1989. The Yaddes distributed discrete event

simulation specification language and execution envi-

ronments. In Proceedings of the SCS Multiconference

on Distributed Simulation, Volume 21, 139–144.

Reynolds, P. F., Jr. 1988. A spectrum of options for

parallel simulation. In Proceedings of the 1988 Winter

Simulation Conference, 325-332.

Riley, G. F. 2003. Large-scale network simulations with

GTNetS. In Proceedings of the 2003 Winter Simulation

Conference, 676-684.

Srinivasan, S., and P. F. Reynolds. 1998. Elastic time. ACM

Transactions on Modeling and Computer Simulation

(TOMACS).

Szymanski, B., Y. Liu, and R. Gupta. 2003. Parallel network

simulation under distributed Genesis. In Proceedings

of the 17th Workshop on Parallel and Distributed Sim-

ulation, 61.

Uspensky, J. V. 1937. Introduction to mathematical prob-

ability (page 18). McGraw-Hill.

Wikipedia. 2006. HyperTransport. <http://en.

wikipedia.org/wiki/Hypertransport>.

Zhou, S., W. Cai, S. J. Turner, and F. Lee. 2002. Crit-

ical causality in distributed virtual environments. In

Proceedings of the 16th Workshop on Parallel and Dis-

tributed Simulation (PADS ’02), 53–59.

Bauer and Carothers
Zimmerman, D. M., and M. Chandy. 2005. A parallel

algorithm for correlating event streams. In Proceedings

of the International Parallel and Distributed Processing

Symposium.

AUTHOR BIOGRAPHIES

DAVID W. BAUER is a Senior Simulation Systems Engineer

at the MITRE Corporation. He received the Ph.D., M.S., and

B.S. from Rensselaer Polytechnic Institute in 2005, 2004,

and 2000, respectively. Prior to joining MITRE, he was a

research scientist at AT&T and GE. His research interests

include parallel and distributed systems, simulation, wired

and wireless networking, and computer architecture. His

e-mail address is <dwbauer@mitre.org>.

CHRISTOPHER D. CAROTHERS is an Associate Pro-

fessor in the Computer Science Department at Rensselaer

Polytechnic Institute. He received the Ph.D., M.S., and B.S.

from Georgia Institute of Technology in 1997, 1996, and

1991, respectively. Prior to joining RPI, he was a research

scientist at the Georgia Institute of Technology. His research

interests include parallel and distributed systems, simula-

tion, networking, and computer architecture. His e-mail

address is <chrisc@cs.rpi.edu>.
1003

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

