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ABSTRACT

Decision problems with the features of prisoner’s dilemma
are quite common. A general solution to this kind of social
dilemma is that the agents cooperate to play a joint action.
The Nash bargaining solution is an attractive approach to
such cooperative games. In this paper, a multi-agent learn-
ing algorithm based on the Nash bargaining solution is pre-
sented. Different experiments are conducted on a testbed
of stochastic games. The experimental results demonstrate
that the algorithm converges to the policies of the Nash bar-
gaining solution. Compared with the learning algorithms
based on a non-cooperative equilibrium, this algorithm is
fast and its complexity is linear with respect to the number
of agents and number of iterations. In addition, it avoids
the disturbing problem of equilibrium selection.

1 INTRODUCTION

Interactive decision problems with multi-agents are common
in real life, e.g, peace-keeping, wireless sensor networks,
team robot, etc. A difficulty in such decision problems is in
the uncertainty in model parameters, i.e., the probability of
a state transition and agents’ payoff function. Multi-agent
reinforcement learning is an innovative approach to solve
this type of problems. It combines the learning process
in an unknown environment with the interactive decision
process of multiple agents.

In multi-agent systems, if each agent acts independently
to maximize its individual payoff, the final payoff of each
agent is usually undesirable in an unknown decision environ-
ment. In fact, even when the environmental parameters are
known, in the prisoner’s dilemma-like decision problems,
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Figure 1: The Prisoner’s Dilemma

non-cooperative action of each agent may lead to undesir-
able payoffs. Consider the well known prisoner’s dilemma
represented in Figure 1 as a matrix where each row and
column represent an action of player 1 or 2, and each cell
represents the payoffs to each player for every combination
of actions. If each agent plays its dominant strategy, then
the game terminates with Nash equilibrium payoffs (1,1).
If the two players cooperate with each other and play an
optimal joint action, then a better payoff (2,2) is achieved,
which is Pareto-optimal (i.e., none of the payoffs/objectives
can be improved without worsening another). However,
when the agents act independently, they have the fear of
being taken advantage of by another agent. Therefore, they
will not cooperate with each other. If the agents are able to
make an enforceable contract, then they will have a strong
desire to cooperate with each other.

In this paper, a type of an interactive decision prob-
lem among multiple agents, which has the same essential
characteristics as the prisoner’s dilemma, is studied and a
cooperative game model is adopted to solve it. Since the
Nash Bargaining Solution (NBS) is an attractive solution to
cooperative games, an NBS based multi-agent learning al-
gorithm is designed. Simulations are performed on a testbed
of general-sum stochastic games. Compared to multi-agent
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learning algorithms based on noncooperative equilibriums,
our algorithm has the following features: (a) there is no
equilibrium selection problem, (b) the algorithm ensures
convergence to a Pareto-optimal solution, (c) the algorithm
is linear to the number of agents and the number of it-
erations, therefore much faster than the equilibrium based
multi-agent learning algorithms.

In Section 2, the related work in multi-agent learning
is reviewed briefly. In Section 3, the Nash bargaining
solution-based multi-agent learning algorithm is presented
and analyzed. In Section 4, the simulation results are shown.
Finally, conclusions and future work are summarized in
Section 5.

2 RELATED WORK

Multi-Agent Reinforcement Learning (MARL) has been an
active research area in Artificial Intelligence for more than
a decade and some innovative results have been obtained.

Unlike single agent learning problems, in multi-agent
settings there is no single utility function to optimize. Each
agent has a different objective and its payoff is determined
by the joint action of multiple agents. In such interactive
decision problems, there exists many solution concepts,
some of which are drawn from game theory, and others
are from decision theory. In MARL, the focus is on which
solution concept to use to guide the learning.

One type of MARL is value iteration learning (Sut-
ton and Barto 1998) based on different concepts of equi-
librium in game theory. Littman (1994) first introduced
a Minmax solution-based learning algorithm in zero-sum
stochastic games. Hu and Wellman (1998) presented a
Nash Equilibrium-based learning algorithm, which extended
Littman’s algorithm to the general-sum games. Greenwald
and Hall (2003) considered the possibility of action corre-
lation among agents and proposed a Correlated Equilibrium
based learning algorithm.

Another type of MARL is mainly motivated by multiple-
person decision theory. It assumes that each agent plays
a best-response against stationary opponents, and requires
the joint action of agents to converge to Nash Equilibrium
in self-play. Bowling and Veloso (2002) first proposed
such an MARL algorithm with a variable learning rate,
i.e., learn quickly while losing and slowly while winning.
Conitzer and Sandholm (2003) introduced AWESOME, a
learning algorithm for repeated matrix games that learns best
response when opponents are stationary, otherwise move to
equilibrium.

Shoham and Powers (2003) criticized the equilibrium-
based MARL algorithms for the disturbing problem of equi-
librium selection, and proposed a set of learning criteria
(Powers and Shoham 2005) to guarantee that an agent’s
average payoff is near to best response against stationary
opponents, close to an equilibrium in self-play, and at least
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better than the minimax payoff against the opponents. Cor-
respondingly, a hybrid strategies based-learning algorithm
is devised for repeated matrix games. Banerjee and Peng
(2005) proposed a no-regret algorithm which satisfied the
same set of criteria without the assumption that the learners
know game matrices.

In a social dilemma, non-cooperative equilibrium is
not always desirable. The agents are able to improve
payoffs by cooperation or bargaining. In Stimpson and
Goodrich (2003ab), a special learning approach based on
non-cooperative bargaining model is designed to solve the
social dilemma. It is similar to the equilibrium based MARL
algorithms, but still has the problem of equilibrium selection.

In this paper, cooperative games are adopted to solve
the social dilemma and a corresponding learning algorithm
is designed based on the Nash Bargaining Solution concept.

3 THE NBS BASED MULTI-AGENT
LEARNING

3.1 The Nash Bargaining Solution

Agent behaviors are different in different games. Com-
pared to equilibrium, the solution concept in non-cooperative
games, the Nash Bargaining Solution (Nash 1953) is a core
solution concept in cooperative games.

The Nash Bargaining Solution selects the actions that
maximize the product of the utility gains of the agents in
comparison to the “status quo”. This solution is derived
based on a certain set of axioms representing the fairness
of the solution. The “status quo” point can be chosen as the
noncooperative Nash Equilibrium or from the worst possible
outcomes for the agents.

In an unknown environment it is is difficult to find NBS
even with an enforceable contract. The agents have to learn
throught iterations how to reach the NBS.

3.2 The NBS Based Multi-Agent Learning Algorithm

We adopt a stochastic game framework to multi-agent sys-
tems. An n-player stochastic game is described with a
tuple

(N,S, {Ai}i∈N , {ri}i∈N , P ),

where N = 1, 2, ..., n is the set of agents, S is the state space,
Ai is action set of agent i, ri : S ×

∏
j∈N Aj → R is the

payoff function for agent i, and P : S×
∏

j∈N Aj → ∆(s)
is the transition probability over the state space S.

In multi-agent Q learning, the Q function of agent i is
defined as

Qi(s,~a) = ri(s,~a) + γ
∑
s′∈S

p(s′|s,~a)vi(s′, π1, . . . , πn),

(1)
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where s′ is the new state after joint action ~a is taken at the
state s, ri(s,~a) is the one-period reward at state s under
joint action ~a, γ ∈ [0, 1) is the discount rate, p(s′|s,~a) is
the transition probability from state s under ~a to new state
s′, and (π1, . . . , πn) is joint strategy which is decided by
a specific decision mechanism. By this definition, Qi(s, a)
is agent i’s total discounted reward of taking action ~a in
state s and then following the specific policy (π1, . . . , πn)
thereafter.

There is a selection function f which defines specific
strategy for each agent to play, i.e.,

vi(s, π1, . . . , πn) = fi(~a)(Q1(s,~a), . . . , Qn(s,~a)). (2)

When the selection function is a Nash equilibrium, i.e.,

Vi(s) ∈ NASHi(Q1(s), . . . , Qn(s)), (3)

where Qi(s) is agent i’s reward matrix at state s, and Vi(s)
represents agent i’s reward at state s when every agent
follows the Nash equilibrium strategy at s.

In reality, the overall reward function and the state
transition probability distribution are typically unknown.
The advantage of value iteration learning is that the agents
can learn even when the model is unknown. The Q function
is updated through explorations of the state and action space
according to

Qt+1
i (s,~a) = (1− α)Qt

i(s,~a) + α(rt
i + γV (s′)). (4)

Different selection functions result in different learning
algorithms, i.e., Minmax-based learning (Littman, 1994),
Nash equilibrium-based learning (Hu and Wellman 1998)
or correlated equilibrium (Greenwald and Hall 2003). When
we adopt equilibrium as the solution concept, the solution
is not guaranteed to be Pareto-optimal.

In a social dilemma, the agents are usually rational
and would like to reach a win-win situation. In many
situations, each agent is able to improve its objectives without
preventing others from improving their objectives. The
agents are more prone to coordinate in such situations and
willing to play cooperative games. The Nash Bargaining
solution to cooperative games has a unique and Pareto-
optimal solution. Therefore, NBS is applicable to learning
in social dilemma modeled by cooperative games. In NBS
based learning, v value is calculated as

vi(s, π1, . . . , πn) = NBSi(s)(Q1(s,~a), . . . , Qn(s,~a)),
(5)

where

NBS(s) = Max~a(Q1(s,~a)× . . .×Qn(s,~a)). (6)
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NBS(s) represents the payoff matrix obtained by Nash
Bargaining Solution at state s and NBSi is NBS payoff to
agent i.

The learning algorithm is given in Table 1. The learning
starts from an initial state. At each iteration, the learning
starts from the new state resulting from a previous joint
action. If one agent reaches the goal, a random state is
chosen at next iteration to continue the exploration of the
state space.

Like Nash-Q learning, in NBS based learning the agent
learns the strategy without knowing the transition function
and the reward function of the game, i.e., the model is
unknown. Unlike Nash-Q learning which makes a strong
assumption that there is a unique equilibrium, the Nash
Bargaining solution is unique at each stage and therefore
does not have the equilibrium selection problem.

The algorithm results in mutual cooperation through
Nash Bargaining. At each stage of the game, a Pareto-
optimal solution is obtained. Thus, the overall solution
of the game is also Pareto-optimal. This property is the
key for discriminating between various learning algorithms.
Stimpson and Goodrich (2003a) demonstrated that many
multi-agent learning algorithms fail to discover a Pareto
efficient solution.

Table 1: The NBS Learning Algorithm
Inputs:

learning rate α
discount factor γ
T total training iterations

Initialization:
Index the agents by i, i = 1, 2, ..., n
For all s ∈ S and ai ∈ Ai,i = 1, 2, ..., n,
let Qi(s, a1, ..., an) = 1, Q∗(s) = minaQi(s, a) = 0.
s = s0

Loop:
for t = 1 to T

Choose action ai ∈ Ai

Observe ~r = r1, ..., rn; ~a = a1, ..., an; and new state s′

Update
Qj(s,~a) = (1− α) ·Qj(s,~a) + α · (rj + γ · Vj(s

′))
Vj(s

′) = NBSj(Q1(s
′,~a), ..., Qn(s′,~a))

NBS(Q1(s,~a), ..., Qn(s,~a))
=max~a(Q1(s,~a)−Q∗

1(s)) · ... · (Qn(s,~a)−Q∗
n(s))

where NBS(Q1(s,~a), ..., Qn(s,~a)) denotes NBS
payoff matrix and Vj(s) denotes the NBS based
payoff to agent j

s = s′

3.2.1 Complexity of the Algorithm

According to the algorithm, the learning agent needs to
maintain one Q-function for each agent. Let |S| be the
number of states in state space, and |Ai| be the size of
agent i’s action space Ai, then the total number of entries
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(a) grid game 1 (b) grid game 2

Figure 2: Grid World Games
in Qi is |S| ·
∏

i∈N Ai, where N = 1, 2, . . . , n. The total
memory space required for n Q-functions is n·|S|·

∏
i∈N Ai,

the same as in Nash-Q learning.
At each iteration, each Q-function is updated and the

product of Q values is compared with V-value, so the running
time of NBS based learning at each state is O(n), where
n is the number of agents. Therefore, the total running
time with t iterations is O(n · t), linear to the number of
iterations t and the number of agents n.

In Nash-Q learning, the total running time is dominated
by the calculation of Nash equilibrium at each iteration and
the computation complexity of finding an equilibrium in
matrix game can be done with linear programming, which
is more expensive than linear. Because of the linear running
time, the NBS learning algorithm is much faster than non-
cooperative equilibrium based learning algorithms.

3.2.2 Convergence of the Algorithm

The proof can be given along the lines of the convergence
proof in Hu and Wellman (2003) with a minor modification.

4 EXPERIMENTS

The commonly used framework of multi-agent systems in-
cludes stochastic games and matrix games. Since we model
a dynamic process instead of a one-shot play, we adopt
stochastic games to model state transition. In the multi-
agent learning with stochastic game framework, grid games
are commonly used for the experiments. The two grid
games (Hu and Wellman 2003, Greenwald and Hall 2003)
shown in figure 2 are simulated. In the games, two agents
take actions simultaneously. We assume that the agents do
not know the location of the targets and the overall payoff
function. They can however observe previous actions taken
by another player, the new state that results from the joint
action, and the immediate payoff of each action to each
player.
937
4.1 Configuration of the Experiments

The state of the game is decided by two agents’ joint
location (l1, l2) where li = 1 . . . 9, i = 1, 2. Each agent’s
action space Ai consists of four one-step movements, Ai =
{up, down, left, right}, i = 1, 2. The payoff function is
defined as

ri =


100 if L(li, ai) = goali
−1 if L(l1, a1) = L(l2, a2) and

L(lj , aj) 6= goalj , j = 1, 2
0 otherwise

If both agents attempt to move into the same cell, they
have to back off and both lose one point. If an agent reaches
its goal, it is rewarded 100 points and the game is over. If
none of the agents reaches its goal and they do not conflict
then each agent scores zero, neither one is rewarded or
punished.

The difference between grid game 1 and grid game 2
is that there are two different goals in grid game 1, and
one common goal in grid game 2. In addition, game 1
is deterministic, i.e., each action results in a transition to
a specific state but game 2 is non-deterministic in cells 1
and 3. In game 2, there is a barrier above cells 1 and cell
3. So when an agent is located in cell 1 or 3 and selects
action to move up, it has 50% possibility to succeed and
50% possibility to fail, i.e., to move back to original cell.

The objective of each agent is to reach its goal with
the minimum number of steps of movement.

4.2 Experiment Results

In these two grid games, the Nash Bargaining solution is
the same as the equilibrium solution as shown in Hu and
Wellman (2003). However, the calculation is much easier
and faster since Nash-Q has to calculate equilibrium at each
stage while NBS learning just does a simple comparison. In
addition, there is no equilibrium selection problem as in Hu
and Wellman (2003), Greenwald and Hall (2003). Figure 3
shows the paths from the Nash Bargaining solution. Figure
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(a) grid game 1: solution paths (b) grid game 2: solution paths

Figure 3: Solution Paths in Grid Games

(a) Convergence of grid game 1 (b) Convergence of grid game 2

Figure 4: Convergence in Grid Games
3(a) shows some paths from NBS in grid game 1, and the
other NBS paths are symmetric to the ones in Figure 3(a).

The experimental results are presented in Figure 4. The
x-axis represents time, and the y-axis represents the means
of the distribution of the errors errt

i for all t and errt
i =

|Qt
i(s,~a)−Qt−1

i (s,~a)|. The experimental results show that
NBS based Q learning converges in both deterministic and
nondeterministic grid games. In these two grid games,
like equilibrium based learning, there are multiple NBS
solution options. In equilibrium based Q learning, such as
Nash-Q and CE-Q, there is the question of what equilibrium
policies the algorithms converge to. However, in NBS based
Q learning, the solution converges to a unique solution
without centralized control. At different runs, it may reach
different NBS solutions. When there are multiple optimal
solutions with the same value, one of the solutions is reached
depending on the state transition during the iterations.

The experiments are benchmarks used in a MARL
study. In comparing the convergence speed and the number
of iterations in Figure 4 with those in Nash-Q learning
(Hu and Wellman 2003) and in CE-Q learning with the
same experiments, the number of iterations are similar, in
the order of 105. Therefore, the comparison has to be
made on the number of operations per iteration step. At
each iteration, the calculation of NBS is linear, but the
calculation of Nash equilibrium and correlated equilibrium
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can be calculated using linear programming. Therefore, the
overall computation time of NBS based learning is less and
it is much more computationally efficient.

For different applications, the state space, actions set,
and short-term reinforcements have to be modeled differ-
ently, but the memory space and algorithm complexity are
the same as it was analyzed in previous section.

5 CONCLUSION

In this paper, we have applied cooperative game theory to
model and analyze a certain type of interactive decision
problem with the prisoner’s dilemma features. A Nash
Bargaining Solution-based learning algorithm has been pre-
sented. The experiments have been performed on the testbed
of stochastic games. The experimental results have shown
that the algorithm always converges to the Nash Bargaining
solution.

In most social dilemmas, when the agents make en-
forceable contracts to resolve their conflict, the power of
agents makes a big difference. Therefore, a possible ex-
tension of the algorithm is to explore the influence of the
agent’s power on multi-agent learning in cooperative games,
i.e., the multi-agent learning with asymmetric agents.

One problem with the value iteration reinforcement
learning algorithms is the scalability. In the proof of con-
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vergence, the assumption is made that every state and action
have been visited infinitely often. When the state and action
spaces are large, it is not efficient to obtain a solution. There-
fore, another future work is to make agents have bounded
memory in order to speed up convergence.
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