
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

ANALYZING STATIC AND TEMPORAL PROPERTIES OF SIMULATION MODELS

Mamadou Kaba Traoré

LIMOS CNRS UMR 6158
Blaise Pascal University

Campus des Cézeaux, 63177 Aubière cedex, FRANCE

ABSTRACT

This paper shows how a simulation model can be specified
so that its static and temporal properties can be formally
analyzed. The approach adopted is based on the integration
of Formal Methods (FMs) and the DEVS paradigm. FMs
are known to allow symbolic manipulation and reasoning,
while DEVS is known as being a well-establish Modeling
and Simulation (M&S) framework. Combining them
makes it possible to develop rigorous proofs of the proper-
ties of simulation models as regard to design and use re-
quirements. This paper focuses on the so-called atomic
specification. Static aspects of the model are captured with
the Z formalism, while dynamic aspects are expressed in
first order logic. The specification is supported by the
Z/EVES tool. A case study is exhibited.

1 INTRODUCTION

Challenging issues in M&S are mostly related to metrics of
models, i.e. properties expected from these models. Nota-
ble ones concern credibility, such as verification, valida-
tion and accreditation (Balci 1998, Sargent 2001), confi-
dence in reuse and composition (Davis and Anderson
2003, Overstreet et al. 2002), level of interoperability, etc.
Most of these metrics should be evaluated before the im-
plementation stage. Consequently, there is an appeal for
symbolic reasoning and the requirement to turn metrics is-
sues into the general question of formal analysis. This
could lead to some insights which are very hard and costly
to reveal at the implementation level.

This paper deals with a methodological approach to
make simulation models amenable to formal analysis. Sec-
tion 2 recalls the DEVS M&S paradigm. Section 3 recalls
the main ingredients of FMs. Section 4 presents the inte-
gration of DEVS and the Z formal method as a solution. It
gives details on the Z-DEVS modeling approach. An ex-
ample is shown in section 5, and concluding remarks are
provided in section 6.

8971-4244-0501-7/06/$20.00 ©2006 IEEE
2 DEVS MODELING PARADIGM

DEVS is based on systems theory and deals with atomic
and coupled models, the former ones being the most basic
entities that describe both systems structure and behavior.
The latter are obtained by composing atomic models into
larger models. An atomic model is described by a set of in-
puts, outputs, states, and governing functions. A coupled
model presents the same external interfaces as do atomic
models. By coupling together output ports of one model to
input ports of another, outputs are transmitted as inputs and
acted upon by the receiving model. The semantics of
DEVS models are supported by simulators and coordina-
tors. Atomic models are mapped onto simulators and cou-
pled models are mapped onto coordinators. All simulators
and coordinators adhere to a generic message protocol that
allows them to coordinate with each other to execute the
simulation. A root coordinator is used to handle the simula-
tion cycle, first initiating the simulation by an initialization
message, and then leading the simulation loop by schedul-
ing messages to provide the correct synchronization for the
subordinate coordinator (or simulator). Abstract algorithms
have been defined in (Zeigler et al. 2000) to characterize
what simulators and coordinators have exactly to do.

An atomic model is defined in DEVS as the structure
shown by figure 1. This model is supposed to be at any
time in some state s ∈ S for a time period defined by e =
ta(s). If the elapsed time e expires without an external
event (x ∈ X) occurring, the system outputs the value y =
λ(s), and changes to state δint(s). If not (i.e., an external
event x ∈ X has occurred before e expires) the system only
changes to state δext(s, e, x). In both cases, the model is in a
new state and the same conditions apply.

DEVS doesn’t involve specific abilities for symbolic
reasoning and proofs. To analyze the properties of a DEVS
model, one must deal with its code and run classic accredi-
tation methods. They are known to be costly in time and do
not reveal all the properties mentioned before.

Traoré

IOS = <X, Y, S, δint, δext, λ, ta>, where
X is the set of input values,
S is the set of states,
Y is the set of output values,
δint : S → S is the internal transition function,
δext : Q × X → S is the external transition function,
Q = { (s,e) / s ∈ S, 0≤e≤ta(s)} is the total state set,
e is the time elapsed since last transition,
λ : S → Y is the output function,
ta : S → R0,∞ is the time advance function.

Figure 1: DEVS Atomic Model

3 FORMAL METHODS

FMs are known to allow symbolic reasoning (Clarke and
Wing 1996, Kuhn et al. 2003, Lamsweerde 2000), with the
following major capabilities: getting rid of ambiguities and
inconsistencies while specifying a system, finding hidden
properties of a specification, and automating the translation
from specification to code.

Formal specification is the process of describing a sys-
tem and its desired properties, using a language with a
mathematically-defined syntax and semantics. The kinds of
system properties might include functional behavior, tim-
ing behavior, performance characteristics, or internal struc-
ture. But also, a formal specification must involve rules for
inferring useful information from the specification (the
proof theory). Model checking relies on building a finite
model of a system and checking by an exhaustive state
space search that a desired property holds in that model
(McMillan 1992). Theorem proving is a technique where
both the system and its desired properties are expressed as
logic-based formulas, in terms of axioms and inference
rules (Clarke and Wing 1996). Theorem proving is the
process of finding a proof of a property from these axioms
and rules, and possibly derived definitions and intermedi-
ate lemmas.

FM can split into five paradigms: history-based, tran-
sition-based, state-based, functional, and operational
(Lamsweerde 2000). However, there is no FM specifically
designed for, or adapted to M&S. Ad-hoc use of FMs in
M&S enterprises can be very costly. That’s why we aim at
building an M&S framework that integrates FMs so that
efforts must not be repeated to take benefit of their reason-
ing abilities for finding properties of simulation models. To
overcome the diversity of models, the DEVS well-
established M&S paradigm has been considered as the
theoretical foundation (Zeigler 1976).

4 MERGING DEVS AND FMS

A little work has been done in merging M&S and FM
(Kuhn et al. 2003, Stevenson 2003). What is required is a
logic characterization of structure and behavior of models
898
in a way such that a hierarchy of verification and proof can
be built through the levels of the characterization process.

We can give formal semantics to simulation models by
introducing a mapping from DEVS to a FM in a way sug-
gested by (Paige 1997). Once a DEVS model is translated
into a specification in a formal language, all the analysis
and manipulations are performed on the formal specifica-
tion. The clear advantage of this approach is that it is pos-
sible to reuse all the previous work on the FM, for analyz-
ing simulation models. The structure and the behavior of a
model are completely known for DEVS atomic and cou-
pled models. Moreover, DEVS is closed under coupling; in
other terms, any coupled model can be translated into an
atomic one. That is why we focus here on atomic models,
even if extensions can be considered latter to deal with
coupled models without the need to convert them into their
atomic counterpart.

State-based FMs, which focus on specifying the be-
havior of sequential systems, perfectly fit our need to turn
an atomic model into a logical specification: states of the
model are described in terms of sets, relations and func-
tions, and state transitions are given in terms of pre- and
post-condition.

4.1 ZDEVS Modeling

We have defined the Z-DEVS formalism, combining
DEVS, the Z specification language (a state-based
method), and first order logic. It directly maps to the for-
mal representation used by the Z/EVES theorem prover
(Saaltink 1997). Thus, we can take benefit of automatic
techniques provided by this formal analysis tool: syntax
and type checking, schema expansion, precondition calcu-
lation, domain checking, and general theorem proving. The
Z formalism has been chosen for its expressive power in
logic, its wide dissemination and proven effectiveness, and
more important, the availability of free supporting tools
(notably Z/EVES).

The main ingredient in Z is the concept of schema
(generally represented as a box), i.e. a piece of specifica-
tion which links data (defined in the upper part of the box)
to logical predicates (defined in the lower part of the box)
that apply to them. Data are stored in variables (the names
of input variables end in a question mark, those of output
variables end in an exclamation mark ; the value of a vari-
able after being updated is indicated by a prime sign). A
schema A can be used by another schema B in two ways:
(1) B only reads the values of the variables defined in A;
this must be declared in B with the Ξ schema inclusion op-
erator; or (2) B modifies the values of the variables defined
in A; this must be declared in B with the Δ schema inclu-
sion operator. In this work, we are dealing with the stan-
dard Z specification paradigm (Spivey 1998), but object-
oriented extensions exist (Object-Z) (Smith 2000) and sup-

Traoré

porting tools are under development (ZIMOO) (Friesen et
al. 1998).

The mapping strategy from DEVS to Z-DEVS relies
on a computational architecture and a temporal pattern.
The architecture is used to find out the static properties of
the simulation model, while the temporal pattern is used to
reveal its temporal properties.

4.2 Static Structure

The computational architecture (shown in figure 2) identi-
fies autonomous data and operations of DEVS model and
simulator, and turns both into schemas. This architecture is
made of two encapsulated open boxes, one for the atomic
DEVS model (the internal box) and the other for its simu-
lator (the external box). Both involve autonomous data
(closed boxes) and operations (octagons), some of which
must be user-defined and some other are pre-defined. Data
are composed of variables upon which some constraints
may be defined. The X and Y data are shared with the en-
vironment of the architecture (that’s why they are placed at
the border of both open boxes). Operations are defined by
logical predicates which may change the values of the data
variables. Dotted arrows indicate which operations influ-
ence which data (or operations).

The model part is made of a diary (D), a pre-defined
schema which keeps the elapsed time variable e and the
time-to-next-event variable tN. It also involves schemas
that represent the state space (S) and all the functions de-
fined in DEVS (δint, δext, λ, and ta). In addition, there is a
need for a stimulate operation to deal with the required re-
activity of the simulator, and an init operation to depict
how the state space has to be initialized.

The simulator part contains a clock (C) that handles
the time of last event, and three operations which corre-
spond to the receipt of *-message, i-message and x-
message as defined in DEVS.

4.3 Temporal Structure

The static structure of the architecture is accompanied by a
finite-state-automata-style pattern (shown in figure 3) that
will be used to generate the temporal structure of the com-
putational model. The nodes represented are: a given state
(s), possibly reachable as an initial state, and the two pos-
sible next states of the model. At the receipt of a i-
message, the init operation is performed, then the system
enters in a given state and then the time advance operation
is performed. When the elapsed time is zero, the *-
scheduling operation is performed, then the system enters
in a new state defined by the internal transition function,
and then the time advance operation is performed. If an x-
message is received, then the stimulate operation is per-
formed and the system enters in a new state defined by the
899
external transition function, and then the time advance op-
eration is performed.

Temporal properties are usually tackled with model
checking, i.e. an exploration of the structure of the state
space of the model. The state space of a DEVS model be-
ing basically infinite, the idea is to group states into
equivalence classes so that the infinite state is reduced into
a finite one. The temporal pattern defined here gives the
way for such an abstraction process.

X

Y

S

user-defined

user-defined

user-defined

Q

e
tN

D

Simulator
Model

tL
C

ta()
user-defined

δext()
user-defined

δint()
user-defined

λ()
user-defined

init()
user-defined

stimulate()
user-defined

sSchedule()
pre-defined

iSchedule()
pre-defined

xSchedule()
pre-defined

Figure 2: Computational Model

s

δext(s,e,x)

δint(s)

e = 0 sSchedule()

xSchedule()

iSchedule()

stimulate()

ta()

ta()
init()

ta()

Figure 3: Semantics of Computational Model

Traoré

5 CASE STUDY

Let’s consider a simple academic example: the University
Bus System (UBS) (Zeigler 1984). The example has been
flavored with some additional details to make it more illus-
trative. Basically, the UBS is made of a bus that shuttles
between a downtown station and a university station, pro-
viding transportation service to specific users. A user en-
ters the model when he lines up in a station. He exits from
the model when he gets off the bus at a station. Figure 4
shows possible transitions in the model. Situations are
linked by dashed lines, an the corresponding values of the
selected state variables are indicated. The bus can be trav-
eling from one station to the other (no stop is allowed be-
tween the stations), or stopped at a station (for unloading
and loading operations). Depending on the fact that the bus
is empty or not, the unloading operation is skipped or not
when the bus arrives at a station (all the users in the bus, if
any, are supposed to get off). Also, depending on the fact
that some users are waiting or not at a station, the loading
operation is performed or not when the bus arrives at this
station (some users may not get in the bus, since its capac-
ity is limited). There is no schedule time that the bus driver
must follow. In other terms, the unloading, loading, and
traveling operations are performed successively without
any break between them. In addition, the same average
speed is always kept between stations.

Downtown
station

S = travel
P = 4

S = unload S = load

B ≠ ∅

Wd
P = 1

P = 2
Wu

S = unload S = load

B = ∅

University
station

B ≠ ∅

B = ∅

S = travel
P = 3

Figure 4: University Bus System

The Z-DEVS specification can be headed by the defi-

nition of all user-defined types that have at least one repre-
sentative variable in the model. Abstract types, as well as
concrete types can be considered in a model. Hence, the
900
modeler can choose the level of abstraction at which for-
mal analysis is required.

The abstract set USER represents the bus users. The
STATUS type characterizes what the bus is currently do-
ing. Also, parameters of the model must be declared and
their values defined. An axiomatic box is used for this pur-
pose instead of a schema box. Axiomatic boxes are used to
introduce global variables and to specify constraints on
their values (while the variables declared within a schema
are local). The UBS parameters are: the capacity of the bus
(α), the time to travel from downtown station to university
station (β1), the time to travel in the reverse direction (β2),
the time needed by a user to get in the bus (ε), and to get
from the bus (ν). Infinity is represented by ω.

The elapsed time must be greater than or equal to zero.
Throughout the entire specification, the set of integers has
been used as time base, assuming that any other time base
can be interpreted in terms of integers.

X = {hello, where_in} and Y = {bye, where_out}.
Hello (respectively bye) indicates that a user is entering
(respectively leaving) the system. Where_in (respectively
where_out) indicates the related station (1 for downtown
station, and 2 for university station). The system can be en-
tered and left only through one of these two stations.

Wd is the sequence of users waiting at the downtown
station. Wu is the sequence of users waiting at the univer-
sity station. B is the sequence of passengers in the bus. P ∈
{1, 2, 3, 4} is the current position of the bus (1: downtown

Traoré

station, 2: university station, 3: from downtown to the uni-
versity, 4: from the university to downtown). St ∈ {“load”,
“unload”, “travel”} is the current status of the bus. σ is
used to compute the time advance.

The external event is simply removed from the input
of the model and stored in the adequate waiting line.

The rules for internal transition are the following:

• If the bus travels empty towards the downtown
station, and users are waiting at that station, then
a stop is required at the next stage for loading
(hence, the unloading stage is skipped).

• But if no one is waiting at that station, then the
travel continues towards the university station.

• If the bus is not empty while traveling towards
downtown, then a stop is required for unloading.

• During the unloading operation, passengers in the
bus must get off one by one.

• If all the passengers get off the bus and no user is
waiting at the station, then the bus can go on.
901
• But if there are users waiting at the station, then
they can start getting in the bus.

• Users must get in the bus one by one.
• If the bus is full, it can start its travel to the next

station (even some users are still waiting).

Similar rules stand from the university station perspec-
tive (Wd is replaced by Wu, P = 1 by P = 2, P = 3 by P = 4,
and P = 4 by P = 3).

The diary is simply updated with the σ value.

Traoré

A passenger exiting the bus, also exits the system at
one of the two stations. Initially, the bus is empty, located
downtown, and ready to load users. No one is waiting nei-
ther at the downtown station, nor at the university station.
Stimuli must be specified consistently with X.

The current time of the model is the last time an event
occurs in the model. It must always be lower than or equal
to the time-to-next-event value kept in the diary.

902
Scheduling operations make use of the schema piping
operator (…). The ⎢ sign allows to define a schema in a
horizontal form (instead of the usual vertical form).

6 ANALYSIS

From the point where the Z-DEVS specification is com-
plete, it can be used to analyze the model, check for incon-
sistencies and incompleteness, prove properties, and gener-
ate traces. These properties are common to any system, but
they are specifically relevant to simulation systems due to
the importance of these systems in decision making proc-
esses. Being able to find properties of simulation models
without dealing with the code is the great benefit here (the
ultimate goal is to build models of better quality, which
improve the accuracy of decisions).

6.1 Static Properties

With the Z/EVES tool, the following capabilities can be
browsed: (i) checking for syntax and type errors, (ii)
checking for domain errors, (iii) checking for local and
global inconsistencies, (iv) exploring specification by
schema expansion, (v) exploring schemas’ preconditions,
(vi) checking for model invariants, (vii) proving a correct
refinement, (viii) defining test scenarios and, (ix) proving
test theorems. Hereafter, we emphasize major metrics-
related issues and link them to these capabilities:

• Consistency: complex systems modeling can drive
towards pitfalls (e.g., conflicting predicates in the
model, omission of initializing conditions...). Par-
tial checks for errors and inconsistencies must be
performed repetitively through schemas specifica-
tion until they are proven to be correct.

• Verification: it is nothing but the confrontation of
a model with properties that the modeler is ex-
pecting. Methods like those in (McMillan 1992)
can be used for Z-DEVS specifications.

• Validation: here, the model is confronted to prop-
erties established in the real system. E.g., the set
of inputs and outputs collected over the time is a
real-world property expected from the model (his-
torical validation (Sargent 2001)).

• Reuse and composability: they relate to the set of
conditions needed for a given purpose and that a

Traoré

model must match to be used or reused in that
context, typically in component-based large scale
M&S. Again, the model has to be confronted to
specific properties. Here, a key issue is how the
conditions for reuse or composability have to be
captured in terms of logical predicates.

6.2 Temporal properties

Let’s consider a state class of the temporal pattern as ag-
gregating the state of the bus (empty or not), the state of
the waiting lines (empty or not), the status of the bus, and
the direction of the current connection. Let’s also partition
the external transition of the temporal pattern into two
cases: an external event occurs at downtown station (called
δext(1) and indicated by a blue arrow) or at university sta-
tion (δext(2), green arrow). Let’s indicate internal transi-
tions by a red arrows. Then, the pattern shown in figure 5
can be applied at each state class, generating therefore a
graph which nodes are the set of state classes.

In figure 5, the S1 state depicts the case the bus is not
empty and is moving from university to downtown, while
the downtown waiting line is empty and the university
waiting line is not. When e = 0 (i.e., nothing occurs until
the travel is complete), the bus comes to the unloading
stage (state S2). Otherwise, an external transition at down-
town station (δext(1)) leads to state S2 (now, the downtown
waiting line is not empty), or the like at university station
(δext(2)) leads to state S1 again. The generation process
ends if from each node start red, green and blue arrows.
Figure 6 shows the temporal structure of the UBS, which
can be submitted to any model checker.

7 CONCLUSION

We have proposed an approach that combines the DEVS
well-established M&S paradigm with the Z formal para-
digm. Then, ambiguities and inconsistency in requirements
could be discovered early, when they can be corrected with
much less expense than after code has been developed.
Also, hidden properties can be revealed, using a theorem
proving tool such as Z/EVES. The main benefit of this ap-
proach is the systematic way it provides for making simu-
lation models amenable to formal analysis, hence allowing
to find their properties without repeated and costly efforts
required by ad-hoc use of formal methods. The ultimate
goal is to build models of better quality and to increase our
understanding of key concepts such as VV&A, reuse and
composability.

The next step is the extension of this work to coupled
models and their mapping on a functional FM paradigm,
like concurrent processes (Graeme and Duke 1992). An
important issue is the way the mapping from DEVS to Z-
DEVS can be automated. Another issue is the way a model
903
must be partitioned to allow the finding of temporal prop-
erties. There are on-going efforts tackling these issues.

REFERENCES

Balci, O. 1998. Verification, Validation, and Accreditation.
WSC’98: 42-48.

Clarke, E., and J.M. Wing. 1996. Formal Methods: State of
the Art and Future Directions. ACM Computing Sur-
veys 28 (4). 626-643.

Davis, P.K., and R.H. Anderson. 2003. Improving the
Composability of Department of Defense Models and
Simulations. RAND Corporation.

Friesen, V., A., Nordwig, and M. Weber. 1998. Object-
Oriented Specification of Hybrid Systems Using
UMLh and ZimOO. ZUM’98: 328-346.

Graeme, S., and R. Duke. 1992. Specifying Concurrent
Systems Using Object-Z. 15th Australian Computer
Science Conf.: 1-14.

Kuhn, D.R., D. Craigen, and M. Saaltink. 2003. Practical
Application of Formal Methods in Modeling and
Simulation. SCSC’03, Montreal, Canada. July 20-24.

Lamsweerde, A.V. 2000. Formal Specification: a Road-
map. Conf. on the Future of Software Engineering.
147-159.

McMillan, K.L. 1992. Symbolic Model Checking. An Ap-
proach to the State Explosion Problem. Ph.D. Thesis
in Comp. Sc., Carnegie Mellon University.

Overstreet, C. M., R. E. Nance, and O. Balci. 2002. Issues
in Enhancing Model Reuse. Int. Conf. on Grand Chal-
lenges for Modeling and Simulation, Jan. 27-31, San
Antonio, Texas, USA.

Paige, R.F. 1997. A Meta-Method for Formal Method In-
tegration. 4th Int. Symposium of Formal Methods
Europe. 473-494.

Saaltink, M. 1997. The Z/EVES system. Lecture Notes in
Comp. Sc. 1212. Springer-Verlag: 72–85.

Sargent, R.G. 2001. Verification and Validation: Some
Approaches and Paradigms for Verifying and Validat-
ing Simulation Models. WSC’01: 106-114.

Smith, G. 2000. The Object-Z Specification Language.
Advances in Formal Methods. Kluwer Academic Pub-
lishers.

Spivey, J.M. 1998. The Z Notation : A Reference Manual.
2nd Ed., Prog. Research Group, University of Oxford.

Stevenson, D.E. 2003. From DEVS to Formal Methods: a
Categorical Approach. SCSC’03, Montreal, Canada, 1-
6. July 20-24.

Zeigler, B.P. 1976. Theory of Modelling and Simulation.
Wiley & Sons, N.Y.

Zeigler, B.P. 1984. Multifacetted Modelling and Discrete
Event Simulation. Academic Press Inc., London.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory of
Modeling and Simulation. Integrating Discrete Event

Traoré

and Continuous Complex Dynamic Systems. 2nd Ed.
Academic Press. Davis.

AUTHOR BIOGRAPHY

MAMADOU KABA TRAORE is Assistant Professor of
Computer Science at the Blaise Pascal University of Cler-

mont-Ferrand (France). His current research interests focus
on formal methods and DEVS. His e-mail address is
<traore@isima.fr> and his Web address is
<http://www.isima.fr/~traore/>.

…

…

S1

δext(2)

…

…S3

δext(1)

…

…

S2

e = 0

…

…

The bus is not empty

Legend

The bus is empty

The bus is unloading

The bus is loading

Respectively: the downtown waiting
line (empty here) and the university
waiting line (not empty here)
The bus is moving towards downtown

The bus is moving towards university

Figure 5: Pattern for UBS Temporal Structure

Figure 6: UBS Temporal Structure
904

mailto:traore@isima.fr
http://www.isima.fr/~traore/

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

