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ABSTRACT

We tackle the problem of validating simulation models

using neural networks. We propose a neural-network-based

method that first learns key properties of the behaviour of

alternative simulation models, and then classifies real system

behaviour as coming from one of the models. We investigate

the use of multi-layer perceptron and radial basis function

networks, both of which are popular pattern classification

techniques. By a computational experiment, we show that

our method successfully allows to distinguish valid from

invalid models for a multiserver queueing system.

1 INTRODUCTION

Today, simulation lies within the reach of many companies

to evaluate different scenarios when a system is in need of

improvement. Typically, great efforts are spent on collect-

ing system data, building a detailed computer model, and

presenting simulation results as early as possible. Sadly

enough, due to the continuous time pressure that lies on

simulation practitioners, little time remains for one of the

most important steps of the simulation project, i.e., that

of validating the simulation model. Although validation

consists of many facets—the discussion of Balci (1998)

is an excellent starting point for learning more on valida-

tion, we identify validation with the process of verifying

whether the simulation model is capable of reproducing

historical behaviour of the real system. This interpretation

has a strong intuitive appeal, and is most valuable to the

model’s stakeholders. For, the more the model is capable

of imitating historical behaviour, the more reliable it is for

predicting future behaviour (under a particular scenario for

performance improvement).
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We tackle the validation problem of simulation models

using neural networks. The idea is to use a pattern classifier,

in particular a neural network, to learn specific behavioural

patterns from different candidate simulation models, and

then to classify patterns from the real system as belonging

to one of the models. This model is then believed to be

valid, for it produces patterns that are indistinguishable—

at least for the neural network—from patterns of the real

system. Section 2 outlines our neural network approach

to validation. Section 3 contains an extended example to

illustrate the working method of our approach. Section 4

concludes the paper and gives some ideas for future work.

2 NEURAL NETWORKS AND MODEL

VALIDATION

2.1 Multi-Layer Perceptron and Radial Basis Function

Networks

Since it is beyond the scope of this article to discuss neural

networks in detail, the reader is referred to some excellent

textbooks in the literature; see, e.g., Bishop (1995), Kasabov

(1996), Wasserman (1993), and Nauck et al. (1997). Neu-

ral networks are widely-used pattern-analysis techniques

suitable for a diversity of applications in which flexible

classification is required. Neural networks are typical in-

duction methods, in that they try to learn a model from a

sample set of training data. If a network is sufficiently large

and trained with an adequate training procedure, then accu-

rate modelling and generalisation can usually be achieved.

The downside is that inspection of correctness for large

networks is likely to be difficult, as neural networks encode

their structure in a distributed manner.

We use two kinds of neural networks: multi-layer per-

ceptron (MLP) networks and probabilistic neural (PN) net-
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Figure 1: Multi-Layer Perceptron (left) and Radial Basis Function (right) Networks
works, the latter of which form a special kind of so-called

radial basis function (RBF) networks. Both kinds are uni-

versal approximators, and are widely used for pattern clas-

sification. The universal approximation property provides

great flexibility and allows to model complicated decision

boundaries in classification problems. Figure 1 illustrates

the general layout of an MLP and an RBF network. An

MLP network consists of an input layer, a series of hidden

layers, and an output layer. An RBF network has a similar

structure but contains only one hidden layer. The major

difference between MLP and RBF networks lies in the way

input is processed by neurons on the hidden layer(s) of the

network. In a hidden MLP neuron, the weighted outputs of

the previous layer are gathered, and a simple linear or sig-

moidal shaped function is applied. In a hidden RBF neuron,

however, a radial (Gauss) function is directly applied to the

input vector. Such a function assumes its highest value at a

centre point while continuously decreasing away from this

point in all directions. The rate of decrease depends on the

spread or standard deviation of the function. The closer

the centre point to the input vector, the higher will be the

output of the neuron. The outputs of the hidden neurons

are weighted and collected at the output layer, and possibly

further normalised, to obtain a final output vector.

The result of using different processing functions is that,

for an MLP network, pattern classification eventually comes

down to drawing hyperplanes in the input space, while for

an RBF network, the input space will be subdivided using

hyperspheres. This subtle though important difference has

great consequences for whether or not a network is suited for

a particular classification task. Due to their localised nature,

RBF networks are likely to be more successful when the

data points belonging to one particular class are clustered

in the input space. Otherwise, (too) many basis functions

will be required to adequately classify the patterns.
906
2.2 Validation Approach

Figure 2 gives a schematic overview of our validation ap-

proach using a neural network. We assume that, as will

be typical for most modelling studies, insufficient system

knowledge is available to create a fully calibrated simulation

model at once. Usually, a number of alternative models, or

alternative model calibrations, remain open for selection.

Every replication with such a model produces a training

pattern for the neural network, consisting of certain be-

havioural statistics on the one hand (e.g., sample means and

variances of time series), and of the model label on the other

hand. Possibly, preprocessing of the statistics is required

to reduce the information load for the network. By apply-

ing patterns from different replications across all candidate

models, the network learns to identify key features of the

statistics that cause a pattern to belong to a specific model.

Once the network has succeeded in learning these features,

data of a “replication” with the real system is offered to

the network. The network output can then be interpreted as

a probability vector, indicating for every simulation model

the probability that the data comes from the model. The

model with the highest such probability across most of the

“replications” with the real system may then be retained as

a valid model.

3 AN EXTENDED EXAMPLE

3.1 Problem Description

We illustrate our neural network approach for validation

on a set of simulation models for a two-class two-server

queueing system with non-preemptive priority structures.

The statistical properties of this system have been extensively

studied by Leemans (1998). Figure 3 displays the different

simulation models of interest.
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Figure 2: Validation Process Overview
Every model consists of two servers with exponentially

distributed service times. Two types of jobs arrive, class A

and class B jobs, each according to a Poisson process with

arrival rate 0.9. The average job service times are identical

and are fixed at 1. The job type that can be handled by a

server depends on the model. In model 1, class A and class

B jobs are processed separately on a first-come-first-served

basis. In models 2, 3 and 4, both servers process class

A and class B jobs according to a non-preemptive priority

rule. In particular, with regard to model 2, class A jobs

have priority over class B jobs on both server 1 and server

2, meaning that no class B job will be initiated as long as

there is a class A job waiting in queue. A similar statement

holds for model 3. In model 4, the priority structure is

heterogeneous, meaning that server 1 (2) always attempts

to initiate class A (B) jobs first. Finally, in model 5, both

servers take class A and class B jobs from a common queue

on a first-come-first-served basis.

3.2 Classification Matrices

To maximise the scope of our experiments, we treat every

of the models once as being the real system, with the

other models then being alternative (imperfect) simulation

models. This way, the outcome of our validation method can

be summarised in a classification matrix, like we showed
907
in Table 1. With every (ij)th element of the classification

matrix corresponds the H0 hypothesis that model j is valid

in light of the real system that is substituted by model

i. Clearly, we expect the H0 hypothesis to be correct at

diagonal entries and incorrect at off-diagonal entries of the

matrix.

The (ij)th element of the matrix equals the number of

times that output from model i was classified as coming

from model j. It gives an indication of the probability on

rejecting a valid model (a type I error) for i = j and on

accepting an invalid model (a type II error) for i 6= j. To

give an example, the matrix in Table 1 shows that output of

simulation model 1 was classified as coming from model

1 in 85% of the cases, and that in 15% of the cases, the

output was incorrectly classified as coming from models 3

and 5. When simulation model 1 plays the role of the real

system, there is thus a 15% chance that model 1 will be

incorrectly invalidated. The probability on making a type I

error when testing the H0 hypothesis at entry (1, 1) of the

matrix thus equals 15%. To give another example, output

of simulation models 2, 3, 4 and 5 was classified as coming

from model 1 in 3.5% ( 12+2

400
) of the cases. When the real

system is substituted by any of these models, there is thus

a 3.5% chance that model 1 will be incorrectly validated.

The average probability on making a type II error for the
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Figure 3: Multiserver Queueing Models
Table 1: Example Classification Matrix

simulation model

real
sy

stem

1 2 3 4 5

1 85 0 14 0 1

2 0 100 0 0 0

3 12 0 87 0 1

4 0 0 3 92 5

5 2 0 2 5 91

H0 hypotheses at entries (2, 1), (3, 1), (4, 1) and (5, 1) of

the matrix thus equals 3.5%.

3.3 Results

We take the number of class A jobs in queue to be the

time series of interest for validation. Two parameters are

likely to influence the probability on making a type I or

II error: 1) the input space for the neural networks, i.e.,

the number and kind of statistics that are computed from

the queue length time series, and 2) the frequency at which

the queue of class A jobs is sampled. As to the sampling

frequency, we sampled the number of class A jobs at rates

of 1/8th, 1/7th, . . . up to 5 samples per time unit. All

replications were run for a total of 10000 time units. As to
908
the input space, we performed one set of tests using only

the sample means of the queue length time series, a second

set of tests using the sample means and variances of the

series, a third set of tests using the sample means, variances

and autocovariances for the first 2 lags, and so on, until

and including autocovariances for a total of 16 lags. Thus,

at the finest level of testing, 18 inputs are defined (mean

+ variance + 16 autocovariance lags) using 50000 queue

length samples, while at the coarsest level, only 1 input is

defined (mean) using 1250 samples. Since the estimated

autocovariances appeared to vary substantially across the

different replications, we performed a normalisation of all

input data.

Table 2 shows the probability on a type I error using an

MLP and a PN network under the experimental set-up above.

Every figure in the table coincides with the misclassification

percentage of a particular classification matrix. The table

also shows misclassification percentages for a well-known

classification technique from statistics, i.e., the K-Nearest

Neighbour (KNN) technique. This technique operates by

classifying new, unseen patterns using the most frequent

class label in the k-most nearby patterns; see Devijver and

Kittler (1987) for details on the KNN method. We used one

set of 100 replications per model to train the networks—

the training set, and another set of 100 replications per

model to test the networks and compute the classification

matrices—the test set. Both the KNN and the PN-network-

based classification method make use of an additional set
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Table 2: Classification Errors (in %) of the KNN Method, and of PN and MLP Networks

Freq
avg avg + var avg + var + 2 lags avg + var + 4 lags avg + var + 6 lags

KNN PN MLP KNN PN MLP KNN PN MLP KNN PN MLP KNN PN MLP

5 34.0 34.0 34.2 9.6 9.4 8.8 10.0 10.4 2.6 10.8 10.8 2.4 11.4 11.2 2.0

4 34.0 34.0 34.4 9.6 9.4 8.8 10.2 10.4 2.6 10.6 10.8 2.0 11.2 11.2 1.6

3 34.2 34.0 35.4 9.6 9.4 9.6 10.0 10.4 3.2 10.4 10.8 2.2 10.6 11.2 1.6

2 33.8 34.0 34.6 9.6 9.6 8.8 10.2 10.6 2.2 10.4 10.8 2.0 10.8 11.2 1.8

1 33.8 34.0 36.0 9.4 9.6 8.8 10.0 10.2 1.4 10.8 10.6 1.8 10.0 11.0 1.0

1/2 33.8 34.4 34.0 9.8 9.6 8.8 10.0 10.2 1.6 10.2 9.6 0.6 9.2 8.6 0.8

1/3 34.4 34.0 35.4 9.4 9.6 9.0 10.0 9.6 1.2 9.6 8.8 0.6 7.4 7.4 0.8

1/4 35.0 34.6 35.8 9.8 10.2 9.6 10.4 9.6 0.8 7.6 7.4 0.8 7.0 6.8 0.8

1/5 33.8 34.0 35.4 9.4 9.8 9.0 9.6 9.4 0.6 7.6 6.8 0.6 5.8 6.0 0.4

1/6 32.6 34.4 35.4 9.8 9.6 10.0 9.4 8.2 0.8 6.6 6.4 0.8 5.2 5.2 0.8

1/7 33.8 35.0 35.2 9.4 10.2 9.8 8.4 8.0 0.6 6.2 6.4 1.0 5.4 5.4 0.6

1/8 33.4 34.4 35.0 9.8 10.4 9.6 7.2 7.2 0.6 5.6 5.4 0.6 5.4 4.8 0.8

avg + var + 8 lags avg + var + 10 lags avg + var + 12 lags avg + var + 14 lags avg + var + 16 lags

KNN PN MLP KNN PN MLP KNN PN MLP KNN PN MLP KNN PN MLP

5 10.8 11.2 1.8 11.0 11.4 1.8 11.0 11.8 1.8 11.6 11.8 1.8 11.4 12.0 1.0

4 10.6 11.2 1.6 11.2 11.2 1.8 10.8 11.6 2.0 11.6 12.0 1.2 11.6 12.2 1.4

3 10.4 11.0 2.0 10.8 11.4 1.4 10.6 11.6 1.2 11.8 11.8 1.6 11.8 11.8 1.4

2 11.0 11.4 1.4 11.0 11.4 1.6 11.8 11.6 1.2 11.4 11.6 0.6 11.8 11.0 0.6

1 10.0 10.2 0.8 9.8 9.0 0.6 9.4 8.6 0.6 9.2 7.8 0.6 7.6 7.0 0.6

1/2 7.6 7.2 0.6 7.2 6.8 0.8 6.6 6.2 0.6 5.8 5.6 0.8 5.2 4.6 0.6

1/3 7.0 6.4 0.6 6.6 6.0 0.6 5.8 4.6 0.6 5.6 4.6 0.6 5.8 5.0 0.6

1/4 5.8 5.2 0.8 5.6 4.4 0.6 5.2 4.8 0.6 5.8 5.0 0.8 5.4 4.8 0.6

1/5 5.6 4.6 0.8 5.4 4.8 0.6 5.0 4.4 0.8 5.4 4.6 0.8 6.4 5.6 0.8

1/6 4.8 4.6 0.4 5.0 4.8 0.8 5.6 5.0 0.8 6.0 5.4 0.6 7.4 6.8 1.0

1/7 5.0 5.0 0.8 5.8 4.6 0.8 6.6 5.4 0.8 7.6 6.0 1.0 8.6 7.2 1.0

1/8 5.8 5.4 0.8 5.6 5.0 0.6 7.0 5.8 0.8 8.6 7.2 0.8 9.2 7.8 1.0
of replications—the validation set—to determine optimal

values for certain parameters. In the KNN method, the

training set is used as a reference set to classify patterns

from the validation set for an initial value of k. Classification

of validation patterns is repeated for a range of values for

k, and the value yielding the lowest classification error is

retained. In the PN-network-based classification method, a

value for the spread of the radial function of a hidden neuron

must be determined. We accomplish this by first evaluating

the error on the validation set for an initial family of spread

values. Then, we zoom in on a selection of these values

and evaluate the potential error improvement for nearby

spread values. This process is terminated after three zoom

levels to keep the cost of computation reasonable. The value

yielding the lowest error on the validation set is retained as

the final spread value. Notice here that an MLP network is

trained in a different manner than a PN network. For PN

networks (and the KNN method), training is designed such

that no error will be made on the training set. For MLP

networks, the algorithm will attempt to minimise the error

on the training set, but the goal is not to achieve an error-free

classifier. Instead, a technique called early stopping is used.

The learning algorithm attempts to minimise the error on

the training set while continuously monitoring the error on

the validation set. Once the error on the validation set starts
909
to rise over a predetermined number of iterations, further

training is believed to cause poor generalisation capabilities

of the network, and the training algorithm is stopped to

avoid overfitting.

Classification using an MLP network produces better

results than classification with a PN network, or using the

KNN method. However, this goes at the expense of a

much larger computation time. Classification with an MLP

network took nearly 3.5 times as long as classification with

a PN network and over 10 times as long as classification

with the KNN method. Whereas the sampling frequency

has some influence on the misclassification rate, particularly

for the KNN method and PN networks at the finer levels

of testing, the choice of statistics plays a much greater

role. Indeed, the results significantly improve when, in

addition to the mean, also the variance and a number of

autocovariances are included in the input space. This is not

much of a surprise as it has been shown by Leemans (1998)

that some of the models have identical or at least very similar

mean queue lengths for class A jobs. Adding additional

autocovariance lags eventually has no effect anymore on the

misclassification rate. Ideally, the mean, the variance and

some of the autocovariance lags are retained in defining the

input space.
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4 CONCLUSION

We proposed a neural network method to validate a sim-

ulation model. We experimented with the method on five

variants of a multiserver queueing model, and showed that

it can be used to distinguish valid from invalid models. Our

method has the advantage that multiple behavioural statistics

(means, variances, etc.) can be tested simultaneously. A

disadvantage of our method is that (many) replications are

required with different calibrations of the simulation model

to train the neural networks. In that respect, it does not

allow to test individual simulation models.

Further research on the subject may include an ex-

perimental study that compares our results with that of

statistical techniques for validation. This study might also

involve other (neural network) methods for pattern classifi-

cation. The probabilistic neural network is only the simplest

form of the class of radial basis function networks, and it

is possible that other variants perform better. Finally, the

relation between the probabilities on making a type I and

II error are worthwhile to investigate.
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