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ABSTRACT

This research develops a data-integrated approach for con-

structing simulation models based on a real data set provided

by Baylor Regional Medical Center (Baylor) in Grapevine,

Texas. Tree-based models and kernel density estimation

were utilized to extract important knowledge from the

data for the simulation. Classification and Regression Tree

model, a data mining tool for prediction and classification,

was used to develop two tree structures: (a) a regression

tree, from which the amount of time a nurse spends in a

location is predicted based on factors, such as the primary

diagnosis of a patient and the type of nurse; and (b) a

classification tree, from which transition probabilities for

nurse movements are determined. Kernel density estima-

tion is used to estimate the continuous distribution for the

amount of time a nurse spends in a location. Merits of

using our approach for Baylor’s nurse activity simulation

are discussed.

1 INTRODUCTION

In traditional stochastic simulation models, transition prob-

abilities are obtained either subjectively or by looking at

all possible combinations of the levels of the simulation

state variables. If the system under consideration is com-

plex, such as nurse movement, then a subjective approach

is unlikely to be accurate, and an approach using all pos-

sible combinations of the states will be impractical. In

the past, in order to reduce the number of simulation vari-

ables, factorial designs and screening methods were used

(Bettonvil and Kleijnen 1997; Cheng 1997; Shen and Wan

2005). Even after eliminating some of the variables, a few
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remaining variables could lead to a huge number of com-

binations for the simulation. For instance, six categorical

variables with ten categories each, will lead to a million

possible states in the simulation. Obtaining accurate transi-

tion probabilities for such a huge simulation model is still

difficult. In this paper, using the Baylor data, we present

a new methodology to reduce the number of combinations

and find transition probabilities for stochastic simulation

models. Kernel density estimates and trees were utilized to

extract important knowledge about the workload of nurses

from an encrypted data set provided by Baylor for four care

units. The four units include two medical/surgical units, one

mom/baby unit, and one high-risk labor-and-delivery unit.

Classification and Regression Trees, a data mining tool for

prediction and classification, was applied to the Baylor data

to develop two tree structures: (a) a regression tree, from

which the amount of time a nurse spends in a location is

predicted based on factors, such as the primary diagnosis of

a patient and the type of nurse; and (b) a classification tree,

from which transition probabilities for nurse movements are

determined.

This research develops a simulation model for nurse

activity which could be used to evaluate nurse-patient assign-

ments. In the literature, most of the relevant research focuses

only on nurse budgeting and nurse scheduling methodolo-

gies (Aickelin and Dowsland 2003; Burke et al. 2001;

Jaumard et al. 1998; Kirkby 1997; Miller et al. 1976;

Warner 1976) and ignores uncertainty. By contrast, our

research seeks an integrated statistical data mining and sim-

ulation optimization approach that utilizes patterns in the

real data to balance workload. The integration of statistical

modeling and optimization has been found to work well

for some complex problems (Cervellera et al. 2003; Chen
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2001). Simulation models developed with this approach will

be much more representative of actual systems and more

efficient than those that consider all possible combinations.

The rest of this paper is organized as follows: In Section

2, a brief introduction is given on data and notation. Section

3 describes the statistical models and their use in building

the simulation model. In Section 4, we present performance

and tuning of kernels. Section 5 concludes by discussing a

possible simulation-optimization approach to optimize the

system.

2 DATA DESCRIPTION

Baylor provided data for this research from four care units:

Medical/Surgical unit I, Medical/Surgical unit II, Mom/Baby

unit and High-Risk Labor unit. The data were preprocessed

to create seven new variables to hold information on the

previous seven locations visited for each location entered

by nurses to predict patterns in their movement. Also, a

new variable is created to indicate the nurse-patient assign-

ments. To create this variable, it is assumed that the nurse

who spent the maximum amount of time in a patient room

during a shift is the nurse assigned to that patient for that

shift. More details on other preprocessing, encryption and

variable descriptions can be found in Sundaramoorthi et al.

(2005). After preprocessing, Medical/Surgical unit I, Med-

ical/Surgical unit II, Mom/Baby unit and High-Risk Labor

unit have about 389,349, 418,683, 315,997 and 210,457

observations, respectively. Following the conclusions in

Sundaramoorthi et al. (2005) and further similar analysis

presented in Sundaramoorthi et al. (2006), the following

types of variables with their specific levels are considered

significant for the methodology presented here.

1. Location : patient rooms, nurse station, break room,

reception desk, and med room.
2. Nurse Type: registered nurse, licensed vocational

nurse, licensed practitioner nurse, and nurse aide.
3. Diagnosis Code : 17 categories covering the range

of diagnosis codes. See INGENIX (2003) for more

details.
4. Shift: 3 weekday shifts (8 hours each) and 2 week-

end shifts (12 hours each).
5. Hour: 24 hour ranges covering a complete day.
6. Assignment: An assigned nurse entering a patient

room (1), an unassigned nurse entering a patient

room (0), and a nurse entering any location other

than patient rooms (2).

Based on the tree analyses of Sundaramoorthi et al.

(2005, 2006), our simulation includes location variables

that specify current location and seven previous locations.

Data from different care units were handled separately, as

the number of categorical levels of the considered variables,

listed above, differed slightly among different care units.
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In this paper, we maintain the following notation: XS , XT ,

XNT , XL, XD, and XA are the variables representing shift,

hour, nurse type, current location, primary diagnosis and

assignment, respectively; NS , NT , NNT , NL, ND, and

NA are the number of levels of XS , XT , XNT , XL, XD,

and XA, respectively; XP1L, . . . , XP7L are the variables

representing the seven previous locations with XP1L being

the latest and XP7L being the oldest among the seven

locations visited before any current location; XP1L, . . . ,

XP7L have the same number of levels (NL) as of XL.

3 SIMULATION MODEL

3.1 Classification and Regression Trees for Simulation

Classification and Regression Trees (CART) is a data mining

tool for prediction and classification (Breiman 1984; Hastie

2001). CART utilizes recursive binary splitting to uncover

structure in a high-dimensional space. CART, on application

to a data set, will partition the input space into many disjoint

sets and fit a constant response for each of the disjoint sets.

Salford Systems’ CART R© software was used to obtain

our tree structures. In particular, two tree structures were

developed: (a) a regression tree to predict the amount of

time a nurse will spend in a location based on the levels of

XS , XT , XNT , XL, XD, and XA; and (b) a classification

tree from which transition probabilities for nurse movement

are determined based on the levels of XS , XT , XNT , XL,

XD, XA, XP1L, XP2L, XP3L, XP4L, XP5L, XP6L, and

XP7L. A hypothetical regression tree is shown in Figure 1

to illustrate a prediction of the amount of time a nurse would

spend in a location. At each node of the tree, a question is

asked; a data point which satisfies the question will go left

in the branching and right if it fails to meet the criterion.

Based on the levels of XS , XT , XNT , XL, XD, and XA,

every data point ends up in one of the terminal nodes of the

tree. For each terminal node of the regression trees, kernel

density estimation (KDE) is used to estimate the probability

density function for time spent (Y ) by a nurse (under the

conditions specified by that terminal node). Assume we

have n(j) independent observations y1, . . . , yn(j) for the

random variable Y (j) in the terminal node j. Let K(·) be a

kernel function. Then the kernel density estimator f̂j,h(y)
at a point y is defined by equation (1) (Silverman 1986).

f̂j,h(y) = 1
h×n(j)

∑n(j)
i=1 K(yi−y

h
), (1)

where h is bandwidth, which controls the “window” of

neighboring observations that will highly influence the es-

timate at a given y. Sheather and Jones plug-in bandwidth

estimation method is used, as it is one of the best for opti-

mizing bandwidth h (Jones 1996; Sheather 1991; Sheather

2004). Y (1), . . . , Y (J) are the random variables that denote

the time spent (Y ) in terminal nodes 1, . . . , J , respectively.
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Figure 1: A Hypothetical Regression Tree Figure 2: A Hypothetical Classification Tree
Kernel density estimates with Sheather and Jones plug-in

bandwidths were obtained for each terminal node of the re-

gression trees. A typical plot with Gaussian and Triangular

kernels for each of the four care units is shown in Figure 3.

A hypothetical classification tree is shown in Figure 2

to illustrate the estimation of the probability that a location

would be visited by a nurse. At each node of the tree,

similar to the regression tree, a question is asked; data that

satisfy the question will go left in the branching and right

if they fail to meet the criterion. Depending on the levels

of XS , XT , XNT , XL, XD, XA, XP1L, XP2L, XP3L,

XP4L, XP5L, XP6L, and XP7L, every data point ends up

in one of the terminal nodes of the tree, where transition

probabilities are estimated as follows:

p̂(l/j) = 1
n(j)

∑n(j)
i=1 I(i ∈ l), (2)

where j = 1, . . . , J are the terminal nodes of the tree; n(1),
. . . , n(J) are the numbers of observations in terminal nodes

1, . . . , J , respectively; l = 1, . . . , NL are the levels of XL,

i.e., the different locations in a given care unit and I is an

indicator function.

3.2 Driving Simulation Model

To drive a nurse activity simulation, two essential questions

are asked: (1) Where will a nurse go next given her current

location, past locations and other factors (shift, hour, nurse

type, primary diagnosis and assignment)? (2) How much

time will she spend there? After an initialization run to

(randomly) warm up the simulation, transition probabilities

obtained by equation (2) from the classification tree determine

the next location a nurse will visit. Once a location has

been sampled for a given nurse, the amount of time she

spends there is determined by randomly sampling a y value

from the kernel density estimate at the appropriate terminal
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node in the regression tree. Clock time and the location

variables are then updated. The level of XT is changed if

the updated time enters a new category, as listed in Section

2. The levels of variables XS and XNT associated with a

nurse remain unchanged throughout the shift. This process

of sampling location and time spent is repeated until the

shift ends.

Traditionally, in stochastic simulations, transition prob-

abilities are obtained either subjectively or by looking at all

the possible combinations of variable levels. If the system

under consideration is complex, such as the care units in Bay-

lor, then a subjective approach is unlikely to be accurate, and

it will be impractical to implement an approach using all pos-

sible combinations of the levels of the simulation variables.

In the latter approach, the number of possible combinations

(NPC) grows exponentially with the number of variables.

In our problem, there are NS×NT×NNT×NL
8×ND×NA

combinations. On the other hand, simulation models de-

veloped as discussed in Section 3.1 require only J×NL

combinations extracted based on the patterns found in the

data. The more efficient the simulation, the more useful

it will be for making real time decisions. For example,

ninety minutes prior to a shift, a charge nurse will deter-

mine whether the set of scheduled nurses is sufficient for the

shift. If there is a shortage, she will call a nurse agency to

hire nurses for that shift. The simulation model can assist in

this decision provided its run time is sufficiently fast. Calcu-

lated difference between NS×NT×NNT×NL
8×ND×NA

and J×NL, given in Table 1, shows that our approach is

significantly more efficient. All locations in the care units

under consideration can be visited from any other location

of that care unit. Even though some of these combinations

of locations are unlikely to be visited in succession, without

using a statistical method like trees, it is not easy to justify

ignoring or combining them.
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Table 1: Numerical Values Of Levels In Different Care

Units And Number Of Combinations

Variable Care Unit

Level Med/SurI Med/SurII Mom/Baby High-Risk

NS 5 5 5 5

NT 24 24 24 24

NNT 4 6 8 7

NL 34 32 52 52

ND 18 20 9 7

NA 3 3 3 3

J(class.) 222 358 156 204

NPC > 1017
> 1017

> 1018
> 1018

J×NL 7548 11546 8112 10608

4 KERNEL PERFORMANCE

4.1 Kernel Choice

Kernel functions include Uniform, Gaussian, Triangular,

Epachenikov, Quadratic, and Cosinus. Gaussian and Tri-

angular kernels were chosen for this research as they are

common among simulation modelers. Also, it is relatively

easy to draw samples from Gaussian and Triangular dis-

tributions, which are required for sampling the time spent

random variable. Sheather and Jones plug-in bandwidth

estimates (Sheather and Jones 1991) were obtained for each

terminal node of the regression tree using SAS R©.

Figure 3 and the normal probability plots in Sun-

daramoorthi et al. (2005) show that the time spent data have a

long right tail, and a major portion of the data is concentrated

near the left end of the distribution. Gamma distributions

provided inadequate density estimates, motivating the use of

KDE. To assess how well KDE represents the time spent dis-

tribution, 100,000 realizations of time spent data were gener-

ated from Gaussian and Triangular kernel density estimates.

The simualated data were compared with actual data in four

different ranges i.e., (0, Median/2], (Median/2, Median],

(Median, (Median + Meidan/2)], ((Median + Meidan/2),

∞). Results from 100,000 simulated realizations of Gaus-

sian and Triangular kernels are shown in Table 2. There

were 171, 101, 458 and 72 terminal nodes in the regression

trees of Medical/Surgical I, Medical/Surgical II, Mom/Baby

and High-Risk Labor units, respectively. The table shows

that the Triangular kernel wins more often than the Gaussian

kernel irrespective of the care units and ranges. Among

all the competitions i.e., J × 4 competitions, the Trian-

gular won 80%, 79%, 84% and 87% of the competitions

in Medical/Surgical I, Medical/Surgical II, Mom/Baby and

High-Risk Labor units, respectively. A terminal node win

was considered to be achieved if a kernel managed to win

at least three ranges out of the four considered. Both the

kernels were considered to be tied if they won two ranges
963
Figure 3: Kernel Density Estimates (Red-Gaussian, and

Blue-Triangular)
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each. The results on terminal node wins shown on the

last two rows of each care unit further indicate that the

Triangular kernel is a better choice for the Baylor data.

Table 2: Performance of Gaussian and Triangular Ker-

nels

CARE UNIT GAUSSIAN TRIANGULAR TIE

MED/SUR I

J(Reg.)=171

Range I wins 26 145

Range II wins 41 130

Range III wins 53 118

Range IV wins 15 156

% wins 20% 80%

Ter. node wins 11 143 17

% Ter. node wins 6% 84% 10%

MED/SUR II

J(Reg.)=101

Range I wins 12 89

Range II wins 29 72

Range III wins 32 69

Range IV wins 11 90

% wins 21% 79%

Ter. node wins 5 83 13

% Ter. node wins 5% 82% 13%

MOM/BABY

J(Reg.)=458

Range I wins 64 394

Range II wins 88 370

Range III wins 108 350

Range IV wins 40 418

% wins 16% 84%

Ter. node wins 16 402 40

% ter. node wins 3% 88% 9%

HIGH-RISK

J(Reg.)=72

Range I wins 6 66

Range II wins 11 61

Range III wins 18 54

Range IV wins 3 69

% wins 13% 87%

Ter. node wins 0 64 8

% ter. node wins 0% 89% 11%

4.2 Bandwidth Tuning

The accuracy of estimates depends more on choosing an ap-

propriate bandwidth than the choice of kernels (Epachenikov

1969; Silverman 1978). Bandwidth selection methods, in-

cluding Sheather and Jones plug-in bandwidth estimates

(Sheather and Jones 1991), try to find the optimal band-

width that compromises a tradeoff between oversmoothness

and undersmoothness of the estimated density. After ob-

taining bandwidths from bandwidth estimation methods, we

can decide to either decrease or increase the bandwidth size
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depending on the knowledge of the system. Data used in this

project were collected over more than a six-month period

and have hundreds of thousands of observations for each

care unit. With data collected over months, the different

possible characteristics of the Baylor system will be well

reflected in the simulation if the bandwidths are tuned to

prefer a less smooth density estimate that reflects the data

more accurately. In this research, if the fraction of simulated

realizations in the ranges given in the previous section go

beyond ± 0.015 of the actual fraction of data, the bandwidth

was iteratively decreased by one until this criterion was met.

For example, the seventh terminal node of high-risk labor

unit shown in the table 3 has fractions of realizations that

violated ± 0.015 limit. After sixty iterations of bandwidth

tuning, all four ranges have fractions within the limit. This

leads to a change of bandwidth at this particular terminal

node to 7.03 from 67.03 and thus yields more representative

realizations of the time spent data.

Table 3: Bandwidth Tuning for Terminal Node 7 of

High-Risk Labor Unit

BANDWIDTH SIM. ACTUAL

TUNING FRACTION FRACTION DIFF.

BEFORE

h=67.03

range I 0.16609 0.358699 0.192609

range II 0.16558 0.148042 -0.017538

range III 0.13608 0.08319 -0.052890

range IV 0.53225 0.41007 -0.122180

AFTER

h=7.03

range I 0.345610 0.358699 0.013089

range II 0.155620 0.148042 -0.007578

range III 0.083620 0.08319 -0.00043

range IV 0.415150 0.41007 -0.00508

5 CONCLUSIONS

We presented classification and regression trees and kernel

density estimation to extract important knowledge for con-

structing a nurse activity simulation model. Given the current

state, classification trees provide state transition probabili-

ties to determine where a nurse will go next. Regression

trees combined with kernel density estimates determine the

amount of time a nurse will spend once she/he goes to a

new location. Further, we presented a criterion to select

the kernel function and the bandwidth. Simulation models

developed with this approach will be much more efficient

than those that consider all possible combinations. To opti-

mize the system, simulation-optimization methods such as

Atlason et al. (2004), Fu et al. (1997), and Glasserman

et al. (1990), can be applied to achieve the simulation

model. Implementing this methodology will help charge

nurses make better decisions on nurse-patient assignments.
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Further, the approach studied here can be used to simulate

any systems with probabilistic state transitions.
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