
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

META-LEVEL CONTROL ARCHITECTURE FOR MASSIVELY MULTIAGENT SIMULATIONS

Shohei Yamane

Department of Social Informatics

Kyoto University

Toru Ishida

Department of Social Informatics

Kyoto University
ABSTRACT

Various situations in a massively multi-agent simulation

will emerge in a simulation or the period of the simulation

will become too long. These situations cause problems

for system operators in that each action scenario becomes

too complex to maintain and a simulation costs very long

time. Therefore, flexible control of the simulation, such

as changing simulation speed and switching agents’ action

scenarios, is required. We propose a meta-scenario descrip-

tion language and a meta-level control architecture. The

meta-scenario description language describes how to con-

trol simulations and agents based on an extended finite state

machine. Meta-level control architecture achieves control

on the basis of meta-scenarios provided by a meta-scenario

interpreter, which controls interpreters of agents’ action

scenarios and the simulation environment. In addition, our

proposed architecture does not lose scalability of massively

multi-agent systems for some applications.

1 INTRODUCTION

The use of high-performance computers and distributed

computing environments enable massively multi-agent sys-

tems (MMAS) to manage tens of thousands or millions of

agents under discussion (Ishida 2005). Traffic simulation

is a typical application of MMAS (Balmer 2004). Using

MMAS, we can perform city-wide traffic simulations and

disaster simulations. Various situations will emerge in such

large-scale multi-agent simulation because of the various

behaviors of the different agents. In addition, a simulation

needs a considerable amount of time because it takes a long

time to fully understand the impact of a certain event on

the whole simulation. These cases require flexible control

of runtime. We mention the following two examples.

First, in large-scale multi-agent simulations, the action

scenarios of the agents is very complicated. Generating agent

trips is essential for traffic simulations. A method using an

OD-matrix (Balmer 2004) and a method using a genetic

algorithm (Charypar 2003) are proposed as trip generation

methods. Each trip becomes very complicated because
8891-4244-0501-7/06/$20.00 ©2006 IEEE
various situations can emerge in a large scale simulation.

We think it is efficient to simplify each action scenario by

preparing a certain action scenario for a certain situation

and changing them on the basis of the situation.

Second, to construct more realistic agent models through

simulations, it is effective to perform participatory simula-

tions, in which some agents are operated by humans, and

construct agent models from the resulting log data (Mu-

rakami 2005; Guyot 2005). Participatory simulations are

often real-time simulations because the operators are actu-

ally making the decisions. However, real-time simulations

are ineffective if the simulation period is very long. For

this reason, flexible time management, such as making the

simulation speed equal real-time only while the operators

are making decisions, is required.

To achieve flexible control of large-scale multi-agent

simulations, we propose a meta-scenario in which a lan-

guage is used to describe control of simulations and action

scenarios. There are two issues to achieve control based on

a meta-scenario.

1. Definition of control functions

We need to define control functions required to

describe changing action scenarios and time man-

agement.

2. Development of a control architecture

We need a control architecture for simulation con-

trol on the basis of meta-scenario descriptions. We

will implement this architecture on a MMAS so

as not to lose scalability of MMAS.

Section 2 contains the scenario description language

that describes the action scenarios of the agents. Section

3 contains an explanation of the meta-scenario. Section 4

contains an explanation of the meta-level control architecture

to enable simulation control based on the meta-scenario

descriptions. Section 5 contains an application of the meta-

scenarios for participatory simulations. Section 6 contains an

evaluation of the scalability for the meta-level architecture.

Yamane and Ishida
2 SCENARIO DESCRIPTION LANGUAGE

In this paper, we chose scenario description language

Q (〈http://www.lab7.kuis.kyoto-u.ac.jp/Q/
index e.html〉) (Ishida 2002) to describes the action sce-

narios of the agents. The reason for our selection is outlined

in this section.

2.1 Specification

A scenario description describes how an agent should behave

and interact with its environment involving humans and other

agents. A scenario is represented as an extended finite state

machine. The language facilities are explained below.

1. Cue/Action. Cues are used to request agents to

observe their environment and trigger interac-

tion. Cues are not permitted to have any side

effects. Whereas, actions are used to request

agents to change their environment. These

cues and actions are defined by users, and

how the agent that receives a request behaves

depends on the implementation of the agent system.

2. Guarded Command/Scenario. Guarded commands

are used in situations that require the simultaneous

observing of multiple cues. A guarded command

combines cues and actions. If a cue becomes true,

the corresponding action is performed. A scenario

is used for describing state transitions, and the state

transitions are done by expressions. The scenario

defines each state as a guarded command.

(defscenario overtake
(&pattern ($x #f))

(left-lane-nomal
((?carExists :position "ahead"

:speed "slow" :car $x)
(!changeLane :lane "right")
(!overtake :car $x)
(go right-lane-normal))
((?carExists :position "ahead"

:speed "fast" :car $x)
(!changeSpeed :speed "fast")
(go left-lane-fast)))

(right-lane-normal
...)

(left-lane-fast
...)

...)

The scenario in the above examples defines

the states as left-lane-normal, right-lane-normal,

and left-lane-fast. In left-lane-normal, the agent

changes its lane and overtakes a car when there

is a car driving slowly ahead of the agent, or the

agent drives faster when there is a car driving fast
890
ahead of it.

3. Agent/Avatar. Agents and avatars are defined by

specifying their names. Assigning a scenario to

an agent, the agent begins to follow the scenario.

Whereas, an avatar is operated by a human. How-

ever, we can assign scenarios to an avatar like an

agent. By assigning a scenario to an avatar, we

can let the avatar behave automatically while the

human is not actively making decisions.

2.2 Scenario Processor

A scenario processor interprets a scenario description and re-

quests the corresponding agent to execute cues, actions, and

guarded commands. When the cues, actions, and guarded

commands are executed, the agent returns the result to the

scenario processor. The scenario processor decides the next

command on the basis of this result, and then requests the

agent to execute the new command. Scenario processors

are separated from agent systems. This means that a meta-

scenario processor can control the action scenarios of the

agents by controlling the scenario processors.

3 META-SCENARIO

The meta-scenario that describes simulation control is ex-

plained in this section.

3.1 Definition of Functions

When the operator of an avatar finishes making a decision

in a participatory simulation, the decision is not directly

reflected in the simulation environment but is reflected in the

avatar’s internal state in most cases. Therefore, to observe

the operator’s decision making, the scenario processing state

of the avatar must be observed. To change scenarios on the

basis of simulation situations, we have to define functions,

such as observation of simulation environment, and change

scenarios assigned to agents. In addition, we have to define

functions that change simulation environment to change

simulation speed.

We propose a meta-scenario language with the control

functions mentioned above. We used an extended finite state

machine to describe the meta-scenario because simulation

situations can be represented by states and controls can be

represented by state transitions.

Q, as explained in section 2, is also based on extended

finite state machine model. Therefore, we used cues, ac-

tions, and guarded commands to describe the meta-scenario

descriptions as well as the scenario descriptions.

A summary of cues and actions of the meta-scenario

description language is listed in Table 1. The commands

Yamane and Ishida
Table 1: Cues and Actions of Meta-Scenario Description

Language

Scenario processing control
?observeAction observe execution

of action
?observeCue observe execution

of cue
?observeTransition observe execution

of state transition
?observeScenario observe execution

of scenario
!runCue request agent to

execute cue
!runAction request agent to

execute action
!releaseScenario release scenario

from agent
!assignScenario assign scenario

to agent
Simulation control

?observeEnvironment observe simulation
environment

!getEnvironment get environmental
information

!setEnvironment set environmental
information

!createAgent create agent
!deleteAgent delete agents
!createCrowd create crowd of

agents
!createAvatar create avatar
!startSimulation start simulation
!stopSimulation stop simulation

observe/get information from real-world
?observeMetaEnvironment observe information

from real-world
!getMetaEnvironment get information

from real-world

in this table that start with ? are cues and that start with !

are actions.

3.2 Examples of Meta-Scenario

The meta-scenario description language can describe various

simulation controls. For example, in a traffic simulation,

some agents may prefer to take a detour to avoid a traffic

jam, whereas others may not. This situation requires two

scenarios to be written for each agent. One scenario involves

taking the usual route, and the other scenario involves taking

a detour. We then write a meta-scenario to change the

agents scenario if the agent, who prefers to avoid traffic

jams, experiences a traffic jam on their usual route.

For another meta-scenario, we can write a meta-scenario

to describe a simulation scenario. That is, the meta-scenario

describes events in the simulation, including the creating

agents, the deleting agents, the occurrence of traffic jams,

and the occurrence of disasters.

Figure 1 shows an example of a meta-scenario when

an agent’s scenario is changed because of a traffic jam.

As shown in Figure 1, each state in the meta-scenario is

represented by a circle, and each transition is represented

by an arrow. In addition, a cue that triggers a transition and
891
Figure 1: State Machine of Meta-Scenario that Changes

Agents’ Scenarios

an action involved by the transition are indicated in form

of (cue/action) – the lies on the appropriate state transition

arrow. In this example, the meta-scenario assigns a scenario,

“route-A”, (take a usual route) when the traffic is moving

and assigns a different scenario, “route-B”, (take a detour)

when a traffic jam occurs.

Figure 2 shows a meta-scenario description of the meta-

scenario shown in Figure 1; the cues and actions listed in

Table 1 are used.

4 ARCHITECTURE FOR SCENARIO PROCESING

CONTROL

The meta-level control architecture to achieve the meta-

scenario processor is explained in this section. The control

flow for scenario processing is also explained.

Meta-level architecture has been described elsewhere

(Gao 2002). Each agent has its own meta-layer to debug

scenarios (Gao 2002). In this paper, a meta-level controls

an entire simulation, including the environment and agents.

4.1 Meta-Level Control Architecture

Figure 3 shows the meta-level control architecture we de-

signed.

Scenario Description A scenario description outlines

an agent’s behavior using the language facilities

explained in Section 2.

Scenario Interpreter A scenario interpreter corre-

sponds to an agent in an agent system and in-

terprets a scenario description. The result of this

processing is a request to the agent to trigger an

observation or to perform an action.

Meta-scenario description A meta-scenario describes

the control and observation of scenario processing,

such as observation and changing the command

executed by the scenario interpreter. The meta-

scenario also describes the setting of and acquisition

of environmental information of the agent system,

such as changing simulation speed.

Meta-scenario interpreter A meta-scenario interpreter

interprets the meta-scenario descriptions. A meta-

scenario requests the scenario interpreter to ob-

Yamane and Ishida
(defmetascenario avoid-jam
(&pattern (agent #f))

(moving
; observe traffic jam

((?observeEnvironment
:name "traffic jam"
:value #t)

(go jammed))
; observe execution of ‘route-B’,
; and set variable ‘agent’ to
; the agent

((?observeScenario :name ’route-B
:agent agent)

; release ‘route-B’ from agent
(!releaseScenario :name route-B

:agent agent)
; assign ‘route-A’ to agent
(!assignScenario :name route-A

:agent agent)
(go moving))

(jammed
; observe the traffic is moving

((?observeEnvironment
:name "traffic jam"
:value #f)

(go moving))
; observe execution of ‘route-A’
; and set variable ‘agent’ to
; the agent

((?observeScenario :name ’route-A
:agent agent)

; release ‘route-A’ from agent
(!releaseScenario :name ’route-A

:agent agent)
; assign ‘route-B’ to agent
(!assignScenario :name ’route-B

:agent agent)
(go jammed)))

Figure 2: Meta-Scenario Description that Changes Agents

Scenarios

serve the scenario description processing, requests

an agent to trigger an observation or perform an

action, and requests the agent system to set/get

environmental information.

Agent System An agent system receives and processes

all the requests for the agents.

One meta-scenario interpreter in our meta-level con-

trol architecture controls all scenario interpreters. As an

alternative architecture, we can consider that an individual

meta-scenario interpreter controls an individual scenario in-

terpreter. This alternative architecture has an advantage in

controlling scenario interpreters because each scenario in-

terpreter has its own meta-scenario interpreter. However,

meta-scenario interpreters in such an architecture need to

coordinate to control the simulation environment. For ex-

ample, when a meta-scenario interpreter is performing the

simulation at speed slow while another is it performing fast,

they need to communicate to determine what the writer re-

ally wants. The cost of coordination will be high, and the

result may be wrong.
892
Figure 3: Meta-Level Control Architecture

We can assign more than one meta-scenario to one sim-

ulation. For example, using a meta-scenario to change the

simulation speed and a meta-scenario to change scenarios

enables time-management and scenario switching. Unfor-

tunately, coordination becomes a problem when multiple

meta-scenario interpreters are run.

4.2 Flow of Meta-Scenario Execution

We will explain the flow in meta-scenario processing for

changing the actions of a scenario. The changing of actions

is described using ?observeAction and !runAction

commands. We described an example that changes the

scenario when a traffic jam occurs in section 3.2. In this

subsection, we assume that one action can describe a route

an agent take (e.g., (!takeRoute :route route-A)

is an action to request the agents to take route-A). Figure

4 shows a sequence diagram in which the meta-scenario

change the action from a usual route to a detour.

1. The meta-scenario interpreter reads the meta-

scenario description and determines the next com-

mand to be executed. The meta-scenario interpreter

in this example requests all scenario interpreters

to observe the action taken for the usual route.

2. The scenario interpreter reads its scenario descrip-

tion and decides the next command to be executed.

3. The scenario interpreter tests whether the command

determined in step 2. is observed by the meta-

scenario interpreter (i.e. the action taken is the

usual route).

and Ishida
Yamane

Figure 4: Sequence Diagram of Scenario Execution Control

4. If the command is not observed, the scenario inter-

preter requests the agent to execute sensor/actuator

and returns to step 2.

5. If the command is observed, the scenario inter-

preter sends a scenario processing state to the

meta-scenario interpreter.

6. The meta-scenario interpreter receives the obser-

vation result, reads the meta-scenario description,

and determines the next command to execute.

7. In the example shown in Figure 4, the next com-

mand is to request the agent to take the usual route

to execute an action that takes a detour.

The costs associated with implementing meta-level con-

trol architecture are expensive, therefore we have to reduce

the extra cost of meta-level control. The extra cost is mainly

caused by observation/control of scenario interpreters. If a

meta-scenario observes and controls all the processes of each

scenario interpreter, we can achieve more flexible control.

However, the overhead with implementing such a system

becomes quite high because message transfer between the

meta-scenario interpreter and the scenario interpreter occurs

at each step of the scenario interpreters. Each scenario in-

terpreter in the proposed implementation contains its own

scenario controller. The meta-scenario requests the scenario

controllers to observe and control the scenario processing,

the scenario controller observes and controls the scenario

interpreter, and the scenario interpreter then sends the results

to the meta-scenario interpreter. In this manner, message

transfer between the meta-scenario interpreter and the sce-
893
Figure 5: GUI of Simulation

nario interpreter occurs only when observation or control

is done.

5 APPLICATION TO A PARTICIPATORY

SIMULATION

An example of using a meta-scenario in a participatory

simulation is described in this section.

Some agents, called avatars, are operated by humans

in participatory simulations. The simulation speed of a

participatory simulation must be slowed (or raised) to real-

time speed while the operators are making decisions. With

the meta-scenario, time-management like this is achieved

by controlling the simulations on the basis of observations

of the avatars and simulations.

5.1 The Simulation Performed in This Section

A graphical user interface of the simulation is shown in

Figure 5. The right window shows the road grid. The left

window shows the user interface for the operator of the

avatar. In this simulation, many agents are driving on a

road grid, with one avatar driving straight along a road. The

human operating the avatar is assumed to make a decision

when the avatar approaches the next junction (indicated

by the circle shown in Figure 5). The operator makes

his decision and clicks the “LEFT” or “RIGHT” button as

desired.

5.2 A Scenario for an Avatar

The state transition diagram of the avatar scenario is shown

in Figure 6. In the absence of any direct order from the

operator, the avatar keeps driving straight if there is no car

in front of it; if there is such a car, the avatar stops.

As shown in Figure 6, the scenario switches to the

turn-left state when the operator clicks the “LEFT” but-

ton, alternatively the scenario switches to the turn-right

state when the operator clicks the “RIGHT” button. Re-

gardless of when the turn-left/turn-right state is

Yamane and Ishida
Figure 6: Scenario for Avatars

entered, the avatar keeps going straight until it reaches the

intersection where it can make the selected turn. Once the

turn is completed, the scenario transits to the moving state.

Assigning a scenario in this manner to an avatar can

automate its behavior. This frees the operator from having

to make all decisions, like stopping the avatar to avoid a

collision.

5.3 A Meta-Scenario of Time-Management

In this simulation, we assumed that the operator of the avatar

needs to make a decision only when the avatar approaches

a junction. Figure 7 shows a meta-scenario when the simu-

lation speed is slowed as the avatar approaches a particular

junction and when the simulation speed is increased once

the operator has finished making his decision (by clicking

one of the buttons). The state transition diagram of this

meta-scenario is shown in Figure 8.

This meta-scenario runs in the following way. First,

the simulation is initialized in the initial state and

transits to the on-road state. In the on-road state,

when the avatar is far from the junction, the simulation

speed is faster than real-time. When the avatar approaches

the junction, the simulation speed is slowed, and the meta-

scenario state transits to the near-junction state. If

the operator has made a decision, the state of the avatar

scenario transits to the appropriate state. The operator’s

decision is detected by using a ?observeTransition

command in the near-junction state. Once the decision

is detected, the simulation speed is increased. To prevent the

near-junction state from being unnecessarily reentered

(which would trigger a slow down in simulation speed), the

meta-scenario waits some time after the avatar leaves the

junction in the within-junction state.

As shown in this example, the operators’ decision mak-

ing is not always directly reflected in the simulation envi-

ronment. However, the decision should be reflected in the

avatars’ internal states. The meta-scenario control archi-

tecture can achieve time management by utilizing scenario

processing, such as state transitions of scenarios. This ex-

ample shows that monitoring and controlling the scenario

processing of agents at the meta-level enables simple and
894
(defmetascenario meta-traffic ()
(initial
(#t
(!createCrowd :name ’Cars :population 20)
(!createAvatar :name ’myCar)
(!assignScenario :name ’car :agent Cars)
(!assignScenario :name ’car-avatar

:agent myCar)
(!startSimulation) (go on-road)))

(on-road
; observe myCar to approach the junction(2,1)
((?observeEnvironment :name ’onIntersection

:args (list myCar 2 1))
; slow simulation speed
(!setEnvironment :name ’sim-speed

:args "slow")
(go near-junction)))

(near-junction
; observe myCar to leave the junction(2,1)
((?observeEnvironment :name ’outOfIntersection

:args (list myCar 2 1))
; raise simulation speed
(!setEnvironment :name ’sim-speed

:args "fast")
(go on-road))
; observe myCar to transit to ‘turn-right’
; in the scenario for the avatar ‘car-avatar’
((?observeTransition :scenario ’car-avatar

:scene ’turn-right
:agent myCar)

; raise simulation speed
(!setEnvironment :name ’sim-speed

:args "fast")
(go within-junction))
; observe myCar to transit to ‘turn-left’
; in the scenario for the avatar ‘car-avatar’
((?observeTransition :scenario ’car-avatar

:scene ’turn-left
:agent myCar)

; raise simulation speed
(!setEnvironment :name ’sim-speed

:args "fast")
(go within-junction)))

(within-junction
; observe myCar to leave the junction(2,1)
((?observeEnvironment :name ’outOfIntersection

:args (list myCar 2 1))
(go on-road))))

Figure 7: Meta-Scenario Description of Time-Management

flexible control of agents and simulations based on obser-

vations from simulation processing, including the agents’

behavior.

6 EVALUATION

We showed how to control simulations by using the meta-

scenario in the previous sections. The aim of a meta-scenario

is to enable flexible control of large-scale simulations. As

stated in Section 4, scalability is also an important issue.

Unfortunately, the system used in Section 5 is a prototype,

and we have not developed a system with enough scala-

bility. We have developed a system that can manage some

hundreds of thousands of scenario interpreters using Car-

ibbean (Yamamoto 2001), which was developed by IBM.

Therefore, we can create a MMAS with a meta-scenario if

the cost of meta-level control is low.

and Ishida
Yamane

Figure 8: State Machine of Meta-Scenario for Time-

Management

Figure 9: Scenario for Evaluation

6.1 Experiment

As explained in Section 4, the extra cost of meta-level

control is mainly caused by observation/control of scenario

interpreters. We created the following test to evaluate the

overheads.

• The number of agents is 100.

• Each agent had a counter in its own memory.

• An agent scenario used is shown in Figure 9.

• The simulation ran for in one minute, and the sum

of the counters of all the agents was measured.

• We performed two simulations. One was controlled

by the meta-scenario and another was not. Then

we compared them. The meta-scenario observed

an “empty action”, as shown in Figure 9.

The scenario in this test was very simple. The scenarios

for real applications will be more complex, and the cost

of executing each cue and action will be higher. However,

if a (meta-)scenario is very complex, the calculation cost

of (meta-)scenario processing will not increase very much.

This is because the fundamental process of a (meta-)scenario

interpreter is not related to the size of the (meta-)scenario.

Whereas, the cost to execute each cue or action differs

among applications. The cost of the cues and actions in the

test we performed was very small. This test was almost the

worst case. In real applications, the ratio of the meta-level

control cost to the overall cost would be smaller.

6.2 Result

Results are listed in Table 2. The number in each cell

in this table means the sum of the overall counters, and

the parenthetic values are the number of observations by
895
Table 2: Evaluation Results

Rate of Total number of Total number of

observed actions with actions without

action meta-scenario meta-scenario

1 20238(337.30) 30361

0.1 34277(57.13) 34708

0.01 33934(5.66) 35183

a meta-scenario per second. The results listed in Table 2

show that when the observation frequency is low, (in the

case N = 10 and N =100) a little decrease in performance

is observed. This is because no message was sent while no

observations were made a by a meta-scenario (execution

of “empty action”) during our implementation. When the

frequency is high (N = 1), some overhead was observed

(performance becomes about 2/3) because the meta-scenario

had to process the observation results.

These results suggest that if the number of target ob-

servations by a meta-scenario is small, the influence of the

meta-scenario on performance is low. For example, only

avatars are observed in participatory simulations. When

applications change scenarios, many messages are sent at

the time of changing. Other than at this moment, however,

most of the simulation is performed with little overhead. As

a result, this overhead has little influence on the simulation

performance as a whole. Therefore, the architecture shown

in Figure 3 is appropriate for the applications, such as partic-

ipatory simulations and traffic simulations, we considered.

7 CONCLUSION

To perform traffic simulations and participatory simulations

in large scale, flexible runtime control of simulations is

required. We accomplished the following two goals.

1. To develop a meta-scenario description language

We defined functions required to describe observe

and control simulations and scenario processing.

2. To develop meta-level control architecture

A meta-scenario interpreter in our proposed archi-

tecture controls the scenario interpreters that are

separate from the agents system.

Using examples, we showed a meta-scenario can de-

scribe time management and scenario changing. We also

showed this architecture provides scalability in applications,

such as participatory simulations and traffic simulations.

REFERENCES

Balmer, M., N. Cetin, K. Nagel, and B. Raney. 2004.

Towards truly agent-based traffic and mobility simula-

Yamane and Ishida
tions. International Joint Conference on Autonomous

Agents and Multiagent Systems. 60–67.

Balmer, M., and M. Rieser. 2004. Generating daily activity

chains from origin-destination matrices. Transportation

Research Board 84th Annual Meeting.

Charypar, D., and K. Nagel. 2003. Generating complete all-

day activity plans with genetic algorithms. presented at

the 10th International Conference on Travel Behaviour

Research.

Gao, Z., T. Kawasoe, A. Yamamoto, and T. Ishida. 2002.

Meta-level architecture for executing multi-agent sce-

narios. Pacific Rim International Workshop on Multi-

Agents. 163–177.

Guyot, P., A. Drogoul, and C. Lemaitre. 2005. Using

emergence in participatory simulations to design multi-

agent systems. Proceedings of The Fourth International

Joint Conference on Autonomous Agents and Multi-

Agent Systems. 199–203.

Ishida, T. 2002. Q: A scenario description language for

interactive agents. IEEE Computer 35 42–47.

Ishida, T., L. Gasser, and H. Nakashima, eds. 2005. Mas-

sively Multi-Agent Systems I. Lecture Notes in Artificial

Intelligence, 3446. Springer-Verlag.

Murakami, Y., Y. Sugimoto, and T. Ishida. 2005 Modeling

human behavior for virtual training systems. The Twen-

tieth National Conference on Artificial Intelligence.

127–132.

Yamamoto, G., and H. Tai. 2001. Performance evaluation

of an agent server capable of hosting large numbers of

agents. In: International Conference on Autonomous

Agents. 363–369.

AUTHOR BIOGRAPHIES

SHOHEI YAMANE is a master student of the Department

of Social Informatics in Kyoto University. In 2005 he

graduated from Graduate school of Engineering in Kyoto

University. His e-mail address is 〈yamane@ai.soc.i.
kyoto-u.ac.jp〉, and his web page is 〈www.ai.soc.
i.kyoto-u.ac.jp/∼yamane/index e.html〉.

TORU ISHIDA is a professor of Kyoto University, IEEE

fellow, and a guest professor of Shanghai Jiao Tong Uni-

versity. He has been working on autonomous agents and

multiagent systems for more than fifteen years. He is

currently working on massively multi-agent systems and

semantic Web services He initiated the Digital City Ky-

oto, the intercultural collaboration experiments (ICE) with

Chinese, Korean, Malaysian colleagues, and the Language

Grid project. He is an associate editor of Kluwer Jour-

nal on Autonomous Agents and Multi-Agent Systems and

Elsevier Journal on Web Semantics. His e-mail address

is 〈ishida@i.kyoto-u.ac.jp〉, and his web page is

〈www.ai.soc.i.kyoto-u.ac.jp/∼ishida/〉.
896

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

