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ABSTRACT 

Low-volume, custom-built or specialty equipment, by na-
ture, has little statistically significant data to predict system 
availability over the equipment life. Their unique construc-
tions are often costly to purchase and install, and are 
equally costly to maintain.  This paper presents a practical 
method to estimate the availability of custom-built equip-
ment, using a custom 4wd NVH dynamometer system as 
an example. The proposed method models the availability 
of an existing custom-built system using anecdotal compo-
nent information based on interviews with field service 
personnel. The interview data is used to create estimated 
probability density functions for the major components of 
the system. Component probability density functions are 
assembled into a system model based on a derived system 
reliability function. This technique provides a low-cost, 
quick, model of system availability over time which can be 
used to assess the risk and cost effectiveness of system 
maintenance strategies. 

1 INTRODUCTION 

A large automotive manufacturer operates several specialty 
chassis dynamometers used in the development of new ve-
hicle products. Due to the unique nature of these installa-
tions, it is difficult to predict the expected life or cost to 
maintain these systems based on statistically significant 
populations of like equipment. The purpose of this study is 
to recommend an economically feasible method to predict 
equipment availability of this custom equipment.  

Between 1987 and 1992, five custom dynamometer 
systems were installed in the Noise, Vibration and Harsh-
ness (NVH) Laboratory of a large automotive manufac-
turer.  Recent problems with the control system of  the old-
est dyno led to an increasing amount of downtime for the 
unit, and a reduction in system availability to about 95%. 
The laboratory must decide whether to continue making 
minimal repairs to this dyno, do a major overhaul, or re-
place the dyno completely to achieve a desired availability 
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of 99%. The primary support for this decision is the pro-
jected system availability and cost to maintain the dyno 
system over the next ten years as provided by this study. 

2 APPROACH 

Due to the unique configuration of the NVH dyno system, 
statistically valid data for the entire system is not available. 
The major component parts, however, are common to most 
dyno applications and have more predictable failure modes 
and distributions. Thus, the approach used in this study is 
to develop a predicted system availability based on the 
combination of its derived component availabilities. This 
process is similar to the method of assessing system reli-
ability based on the reliability of its components.   

The major dyno components are standard production 
parts combined in a unique manner for a dynamometer ap-
plication.  There are no statistical data available for these 
individual components when exposed to dynamometer us-
age; but according to the equipment manufacturer’s service 
technicians, each component has a predictable service life 
for the NVH application (Kuipers and Smith 2005). The 
approach in this study is to derive a probability density 
function for each of the major components based on anec-
dotal information provided by field service technicians. It 
is important to note that the accuracy of the resulting prob-
ability functions is directly related to the amount of experi-
ence for each technician interviewed, and their ability to 
describe their experiences. 

Individual stochastic processes can be defined for each 
of the major components of the dynamometer system as a 
series of uptime activities characterized by a failure prob-
ability distribution and downtime activities characterized 
by a repair distribution. These processes are easily mod-
eled using discrete event simulation, where a random num-
ber generator is used to estimate the durations of each 
component’s uptime based on its probability density func-
tion. These individual durations are then assembled into an 
estimate of system availability for each time period using 
an Excel spreadsheet.  Once the model is verified and vali-
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dated, it can be used to evaluate the three scenarios:  (1) 
minimal repairs to the dyno as each component fails, (2) 
major overhaul replacing the major components, or (3) re-
placing the entire dyno system. 

3 EQUIPMENT AVAILABILITY 

Availability is a measure of the probability that a repair-
able system, such as a dyno, will be operational at any 
given point in time t.  This metric is of primary interest to 
the laboratory. Availability takes into account both the 
probability that the component will survive (reliability), 
and the probability that the component is restored to an op-
erational state (maintainability).  For example, if a lamp 
has 99% availability, there would be one time out of each 
100 times a person switches it on that it will not light. The 
reason for the lamp not operating may be either a bulb fail-
ure, or that the bulb is in the process of being replaced. In 
general, availability A is defined as the percent of sched-
uled run time that the system is actually operational:  
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Downtime represents the entire time that the system is 

scheduled, but not operational. Modeled by the repair dis-
tribution, this activity contains more than just the repair 
time. The repair activity includes initial problem diagnosis 
by the dyno mechanic, lead time for service personnel to 
arrive, lead time for parts to arrive, actual repair time, sys-
tem try-out and calibration. 

4 MODELLING THE DYNO SYSTEM 

The first step in predicting the system availability is to de-
termine the primary function of the system and its associ-
ated “top failure mode”. It can be assumed that the avail-
ability of the system is driven by the component  
availabilities of those items most likely to cause the top 
failure for the system. The major components affecting 
system availability can be identified using fault-tree analy-
sis, and are shown in the system block diagram (Figure 1). 

4.1 Fault Tree Analysis 

For this study, the fault-tree analysis was conducted by a 
team consisting of an experienced dyno mechanic, instru-
mentation and facilities specialists, dyno supplier represen-
tatives and the test engineer. The test engineer described 
the primary function of the dyno as providing a constant or 
accurate programmed load at the vehicle wheels. The accu-
racy specification was stated as +/- 5% of the target load in 
foot-pounds. Thus, the top failure mode is the inability to 
maintain the programmed load at the vehicle wheels within 
+/- 5% of target.  The definition of failure for the NVH 
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dyno application is unique.  It is not possible to use abso-
lute component failure data to model this requirement as a 
partial loss of function for a component may cause a failure 
of the system. 

The fault-tree is developed by starting with the top 
failure mode and determining the major systems contribut-
ing to that failure. Sub-systems, components and sub-
components causing the failure of the systems identified 
are established until a reasonable level of detail is accom-
plished.  

Load applied by the dyno can be affected by any one  
of three subsystems: the control system, mechanical fric-
tion or safety shutdown (see Figure 2). The control system 
containing the processor, torque transducer and signal am-
plifier can affect load stability if a fault occurs in any one 
of its subcomponents. The mechanical friction of the sys-
tem affects load when the combined friction of the compo-
nents varies from the initial value determined during the 
calibration process. The safety system has thermal and 
ventilation sensors which monitor the DC Motor and cause 
the system to shut down when a fault is experienced. The 
reliability of the sensors themselves is not considered to be 
significant in this study. 

 

 
Figure 1: System Block Diagram for the Dyno 

 
 

 
Figure 2: Failure Mode Fault Tree 
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After developing a detailed analysis of the systems and 
sub-systems driving the top failure mode, the fault-tree 
analysis is distilled into its major components. The result-
ing major components in this study are: 

 
1. Processor (includes varistor drive unit), 
2. 150HP DC motor, 
3. Greased Roller Bearings, 
4. Gearbox, 
5. Load Sensor, and 
6. Signal Amplifier. 

4.2 Establishing System Availability 

Once the relationships of the major components are estab-
lished using fault-tree analysis, a mathematical model can 
be developed for the dyno system availability (Eberling 
1997). A block diagram is used to model availability as 
shown in Figure 3. It is noted that the bearings, shaft and 
gearbox are modeled as parallel elements and the balance 
of the elements are in series.  The block diagram for the 
probability of the inconsistent load failure Pf  can be writ-
ten as the following Boolean equation,  

 
( ) motorgearboxbearingtsigamplebowprocessorf PPPPPPP UIUUU= .  (2) 

 
Assuming that inconsistent load failure is the primary fail-
ure mode for the system, the system availability Adyno at 
any time t can be modeled as a function of the component 
availabilities, 
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Figure 3: Availability Block Diagram 

 

5 USING ANECDOTAL DATA TO ESTABLISH 
COMPONENT AVAILABILITY 

Statistical data are not always easily available for reliabil-
ity or availability of systems or components. Therefore, 
anecdotal information from field technicians experienced 
with the equipment is used to estimate the behavior of the 
component populations (Kuipers and Smith 2005). The an-
ecdotal information is gained by conducting structured in-
terviews with field technicians.  The object of the interview 
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process is to gain enough information to estimate a prob-
ability density curve to model each of the major compo-
nents.  The interview should include the following ques-
tions at a minimum: 

 
A. At what age does the component begin to fail in 

the field?  
B. How old were the oldest failed components found 

in the field? 
C. At what age do most components fail in the field? 
D. Does the component exhibit any unusual tenden-

cies such as failures early in life, or are they rela-
tively trouble-free until failure later in life?  

E. If there are early failures with this component, ap-
proximately what percent of the population is af-
fected? 

 
Figure 4 shows how the minimum interview questions 

are used to construct a probability density curve.   
 It is important to clearly define the system failure 
mode when gathering anecdotal data because a complete 
component failure may not be required to produce the sys-
tem failure defined.  For instance, the DC motor used in 
the dyno system is also used in a wide variety of applica-
tions beyond that of a dyno drive.  Although failure data on 
the component may be available from the motor manufac-
turer, this data would reflect the time to a complete failure 
as defined by the manufacturers specifications.  The DC 
motor may drive inconsistent loads without completely 
failing the motor manufacturer specification.  Thus the in-
terview data can be more accurate than simple statistical 
component failure data when evaluating custom equip-
ment. 

 
 

 Figure 4: Anecdotal Data Is Used to Set Constraints for a 
Probability Density Curve 
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ures, it must be assumed that failures will become notice-
able to the field technician at a certain level of component 
cumulative distribution function probability (CDF).  In this 
study, it is assumed that the technician will begin noticing 
field failures when a cumulative failure probability of 10% 
is reached. Thus, the age returned in answer to Question A 
can be assumed to occur at a CDF of 10%. Similarly, we 
assume that the technician recognizes the oldest failures 
(Question B) occur when the CDF has reached 90% .   The 
point of trend recognition CDF= 10% and CDF=90% is an 
arbitrary assumption in this study which could benefit from 
further research. 

Normal or Weibull distributions are recommended to 
characterize anecdotal data because they are easy to model 
and adapt well to qualitative data fitting. The Weibull dis-
tribution is particularly useful because it can be adapted to 
many different shapes by adjusting the beta value. The 
component failures can be modeled as either normal or 
Weibull distributions based on the position of the mode 
relative to the points A and B. If the mode is centered be-
tween points A and B, a normal distribution is assumed, 
otherwise, a Weibull model is used. 

5.1 COMPONENTS WITH NORMAL 
DISTRIBUTIONS 

The processor and gearbox components are assumed to 
have normal distributions. A normal distribution assumes a 
mean at point C which is equal to the mode (Question C). 
The standard deviation for the model is determined by 
working the inverse of the normal distribution 
calculation. Points A and B are both at a distance from the 
mean of the distribution such that the outlying tails each 
represent 10% of the population.  Given, %10)( =Φ z ,  z = 
1.28  (from the normal probability table with 90% confi-
dence).   We also know that,  

 

 
σ

μ−= Xz  (4) 

 
where, 

µ is the mean, point C, and 
X is the average distance between point AC and CB. 

Thus, 
 

 
28.1

)(5.0 CBCAC −+=σ . (5) 

 
For this study, the probability density function for 

each component failure is based on interviews with two 
dynamometer field technicians and the instrumentation and 
facility specialists included in the fault tree team  
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5.2 COMPONENTS WITH BIMODAL 
DISTRIBUTIONS 

The DC Motor population could be modeled as a bimodal 
distribution because field data shows a significant differ-
ence between the life of motors that are maintained regu-
larly, and those that are not. According the technicians, 
about 10% of all motors are not maintained and exhibit a 
normal failure distribution centered at 12 years of life. The 
balance of the motors survive to an average age of 18 
years. Since the maintenance of the dyno system in this fa-
cility has been minimal, a normal distribution with a mean 
of 12 years is assumed in for this study. 

5.3 COMPONENTS WITH SKEWED 
DISTRIBUTIONS 

A skewed distribution, such as that of the roller bearings, is 
modeled with a Weibull distribution. To model the Weibull 
distribution, the characteristic life (theta) is assumed to be 
equal to the mode value C. The value for beta can be estab-
lished using a Weibull modeling application such as 
Weibull Easy, or using a function in a spreadsheet program 
such as Excel. In this study, the scale value (beta) is in-
dexed iteratively, using Excel, until the distribution results 
in 10% tail probabilities for the limit values A and B. The 
Excel Weibull function is shown below. 

 
WEIBULL( t, beta=?, theta, TRUE) = 10% at the point 
that failures were first noticed (point A) 
WEIBULL( t, beta=?, theta, TRUE) = 90% at the point 
when the oldest units failed (point B) 

5.4 COMPONENTS WITH SKEWED BIMODAL 
DISTRIBUTIONS 

The distributions of failures exhibiting Weibull bimodality 
are the most difficult to assess. In cases such as the torque 
transducer (Lebow unit) and signal conditioner, the field 
technicians relayed problems with infant mortality due to 
electrical failures. Further questioning established an esti-
mated percentage of the population that failed early. The 
torque transducer component contains both an electrical 
angular speed sensor and a mechanical gearbox and bear-
ing system. According to the technicians, the component 
demonstrate a small amount of early failures (about 5% of 
the population) in the first three years, usually in the first 
months of operation due to high levels of noise in the out-
put signal. The balance of the components demonstrate a 
high level of reliability until wear-out failures occur at an 
average of 15 years; 90% of the torque transducers fail by 
the age of 19 years.  

For the torque transducer, the two modes are consid-
ered separately to establish the value for beta. The descrip-
tion of the early failures is interpreted as an exponential-
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type failure shape, with a beta value of 0.5. It is assumed 
that theta for this mode is three years or 12 quarters. The 
second distribution is assumed to have a characteristic life 
of 15 years. Thus the Excel function for the combined dis-
tribution is modeled as:  

 
WEIBULL( t , beta = 0.5, theta= 12,TRUE)*0.05 
+ WEIBULL( t , beta = ?, theta = 
15,TRUE)*0.95 = 90% at the point when the 
oldest units failed (point B) 

 
The beta value for the second distribution is indexed 

until the cumulative probability of failure at 19 years is 
equal to 90%. This results in a beta value of 4.0 for the 
second mode of the distribution. The probability density 
distribution for the signal conditioner is established in a 
similar manner.  

6 MODELLING THE AVAILABILITY OF THE 
SYSTEM 

The performance of the complete system can be modeled 
using a simple simulation developed with an Excel spread-
sheet (Banks, Carson, Nelson, and Nicol  2001). First, in-
terval durations must be established for the analysis (quar-
terly for this study). The time to failure can be calculated 
based on a random number value applied to the component 
failure distribution. A random number generator is avail-
able as an Excel software function. The random numbers 
between zero and 1.0 relate directly to a point of cumula-
tive failure probability in the life of a component, which in 
turn is used to calculate the time to failure for a component 
in each model iteration. It is important to use a separate 
random number calculation for each randomly derived 
component failure and subsequent repair down-time.  

The time to failure for each component is then mapped 
to a timeline to indicate the time interval in which the fail-
ure occurred. The randomly derived repair down-time is 
then applied in the interval of failure. In some cases the ac-
tual repairs occur over a period of adjoining intervals, but 
for the purpose of this study, all downtime associated with 
a component failure was assumed to have occurred in the 
same quarter as the failure itself. For instance, a random 
number of 0.9 will result in a time to failure of 19 years, or 
76 quarters,  for the torque transducer in this study. Thus 
the downtime duration trepair will be applied to the 76th 
quarter of life. The availability of the component in the 76th 
quarter is then calculated as,  

 

 
erval
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t
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A new time zero is established in the following quarter 
(77th) and a new random number applied to determine the 
second failure of the component. In all cases, the compo-
nents are assumed to be replaced with units “as good as 
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new.” Therefore, the shape of the probability density func-
tions remains constant regardless of the number of compo-
nent cycles. For the purpose of simplifying this study, re-
pair times are assumed to be fixed values, based on 
historical downtime experienced upon each type of com-
ponent failure.  

Given the availability of each component, the system 
availability is calculated for each interval using the reliabil-
ity block diagram relationship in Equation 3. 

6.1 Model Verification and Validation 

The simulation model is run for 100 cycles with each cycle 
modeling a 25-year period of dyno operation time to en-
sure stability. The coding of each component model is veri-
fied by comparing the model output component failure dis-
tribution to the estimated failure distribution function 
based on the anecdotal evidence.  Table 3 (at the end of 
this paper), lists the components, the anecdotal data and the 
resulting estimated component failure distribution.  

Validation of the model is challenging because there is 
only one dyno available with the same component configu-
ration as the one modeled.  To adequately prove out this 
method as a method for use in other applications, a popula-
tion of models would need to be generated using this 
method, then each validated against the actual service his-
tory of the actual equipment (DaimlerChrysler 2005).  
Time and budget did not permit this type of thorough vali-
dation for this study; but the model did accurately predict 
failures experienced by the subject dynamometer.  Table 1 
below shows the service history for the actual dyno system 
as compared to the predicted results provided by the simu-
lation.  Most of the component failures experienced by the 
dyno are predicted with sufficient accuracy for the purpose 
of estimating the type of repair strategy needed.  Even 
though the simulation has a tendency to predict an earlier 
failure than the actual, its accuracy is within a year and the 
risk of error is much greater if the failure is not predicted in 
enough time to respond to it.  The signal amplifier compo-
nent prediction is the only poor prediction; but it is clear 
from the failure distribution curve for this component that 
there is much variability in the component life, thus the 
discrepancy in the age is not considered a major problem 
with the simulation validity. 

 
Table 1:  Model Validity 

Item Actual  
Failure 

Experienced 

Failure  
Predicted 

by this  
Simulation 

Signal Amplifier 39 57 
DC Motor 42 36 
Gearbox, Bearings 49 47 
Torque Transducer 73 61 
Processor 75 68 
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6.2 Modeling Alternative Repair Actions to an Existing 

System: 

Once the model is validated,  it can be run for the three 
scenario conditions:  Minimal repair, overhaul and com-
plete system replacement.   Prior to running the simulation 
for each of these conditions, the model is tuned to reflect 
the actual failures experienced by the subject dyno system.  
This is done by starting the probability density clock at the 
quarter immediately after the most recent of each actual 
component failure.  The area of focus for this study is the 
predicting behavior of the dyno system over the next ten 
years (2005 – 2015).   Figure 5 shows the compared aver-
age interval availabilities for each of the three conditions 
evaluated. The first condition evaluated is to provide 
minimal repair to the system, replacing major components 
only as they fail. This is modeled by the basic simulation 
model described above, in which the components are re-
placed in the quarter of failure with “good as new” parts. 
The projected average interval availability for this period is 
estimated as 99.13%. 

For the overhaul condition, the simulation model used 
in the minimal repair assessment is modified to show the 
processor and torque transducer renewed by the 1st quarter 
in 2006.  In addition, review of the existing system with 
the supplier revealed an opportunity to eliminate the gear-
box in the system if a second motor was installed (e.g., one 
motor to drive each dyno axle). Thus the gearbox compo-
nent was modeled as removed during the overhaul, and a 
new AC motor was added as a new major component in 
the simulation. It was noted that the feedback system for 
the second motor consists of a solid state load cell device 
which is much more reliable than the torque transducer 
used on the existing DC motor. Due to the high reliability 
of the load cell, it was considered as part of the AC motor. 
The AC motor also exhibits a 20% longer life expectancy 
than that of the DC motor. The resulting average availabil-
ity for the next ten years is estimated as 99.76%. 

Figure 5:  Modeled Availabilities of the Three Conditions 

Average Predicted Availability (2005 - 2015)

98.60%

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

Minimal Repair Overhaul Replace
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A complete system replacement is modeled as a unit 
with two independent AC motors driving the rolls and re-
placement of the shaft and bearings. No replacement of 
major components is expected before 2015 with this alter-
native and the average interval availability is estimated as 
99.85%. 

7 CONCLUSION 

There is a clear improvement in system availability as 
more components are involved in the repair. The replace-
ment of the complete system is shown, as expected, to pro-
vide the most improvement in availability at 99.85%. A 
trivial decision could be made based only on the alternative 
that provides the highest average interval availability, to 
replace the system. 

For this problem however, the economic cost versus 
benefit must be considered to make a cost effective deci-
sion. All of the alternatives meet the facility owner’s re-
quirement of over 99% availability for the system. There-
fore the question is, which alternative provides the most 
increase in availability for the dollars spent.  

Using the simulation models for each of the three al-
ternatives, a total amount of projected downtime can be de-
termined. This downtime includes the time for conducting 
the initial repair action and subsequent repair events over 
the ten-year period. The cost of the downtime includes 
considerations of costs for idle personnel, as well as the 
cost of testing at an alternative site during repair. It is im-
portant to note that the minimal repair option results in un-
scheduled downtime, which is more costly to manage and 
has a greater chance of customer loss. For this reason, it is 
assumed that the cost of downtime for the minimal repair 
option was twice that of the other options. 

The cost of the initial action (or capital project acquisi-
tion) is added to the project cost of downtime to return a 
gross cost of operating the system under each alternative. 
The Cost per % increase in average interval availability is 
calculated, 
 

 
oacheieved

dunscheduleervalia
yavalabilitincreasein

AA
CCCCCost

−
+++= int

%  (7) 

 
where, 

Ca = the cost of capital equipment acquisition, 
Ci = the cost of equipment installation and set-up, 
Cinternal = the cost of idle personnel and facility, 
Csubstitution = the cost to substitute another facility dur-

ing repairs, 
Cunscheduled = the cost of rescheduled tests due to unex-

pected downtime at alternative facilities which may in-
clude premium labor, and potential customer loss, 

Aachieved = the resulting interval availability for the ten 
years from 2005 to 2015, 
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Ao = 95.1% original availability from quarters 67 and 
68. 

The cost versus benefit analysis reveals the best re-
sponse to the dynamometer issue is to conduct a major 
overhaul of the system (but not completely replace it). This 
is evidenced by the lower cost per unit of availability im-
provement and is the recommended course of action as 
shown in Table 2 below. 

 
Table 2:  Cost Analysis Results 

 
The system availability model based on anecdotally 

derived estimates of the component failures does an effec-
tive job of distinguishing the predicted performance differ-
ences of the alternatives considered in this study. The sys-
tem is scheduled for overhaul in December 2006. 

7.1 Suggestions for Further Research 

The heuristics associated with this modeling method were 
developed specifically for use in characterizing dyna-
mometer component availability, but have the potential to 
be applied to other systems. There are two major areas that 
could benefit from further study to make this application a 
good tool for diverse applications - investigate the charac-
teristics and limitations of using anecdotal data, and deter-
mine the efficacy of this method in predicting the response 
of other types of equipment or systems.   

The study of the characteristics and limitations of an-
ecdotal data should include:  (1) analysis of the effective-
ness of the standard questions (i.e., can the questions for 
further optimized and standardized?), (2) how can techni-
cian experience be qualified to provide consistent results 
and (3) refinement of interpreting questionnaire results into 
probability density curves for component failure. In par-
ticular, further work is required to establish the number of 
cumulative field failures a technician experiences before it 
is perceived as an indicator of the behavior of the popula-
tion. In this study, it is assumed that a 10% actual compo-
nent failure rate must exist before a technician perceives a 
problem with the product.  Correspondingly, it is assumed 
that 10% of the population had yet to fail at the point that 
the technician considers the oldest units fail.  Once the 
method for collecting anecdotal data is optimized, further 
study would be in order to identify applications which re-
spond best to this method. 

Alternative Projected Avg 
Availability

Projected 
Downtime after 
Renewal Action 

(days)

Cost per % 
Increase in 
Availability

Minimal 99.13% 31.76                     25,332.48$             
Overhaul 99.76% 8.76                       21,353.43$             
Replace 99.85% 5.47                       30,434.78$             
97
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Table 3:  Failure Distribution Curves Derived from Anecdotal  Data for Dynamometer Components. 
 

Component Failure Data Based on Interview  
with Field Service Tech 

Plot of Estimated Failure Distribution 
(percent of population failing each year) 

Processor 

 
Normal Dist 

Mean = 12.0 years 

σ =  2.34 years 

 

DC Motor 

 
Bi-Modal Dist 

Mean1 = 12 years for population not 
maintained motors (10%) 

Mean2 = 18 years population of 
maintained motors (90%) 

 
Total Mean = 16.8 years 

σ =  2.34 years 

 

Torque Transducer 

Combined Weibull Dist 
θ = 3.0 years,  β= 0.5 population ex-

periencing infant mortality (5%) 
 

θ = 12.0 years,  β > 4.0 for balance 
of population failing by 15 years 

(95%) 

 

Grease-Type Roller Bearings 

Minimum Life Weibull Dist 
θ = 12.0 years 

10% of population fails by 10 years, 
90% fail by 15 years 

 

Gearbox 

10 year max design life with wide 
variation due to maintenance.  No 

data, therefore assume Normal Dist 
with 5% reliability at 10 years.  

 
Mean = 8.5 years 

σ =  0.9 years 

 

Signal Conditioner 

Combined Weibull Dist 
θ = 1.0 years,  β= 0.5 population ex-

periencing infant mortality due to 
high signal noise (25%) 

 
θ = 12.0 years,  β > 4.0 for balance 

of population failing by 17 years, 
with 35% failing by 10 years (95%) 
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