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ABSTRACT 

This paper shows how a simulation model can be specified 
so that its static and temporal properties can be formally 
analyzed. The approach adopted is based on the integration 
of Formal Methods (FMs) and the DEVS paradigm. FMs 
are known to allow symbolic manipulation and reasoning, 
while DEVS is known as being a well-establish Modeling 
and Simulation (M&S) framework. Combining them 
makes it possible to develop rigorous proofs of the proper-
ties of simulation models as regard to design and use re-
quirements. This paper focuses on the so-called atomic 
specification. Static aspects of the model are captured with 
the Z formalism, while dynamic aspects are expressed in 
first order logic. The specification is supported by the 
Z/EVES tool. A case study is exhibited. 

1 INTRODUCTION 

Challenging issues in M&S are mostly related to metrics of 
models, i.e. properties expected from these models. Nota-
ble ones concern credibility, such as verification, valida-
tion and accreditation (Balci 1998, Sargent 2001), confi-
dence in reuse and composition (Davis and Anderson 
2003, Overstreet et al. 2002), level of interoperability, etc. 
Most of these metrics should be evaluated before the im-
plementation stage. Consequently, there is an appeal for 
symbolic reasoning and the requirement to turn metrics is-
sues into the general question of formal analysis. This 
could lead to some insights which are very hard and costly 
to reveal at the implementation level. 

This paper deals with a methodological approach to 
make simulation models amenable to formal analysis. Sec-
tion 2 recalls the DEVS M&S paradigm. Section 3 recalls 
the main ingredients of FMs. Section 4 presents the inte-
gration of DEVS and the Z formal method as a solution. It 
gives details on the Z-DEVS modeling approach. An ex-
ample is shown in section 5, and concluding remarks are 
provided in section 6. 
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2 DEVS MODELING PARADIGM 

DEVS is based on systems theory and deals with atomic 
and coupled models, the former ones being the most basic 
entities that describe both systems structure and behavior. 
The latter are obtained by composing atomic models into 
larger models. An atomic model is described by a set of in-
puts, outputs, states, and governing functions. A coupled 
model presents the same external interfaces as do atomic 
models. By coupling together output ports of one model to 
input ports of another, outputs are transmitted as inputs and 
acted upon by the receiving model. The semantics of 
DEVS models are supported by simulators and coordina-
tors. Atomic models are mapped onto simulators and cou-
pled models are mapped onto coordinators. All simulators 
and coordinators adhere to a generic message protocol that 
allows them to coordinate with each other to execute the 
simulation. A root coordinator is used to handle the simula-
tion cycle, first initiating the simulation by an initialization 
message, and then leading the simulation loop by schedul-
ing messages to provide the correct synchronization for the 
subordinate coordinator (or simulator). Abstract algorithms 
have been defined in (Zeigler et al. 2000) to characterize 
what simulators and coordinators have exactly to do. 

An atomic model is defined in DEVS as the structure 
shown by figure 1. This model is supposed to be at any 
time in some state s ∈ S for a time period defined by e = 
ta(s). If the elapsed time e expires without an external 
event (x ∈ X) occurring, the system outputs the value y = 
λ(s), and changes to state δint(s). If not (i.e., an external 
event x ∈ X has occurred before e expires) the system only 
changes to state δext(s, e, x). In both cases, the model is in a 
new state and the same conditions apply. 

DEVS doesn’t involve specific abilities for symbolic 
reasoning and proofs. To analyze the properties of a DEVS 
model, one must deal with its code and run classic accredi-
tation methods. They are known to be costly in time and do 
not reveal all the properties mentioned before. 
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IOS = <X, Y, S, δint, δext, λ, ta>, where 
X is the set of input values, 
S is the set of states, 
Y is the set of output values, 
δint : S → S is the internal transition function, 
δext : Q × X → S is the external transition function, 
Q = { (s,e) / s ∈ S, 0≤e≤ta(s)} is the total state set, 
e is the time elapsed since last transition, 
λ : S → Y is the output function, 
ta : S → R0,∞ is the time advance function.  

Figure 1: DEVS Atomic Model 

3 FORMAL METHODS 

FMs are known to allow symbolic reasoning (Clarke and 
Wing 1996, Kuhn et al. 2003, Lamsweerde 2000), with the 
following major capabilities: getting rid of ambiguities and 
inconsistencies while specifying a system, finding hidden 
properties of a specification, and automating the translation 
from specification to code. 

Formal specification is the process of describing a sys-
tem and its desired properties, using a language with a 
mathematically-defined syntax and semantics. The kinds of 
system properties might include functional behavior, tim-
ing behavior, performance characteristics, or internal struc-
ture. But also, a formal specification must involve rules for 
inferring useful information from the specification (the 
proof theory). Model checking relies on building a finite 
model of a system and checking by an exhaustive state 
space search that a desired property holds in that model 
(McMillan 1992). Theorem proving is a technique where 
both the system and its desired properties are expressed as 
logic-based formulas, in terms of axioms and inference 
rules (Clarke and Wing 1996). Theorem proving is the 
process of finding a proof of a property from these axioms 
and rules, and possibly derived definitions and intermedi-
ate lemmas. 

FM can split into five paradigms: history-based, tran-
sition-based, state-based, functional, and operational 
(Lamsweerde 2000). However, there is no FM specifically 
designed for, or adapted to M&S. Ad-hoc use of FMs in 
M&S enterprises can be very costly. That’s why we aim at 
building an M&S framework that integrates FMs so that 
efforts must not be repeated to take benefit of their reason-
ing abilities for finding properties of simulation models. To 
overcome the diversity of models, the DEVS well-
established M&S paradigm has been considered as the 
theoretical foundation (Zeigler 1976). 

4 MERGING DEVS AND FMS 

A little work has been done in merging M&S and FM 
(Kuhn et al. 2003, Stevenson 2003). What is required is a 
logic characterization of structure and behavior of models 
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in a way such that a hierarchy of verification and proof can 
be built through the levels of the characterization process. 

We can give formal semantics to simulation models by 
introducing a mapping from DEVS to a FM in a way sug-
gested by (Paige 1997). Once a DEVS model is translated 
into a specification in a formal language, all the analysis 
and manipulations are performed on the formal specifica-
tion. The clear advantage of this approach is that it is pos-
sible to reuse all the previous work on the FM, for analyz-
ing simulation models. The structure and the behavior of a 
model are completely known for DEVS atomic and cou-
pled models. Moreover, DEVS is closed under coupling; in 
other terms, any coupled model can be translated into an 
atomic one. That is why we focus here on atomic models, 
even if extensions can be considered latter to deal with 
coupled models without the need to convert them into their 
atomic counterpart. 

State-based FMs, which focus on specifying the be-
havior of sequential systems, perfectly fit our need to turn 
an atomic model into a logical specification: states of the 
model are described in terms of sets, relations and func-
tions, and state transitions are given in terms of pre- and 
post-condition. 

4.1 ZDEVS Modeling 

We have defined the Z-DEVS formalism, combining 
DEVS, the Z specification language (a state-based 
method), and first order logic. It directly maps to the for-
mal representation used by the Z/EVES theorem prover 
(Saaltink 1997). Thus, we can take benefit of automatic 
techniques provided by this formal analysis tool: syntax 
and type checking, schema expansion, precondition calcu-
lation, domain checking, and general theorem proving. The 
Z formalism has been chosen for its expressive power in 
logic, its wide dissemination and proven effectiveness, and 
more important, the availability of free supporting tools 
(notably Z/EVES). 

The main ingredient in Z is the concept of schema 
(generally represented as a box), i.e. a piece of specifica-
tion which links data (defined in the upper part of the box) 
to logical predicates (defined in the lower part of the box) 
that apply to them. Data are stored in variables (the names 
of input variables end in a question mark, those of output 
variables end in an exclamation mark ; the value of a vari-
able after being updated is indicated by a prime sign). A 
schema A can be used by another schema B in two ways: 
(1) B only reads the values of the variables defined in A; 
this must be declared in B with the Ξ schema inclusion op-
erator; or (2) B modifies the values of the variables defined 
in A; this must be declared in B with the Δ schema inclu-
sion operator. In this work, we are dealing with the stan-
dard Z specification paradigm (Spivey 1998), but object-
oriented extensions exist (Object-Z) (Smith 2000) and sup-
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porting tools are under development (ZIMOO) (Friesen et 
al. 1998). 

The mapping strategy from DEVS to Z-DEVS relies 
on a computational architecture and a temporal pattern. 
The architecture is used to find out the static properties of 
the simulation model, while the temporal pattern is used to 
reveal its temporal properties. 

4.2 Static Structure 

The computational architecture (shown in figure 2) identi-
fies autonomous data and operations of DEVS model and 
simulator, and turns both into schemas. This architecture is 
made of two encapsulated open boxes, one for the atomic 
DEVS model (the internal box) and the other for its simu-
lator (the external box). Both involve autonomous data 
(closed boxes) and operations (octagons), some of which 
must be user-defined and some other are pre-defined. Data 
are composed of variables upon which some constraints 
may be defined. The X and Y data are shared with the en-
vironment of the architecture (that’s why they are placed at 
the border of both open boxes). Operations are defined by 
logical predicates which may change the values of the data 
variables. Dotted arrows indicate which operations influ-
ence which data (or operations). 

The model part is made of a diary (D), a pre-defined 
schema which keeps the elapsed time variable e and the 
time-to-next-event variable tN. It also involves schemas 
that represent the state space (S) and all the functions de-
fined in DEVS (δint, δext, λ, and ta). In addition, there is a 
need for a stimulate operation to deal with the required re-
activity of the simulator, and an init operation to depict 
how the state space has to be initialized. 

The simulator part contains a clock (C) that handles 
the time of last event, and three operations which corre-
spond to the receipt of *-message, i-message and x-
message as defined in DEVS. 

4.3 Temporal Structure 

The static structure of the architecture is accompanied by a 
finite-state-automata-style pattern (shown in figure 3) that 
will be used to generate the temporal structure of the com-
putational model. The nodes represented are: a given state 
(s), possibly reachable as an initial state, and the two pos-
sible next states of the model. At the receipt of a i-
message, the init operation is performed, then the system 
enters in a given state and then the time advance operation 
is performed. When the elapsed time is zero, the *-
scheduling operation is performed, then the system enters 
in a new state defined by the internal transition function, 
and then the time advance operation is performed. If an x-
message is received, then the stimulate operation is per-
formed and the system enters in a new state defined by the 
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external transition function, and then the time advance op-
eration is performed. 

Temporal properties are usually tackled with model 
checking, i.e. an exploration of the structure of the state 
space of the model. The state space of a DEVS model be-
ing basically infinite, the idea is to group states into 
equivalence classes so that the infinite state is reduced into 
a finite one. The temporal pattern defined here gives the 
way for such an abstraction process. 
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Figure 2: Computational Model 
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Figure 3: Semantics of Computational Model 
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5 CASE STUDY 

Let’s consider a simple academic example: the University 
Bus System (UBS) (Zeigler 1984). The example has been 
flavored with some additional details to make it more illus-
trative. Basically, the UBS is made of a bus that shuttles 
between a downtown station and a university station, pro-
viding transportation service to specific users. A user en-
ters the model when he lines up in a station. He exits from 
the model when he gets off the bus at a station. Figure 4 
shows possible transitions in the model. Situations are 
linked by dashed lines, an the corresponding values of the 
selected state variables are indicated. The bus can be trav-
eling from one station to the other (no stop is allowed be-
tween the stations), or stopped at a station (for unloading 
and loading operations). Depending on the fact that the bus 
is empty or not, the unloading operation is skipped or not 
when the bus arrives at a station (all the users in the bus, if 
any, are supposed to get off). Also, depending on the fact 
that some users are waiting or not at a station, the loading 
operation is performed or not when the bus arrives at this 
station (some users may not get in the bus, since its capac-
ity is limited). There is no schedule time that the bus driver 
must follow. In other terms, the unloading, loading, and 
traveling operations are performed successively without 
any break between them. In addition, the same average 
speed is always kept between stations. 
 
 

Downtown 
station 

S = travel 
P = 4 

S = unload S = load 

B ≠ ∅ 

Wd 
P = 1 

P = 2 
Wu 

S = unload S = load 

B = ∅ 

University 
station 

B ≠ ∅ 

B = ∅ 

S = travel
P = 3

 
Figure 4: University Bus System 

 
The Z-DEVS specification can be headed by the defi-

nition of all user-defined types that have at least one repre-
sentative variable in the model. Abstract types, as well as 
concrete types can be considered in a model. Hence, the 
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modeler can choose the level of abstraction at which for-
mal analysis is required. 

The abstract set USER represents the bus users. The 
STATUS type characterizes what the bus is currently do-
ing. Also, parameters of the model must be declared and 
their values defined. An axiomatic box is used for this pur-
pose instead of a schema box. Axiomatic boxes are used to 
introduce global variables and to specify constraints on 
their values (while the variables declared within a schema 
are local). The UBS parameters are: the capacity of the bus 
(α), the time to travel from downtown station to university 
station (β1), the time to travel in the reverse direction (β2), 
the time needed by a user to get in the bus (ε), and to get 
from the bus (ν). Infinity is represented by ω. 
 

 
 

The elapsed time must be greater than or equal to zero. 
Throughout the entire specification, the set of integers has 
been used as time base, assuming that any other time base 
can be interpreted in terms of integers. 
 

 
 

X = {hello, where_in} and Y = {bye, where_out}. 
Hello (respectively bye) indicates that a user is entering 
(respectively leaving) the system. Where_in (respectively 
where_out) indicates the related station (1 for downtown 
station, and 2 for university station). The system can be en-
tered and left only through one of these two stations. 

Wd is the sequence of users waiting at the downtown 
station. Wu is the sequence of users waiting at the univer-
sity station. B is the sequence of passengers in the bus. P ∈ 
{1, 2, 3, 4} is the current position of the bus (1: downtown 
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station, 2: university station, 3: from downtown to the uni-
versity, 4: from the university to downtown). St ∈ {“load”, 
“unload”, “travel”} is the current status of the bus. σ is 
used to compute the time advance. 
 

 
 

The external event is simply removed from the input 
of the model and stored in the adequate waiting line. 
 

 
 

The rules for internal transition are the following: 
 

• If the bus travels empty towards the downtown 
station, and users are waiting at that station, then 
a stop is required at the next stage for loading 
(hence, the unloading stage is skipped). 

• But if no one is waiting at that station, then the 
travel continues towards the university station. 

• If the bus is not empty while traveling towards 
downtown, then a stop is required for unloading. 

• During the unloading operation, passengers in the 
bus must get off one by one. 

• If all the passengers get off the bus and no user is 
waiting at the station, then the bus can go on. 
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• But if there are users waiting at the station, then 
they can start getting in the bus. 

• Users must get in the bus one by one. 
• If the bus is full, it can start its travel to the next 

station (even some users are still waiting). 
 

Similar rules stand from the university station perspec-
tive (Wd is replaced by Wu, P = 1 by P = 2, P = 3 by P = 4, 
and P = 4 by P = 3). 
 

 
 

The diary is simply updated with the σ value. 
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A passenger exiting the bus, also exits the system at 
one of the two stations. Initially, the bus is empty, located 
downtown, and ready to load users. No one is waiting nei-
ther at the downtown station, nor at the university station. 
Stimuli must be specified consistently with X. 
 

 
 

The current time of the model is the last time an event 
occurs in the model. It must always be lower than or equal 
to the time-to-next-event value kept in the diary. 
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Scheduling operations make use of the schema piping 
operator (…). The ⎢ sign allows to define a schema in a 
horizontal form (instead of the usual vertical form). 
 

 

6 ANALYSIS 

From the point where the Z-DEVS specification is com-
plete, it can be used to analyze the model, check for incon-
sistencies and incompleteness, prove properties, and gener-
ate traces. These properties are common to any system, but 
they are specifically relevant to simulation systems due to 
the importance of these systems in decision making proc-
esses. Being able to find properties of simulation models 
without dealing with the code is the great benefit here (the 
ultimate goal is to build models of better quality, which 
improve the accuracy of decisions). 

6.1 Static Properties 

With the Z/EVES tool, the following capabilities can be 
browsed: (i) checking for syntax and type errors, (ii) 
checking for domain errors, (iii) checking for local and 
global inconsistencies, (iv) exploring specification by 
schema expansion, (v) exploring schemas’ preconditions, 
(vi) checking for model invariants, (vii) proving a correct 
refinement, (viii) defining test scenarios and, (ix) proving 
test theorems. Hereafter, we emphasize major metrics-
related issues and link them to these capabilities: 
 

• Consistency: complex systems modeling can drive 
towards pitfalls (e.g., conflicting predicates in the 
model, omission of initializing conditions...). Par-
tial checks for errors and inconsistencies must be 
performed repetitively through schemas specifica-
tion until they are proven to be correct. 

• Verification: it is nothing but the confrontation of 
a model with properties that the modeler is ex-
pecting. Methods like those in (McMillan 1992) 
can be used for Z-DEVS specifications. 

• Validation: here, the model is confronted to prop-
erties established in the real system. E.g., the set 
of inputs and outputs collected over the time is a 
real-world property expected from the model (his-
torical validation (Sargent 2001)). 

• Reuse and composability: they relate to the set of 
conditions needed for a given purpose and that a 
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model must match to be used or reused in that 
context, typically in component-based large scale 
M&S. Again, the model has to be confronted to 
specific properties. Here, a key issue is how the 
conditions for reuse or composability have to be 
captured in terms of logical predicates. 

6.2 Temporal properties 

Let’s consider a state class of the temporal pattern as ag-
gregating the state of the bus (empty or not), the state of 
the waiting lines (empty or not), the status of the bus, and 
the direction of the current connection. Let’s also partition 
the external transition of the temporal pattern into two 
cases: an external event occurs at downtown station (called 
δext(1) and indicated by a blue arrow) or at university sta-
tion (δext(2), green arrow). Let’s indicate internal transi-
tions by a red arrows. Then, the pattern shown in figure 5 
can be applied at each state class, generating therefore a 
graph which nodes are the set of state classes. 

In figure 5, the S1 state depicts the case the bus is not 
empty and is moving from university to downtown, while 
the downtown waiting line is empty and the university 
waiting line is not. When e = 0 (i.e., nothing occurs until 
the travel is complete), the bus comes to the unloading 
stage (state S2). Otherwise, an external transition at down-
town station (δext(1)) leads to state S2 (now, the downtown 
waiting line is not empty), or the like at university station 
(δext(2)) leads to state S1 again. The generation process 
ends if from each node start red, green and blue arrows. 
Figure 6 shows the temporal structure of the UBS, which 
can be submitted to any model checker. 

7 CONCLUSION 

We have proposed an approach that combines the DEVS 
well-established M&S paradigm with the Z formal para-
digm. Then, ambiguities and inconsistency in requirements 
could be discovered early, when they can be corrected with 
much less expense than after code has been developed. 
Also, hidden properties can be revealed, using a theorem 
proving tool such as Z/EVES. The main benefit of this ap-
proach is the systematic way it provides for making simu-
lation models amenable to formal analysis, hence allowing 
to find their properties without repeated and costly efforts 
required by ad-hoc use of formal methods. The ultimate 
goal is to build models of better quality and to increase our 
understanding of key concepts such as VV&A, reuse and 
composability. 

The next step is the extension of this work to coupled 
models and their mapping on a functional FM paradigm, 
like concurrent processes (Graeme and Duke 1992). An 
important issue is the way the mapping from DEVS to Z-
DEVS can be automated. Another issue is the way a model 
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must be partitioned to allow the finding of temporal prop-
erties. There are on-going efforts tackling these issues. 
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Figure 6: UBS Temporal Structure 
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