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ABSTRACT 

Metamodels are used to provide simpler prediction means 
than the complex simulation models they approximate.   
Accuracy of a metamodel is one fundamental criterion that 
is used as the basis for accepting or rejecting a metamodel. 
Average-based metrics such as root-mean-square error 
RMSE and R-square are often used.  Like all other aver-
age-based statistics, these measures are sensitive to sample 
sizes unless the number of test points in these samples is 
adequate.  We introduce in this paper a new metric that can 
be used to measure metamodels fit quality, called meta-
model acceptability score MAS.  The proposed metric 
gives readily interpretable meaning to metamodels accept-
ability.  Furthermore, initial studies show that MAS is less 
sensitive to test sample sizes compared to average-based 
validation measures.  

1 INTRODUCTION 

Metamodels are approximations to simulation models.  
They are built and validated using simulation results for 
samples of data points in the input space.  Two fundamen-
tal criteria are used as the basis for accepting or rejecting a 
metamodel: efficiency and accuracy.  Efficiency is indica-
tive of how expeditiously predictions can be obtained; ac-
curacy is indicative of how good these predictions are. 

Efficiency of a metamodel can be determined prior to 
metamodel construction, and without any computational 
cost in terms of the simulation runs needed, e.g., the time 
taken to evaluate a second-order polynomial metamodel in 
a given number of dimensions is the same regardless of the 
underlying simulation model.  On the other hand, deter-
mining the accuracy of a metamodel is closely linked to the 
number of data points used in error calculations. 

The accuracy of a metamodel is determined using ob-
jective methods or subjective methods (Balci 1989, Sargent 
2004, and Hamad 2005).  Objective methods are based on 
statistical tests that make certain assumptions about the 
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data's correlation, distribution, etc. A central assumption 
for the application of these statistics is related to the num-
ber of data points used.  Even when other assumptions are 
satisfied, statistical tests are meaningful only if the data 
used is sufficient in number. It is often the case that, even 
if the system is completely observable, obtaining a suffi-
cient number of observations is impractically expensive.  
For such cases, average-based metrics such as RMSE and 
R-square -two of the most popular statistics used for 
metamodel accuracy assessment-may be ‘sensitive’ to the 
number of observations used. 

The objective of this paper is to introduce a new 
measure to assess the acceptability of metamodels quality 
of fit based on their accuracy of predictions. The term 
given to this metric is MAS: metamodel acceptability 
score.  MAS can be used particularly for situations where 
there is not enough validation test data or the validation 
data is too expensive to generate.  The proposed metric 
gives readily interpretable meaning to metamodels accept-
ability.  Furthermore, and by comparison to average-based 
measures such as RMSE and R-square, initial studies show 
that MAS is less sensitive to test sample sizes. 
      The remainder of this paper is organized as follows. In 
section 2, the MAS metric is introduced and contrasted 
with the RMSE and R-square metrics.  Test results using 
these three metrics are compared by examples in section 3.  
The paper is then concluded by section 4.  

2 MAS: METAMODEL ACCEPTABILITY 
SCORE 

The proposed metric MAS is defined in this section as a 
measure of metamodel acceptability with regard to predic-
tion accuracy.  The discussion of this new metric is pre-
sented in the context of the two average-based statistics of 
RMSE and R-square.  In the following discussion, iy  de-

notes the response modeled by iŷ  for the hti   data point in 
a validation test sample having  n observations.  
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2.1 Average-Based Statistics 

Two of the more important measures used for model accu-
racy assessment including deterministic simulation models 
are RMSE and R-square.  They are defined by 
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where MSE is the mean square error and 2σ  is the vari-
ance. 
     Note that results returned by RMSE cannot be inter-
preted without referring to the context of the problem.  For 
example, if in a test problem RMSE is found to be 0.05 and 
500 in another, then it could be that the metamodel is more 
accurate for the latter problem; e.g., if iy  values are within 
the range 0.04 to 0.06 for the first problem and 10000 to 
20000 in the second one.  Furthermore, the size of RMSE 
is strongly influenced by the number of observations n in 
the  test sample if the sample size is inadequate. 
     Variations with sample size n in the R-square statistic 
can be in some cases less pronounced, since there is a 
chance that the influence of such variations cancels out in 
the numerator and dominator of Equation 2 above.  How-
ever, care must be taken when interpreting results returned 
by R-square for response values iy  which are nearly con-
stant.   In such cases, the dominator of the second term in 
Equation 2 is small, and even if the metamodel returns 
nearly zero MSE, the value of the second term in Equation 
2 resulting from dividing two small numbers is not without 
numerical problems.  A similar situation leading to ques-
tioning the validity of R-square results that is dealt with in 
the literature rises for the case when n is close to the num-
ber of coefficients q in the metamodel.  For such cases, R-
square is ‘adjusted’ to accommodate  the relative size of n 
to q; see (Kliejnin 2007).  

2.2 Metamodel Acceptability Score 

Metamodel acceptability score MAS is defined in this sub-
section.  It will be shown how intuitive thinking lead natu-
rally to MAS development and, hopefully, its subsequent 
adoption for deterministic simulation metamodel valida-
tion. 

The starting step in metamodel validation activities is 
a list of n responses iy  and a corresponding list of n 
metamodel iŷ  values.  To determine how close the con-
stituents of each of these n response/metamodel pairs are to 
883
each other either the difference )yŷ( ii −  or the meta-

model-to-response ratio )/yŷ( ii  may be used, broadly 

speaking.  A difference )yŷ( ii −  of zero or a ratio 

)/yŷ( ii  of one indicate a perfect match for the hti  pair.  

Leave out the case iy  equals zero for now; this issue will 
be addressed in a short while.  

Like the case mentioned above for RMSE, a given dif-
ference )yŷ( ii −  value is not readily interpretable without 
context.  On the contrary, and again exempting the case of 
zero response iy  for the moment, results for the ratio 

)/yŷ( ii require no context for their interpretation; a ratio of 
0.999 is always taken positively while a ratio of 999 is on 
the other hand always taken negatively, regardless of the 
response modeled. 

Before going down the list of n response/metamodel 
pairs, a criterion is set for acceptability of a given pair.  
Options for such a criterion are numerous and application 
dependant.  For example, a pair may be accepted if its re-
sponse and metamodel values are within 20% of each 
other, i.e., if )2.1/yŷ(0.8 ii ≤≤ .  In another application, a 
conservative metamodel may be favored, thus the accept-
ability criterion may change to )0.1/yŷ(0.8 ii ≤≤  so that 
it is guaranteed that for worst case a higher value for the 
response is obtained, e.g., to optimize an engineering sys-
tem design. 

Now, given a required acceptability criterion, the list 
of  n response/metamodel pairs is traversed and the number 
of accepted pairs is counted.  Let this number be m;  MAS 
is then defined as 
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m
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Given a certain MAS level along with the acceptability 

criterion used, there is no ambiguity in interpreting the re-
sults leading to acceptance or rejection of the metamodel.  
For instance, a MAS of 90% may be set as the minimum 
acceptable MAS level for a given metamodel with the ac-
ceptability criterion of  )2.1/yŷ(0.8 ii ≤≤ .  For this situa-
tion, a metamodel with  MAS = 65%, say, is rejected be-
cause 35% of its tested space fails vis-à-vis the given 
acceptability criterion. 

In addition to interpretability of results, MAS sensitiv-
ity to variations in sample-to-sample size should be to a 
lesser degree in comparison to average-based metrics.  
MAS represents a relative count of test points throughout 
the input space.  Changing the test sample size n leads to a 
corresponding change in the number of acceptable points 
m, provided that the distribution of test points over the 
space in the new sample is not changed; e.g., test points are 
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drawn from the entire space in all cases without putting 
more emphasis for one sub region over another. .  

To clarify this point, suppose that a given test sample 
has n =100 observations giving a certain MAS level.  Now, 
if only 10 points are used instead, but with a distribution in 
the input space similar to the distribution of the 100-points 
sample, e.g., covering the entire input space not only the 
first half, then for most cases the difference in  MAS levels 
should not be detrimental. Of course, such an argument 
still needs further scientific justifications, may be benefit-
ing from the well-established sampling theorems such as 
those used for digital signal processing methods in elec-
tronic engineering.  Nonetheless, initial investigations 
show that MAS is less sensitive to test sample sizes com-
pared to average-based validation measures such as RMSE, 
as expected for the reasons just mentioned, and as will be 
shown in the examples of the next section. 

We now return to the situation where for one or more 
of the n observations the response iy  is zero. This issue is 
treated further in (Hamad 2006). Let the number of such 
points be ν .  Then as far as MAS calculation is concerned, 
two approaches may be taken depending on the size of ν  
relative to n: 

 
• If ν  is only a small fraction of n, as may be set by 

the analyst, then these ν  points are simply re-
moved.  This should have almost no effect on 
MAS levels provided that 1n >> .  

• If on the other hand  ν  is a sizable fraction of n, 
then, if validation using MAS levels is planned at 
the outset, an approach may be based on  model-
ing using a 'shift-transformation' of the  response 

iy  to siy = iy +δ , by adding a constant δ to all 

of the n data points iy .  Here, δ is chosen to make 

the shifted response siy  greater than zero. This 
way, validation using MAS results may be carried 
out for the complete list of n data points after 
transformation. 

 
The sample-to-sample variability of MAS results are con-
trasted to those of RMSE and R-square for the examples in 
the next section.  

3 EXAMPLES 

We compare in this section variations with sample size for 
MAS on one hand, and RMSE and R-square on the other 
hand, via two examples.  The first example uses a one-
dimensional analytic function for the response.  For this ex-
ample, two metamodels having different number of coeffi-
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cients q are studied.  The second example involves simula-
tion results for an electronic circuit with three design 
variables (inputs).  For these examples: 
 

• Polynomials metamodels are used. The number of 
coefficients q for a polynomial in k dimensions 
with a degree d is d!k!d)!(kq +=  

• Latin hypercube validation test samples are used.  
Sample sizes of ωq  are used, where the multiplier 
ω  is varied in steps of 1 starting at ω  = 1.  Latin 
hypercube sampling is used to provide flexibility 
with sample sizes and good uniformity over the in-
put space. 

• The sample-to-sample variation is measured by the 
difference-mode to common-mode ratio DMCMR.  
The DMCMR for the two quantities 1ς  and 2ς  is 
defined by 
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Absolute values are taken to calculate the common-mode 
component in the dominator of Equation 4.  

3.1 Example 1 

The following response is defined for the space ∈x [-1,1]: 
 
  ( ) 10001101 20x-5 ey +−= ×         (5) 
 

Two metamodels are derived for this response: the 
first one is a second-order polynomial built using a mini-
mum bias design having four points, and the second meta-
model is a fifth-order polynomial derived using another 
minimum bias design with 10 points. 

Accuracy tests are carried out using fifty samples for 
each metamodel.  The number of observations for these 
samples are ωq ;  ω  = 1, 2, …, 50.  The number of coeffi-
cients q for the second-order and fifth-order polynomials is 
three and six, respectively.  
Calculations of RMSE, R-square, and MAS are carried out 
for the second-order polynomial metamodel using the fifty 
test samples in turn.  Acceptability criterion is set at 

)2.1/yŷ(0.8 ii ≤≤ for MAS calculations.  Results are 
shown in Figure 1(a)-(c) for one trial, while part (d) of the 
figure shows the results using three other trials for each of 
the fifty Latin hypercube test samples for MAS calculations.
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Figure 1: Validation Results for the Second-Order Polynomial Metamodel vs. the Number of Coefficients Multiplier ω  for 
(a) RMSE, (b) R-Square, and (c) MAS; (d) Three Trials for Each of the 50 Latin Hypercube Test Samples for MAS
Note from the figure that each metric settles at a ‘final’ 
value shown by solid lines crossing the plots in the middle.  
However, variation around the final value is smallest for 
MAS, as can be seen from Figure 1c which shows that 
MAS levels are at nearly 6)(87 ±  after ω  = 1. 

MAS  supercedes not only in terms of sensitivity to 
sample size variation, but also in terms of interpretability 
of results.   To clarify, it can be seen by reference to Figure 
1a that RMSE is at nearly 700 for adequate sample sizes.  
Now, with this RMSE size in mind, is the second-order 
polynomial a good metamodel? Moving on to part (b) of 
the figure, R-square values reveal that the metamodel is in-
adequate.   

For MAS results in Figure 1c on the other hand, in-
formation about the metamodel quality-of-fit is not am-
biguous.  The figure reveals that for around 87% of the 
tested sample observations the metamodel is within 

20%±  of the response-the criterion used in the example 
for MAS calculations as mentioned.  With such a readily 
interpretable result, the decision of whether to accept or re-
ject the metamodel becomes far more easier.  Note that R-
square results point out to a completely contradictory con-
clusion.  This is because y in Equation 5 is almost constant 
for more than 85% of the input space, a condition which is 
not favorable for R-square application as mentioned in the 
previous section. 

In order to better compare sample-to-sample variations 
for the three metrics, DMCMR’s corresponding to the data 
of Figure 1 are calculated and plotted in Figure 2.  The 
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same scales can now be used for all three metrics as 
shown. 

Figure 2a shows that RMSE can vary by as much as 
170% for small sample sizes.  The sample-to-sample varia-
tion for R-square can be as high as 200% for the smaller 
sample sizes, as revealed by Figure 2b.  On the other hand, 
sample-to-sample variation for MAS is less than 10% for 
worst cases, as depicted in Figure 2c, with only 2-3% 
changes for sample sizes as small as three to four times the 
number of polynomial coefficients q. 

The order of the metamodel polynomial is changed to 
five, and the corresponding variations of RMSE, R-square 
and MAS are calculated.  Results for DMCMRs are shown 
in Figure 3 superimposed for the three metrics.   The same 
scales as in Figure 2 are used for easy comparison.  As 
seen in Figure 3,  although sample-to-sample variations has 
improved for RMSE, however, DMCMR for RMSE is still 
the worst, settling down to small percentages after nearly 

15ω > ; i.e., for sample sizes with 90615ωq =×>  ob-
servations. 
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Figure 2: Sample-to-Sample Variations Expressed by DMCMR for the Second-Order Polynomial Metamodel vs. the Number 
of Coefficients Multiplier ω  for (a) RMSE, (b) R-square, and (c) MAS; (d) Superimposition of the Three Plots
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Figure 3: DMCMRs for the Fifth-Order Polynomial Meta-
model vs. ω  

3.2 Example 2 

The three-dimensional problem in this subsection is an en-
gineering problem that relates the portion H of the input 
signal that appears as an output in the circuit of Figure 4. 

 

Figure 4: Electric Circuit for Example 2 

10 Ω 
R2 

Output 
Signal 

Input 
Signal R3 R1 
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The portion H is dependant upon the three design vari-
ables 1R , 2R , and 3R connected as shown in the figure.  
Using a circuit simulator gives results which are identical 
to those given by the following equation obtained from 
elementary circuit analysis techniques: 
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A second-order polynomial is constructed from a 
minimum bias experimental design having seventeen 
points in the space 3[1,100] . Accuracy tests are then car-
ried out using fifty samples.  The number of observations 
for these samples are ωq ; ω  = 1, 2, …, 50.  The number of 
coefficients q for this case is ten. Calculations of RMSE, R-
square, and MAS are carried out for the metamodel using 
the fifty test samples in turn.  Acceptability criterion is set 
again at )2.1/yŷ(0.8 ii ≤≤ for MAS calculations.  Results 
are shown for RMSE and MAS in Figure 5 for one trial for 
each of the fifty Latin hypercube test samples used;  R-
square results are omitted to save space.  
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Figure 5:  (a) RMSE vs. ω (b) MAS vs. ω  

 
Sample-to-sample variations are determined for the three 
metrics via DMCMR calculations. Results are shown  in 
Figure 6a for the three metrics superimposed for compari-
son, while Figure 6b shows DMCMR results  for MAS. 
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Figure 6:  DMCMR (a) for Superimposition for the Three 
Metrics (b) for MAS Only 

 
 Figure 5a shows  that RMSE varies from a little over 
0.025 to 0.04 for sample sizes up to about  20; is this meta-
model accurate  based on these RMSE results?  Note that the 
answer to this  question is  readily obtained by reference to 
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MAS results in Figure 5b.  The figure shows that  the meta-
model is accepted for 3)%(95 ±  of the observations  for any 
test sample size greater than ω =1 times the number of coef-
ficients q; i.e., for sample sizes  greater than ten in this case.  
Sample-to-sample variations for MAS are depicted by Fig-
ure 6a, showing that DMCMR for any  change in sample 
size is less than 5%.  Note from Figure 6b that sample-to-
sample  variation is worse for RMSE, with the R-square  
measure  performing nearly  as good as MAS.  

4 CONCLUSION 

This paper presented a new metric as a measure of meta-
model acceptability with regard to prediction accuracy. 
The term used for this metric is ‘metamodel acceptability 
score’ or MAS.   The discussion of this new metric is pre-
sented in the context of the two  well-known average-based 
statistics of RMSE and R-square.  MAS differs from such 
existing statistics in nature; a MAS level for a test sample 
is established by counting points in the sample which sat-
isfy a required metamodel performance rather than taking 
average performance across the sample points.  This aspect 
of MAS makes it less sensitive to sample size variations.  
Furthermore, MAS results are extremely easy to interpret, 
leading to a decision for accepting or rejecting a meta-
model based on solid grounds. 
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