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ABSTRACT

Metamodeling is emerging as a valuable new tool in simula-

tion: complex computer codes can be approximated by sur-

rogate models (analytic, neural network, SVM, etc.) which

can easily be evaluated on-the-fly. Adaptive modeling and

sequential design further improve the performance of meta-

modeling frameworks. Grid computing quickly replaces

regular cluster computing when it comes to complex calcu-

lations. Several efforts use grid computing to facilitate the

exploration of simulator outputs. This contribution combines

adaptive modeling and sequential design with distributed,

grid-based techniques into one metamodeling framework.

1 INTRODUCTION

This work combines several methodologies for metamodel

construction. Each of these deserves a separate section

in its own right. Therefore references on these subtopics

are deferred to the relevant sections. The introduction will

merely give a bird’s eye view of the new framework presented

here.

The main objective of this work is metamodeling: con-

structing analytical models for complex computer simulation

codes (as will be explained in section 2). In order to obtain

accurate and compact metamodels, several techniques are

at hand. Adaptive modeling is presented in section 5 and

sequential design is discussed in section 6. A combination

of these two already gives rise to a robust metamodeling

framework.

Distributed computing, and more specifically grid com-

puting, has been used in the past for running simulations

in parallel (see section 4). However, often the power of the

grid is applied in a brute force manner: As many simulations

are run as possible and once the results are in, the data is

stored in a database for future analysis or a metamodel is

built. Such a scheme leaves much room for improvement

if the sequence of simulations is chosen more carefully and

if there is a tighter integration with the modeling process.
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Combining adaptive modeling, sequential design and

grid computing into one global metamodeling framework

gives rise to a methodology with great potential. The M3

Toolbox, currently under development in our research group,

is used to explore the possibilities of such a framework. The

example of section 7 demonstrates what the M3 Toolbox

can do for the metamodeling community.

2 METAMODELING

Metamodeling, or surrogate modeling, is the process of

capturing the features of a complex computer simulator in

a simpler, analytical model. This section introduces some

metamodeling basics and techniques.

2.1 Concepts

To gain understanding of real-life phenomena, scientists have

always constructed approximations and simplifications of

reality. The past decades computers provided a valuable

tool in constructing such approximations. In many different

fields computers are solving partial differential equations

in order to predict the behaviour of real-life systems (e.g.,

fluid dynamics or electromagnetic (EM) field simulators).

Others use complex computer models to predict a system’s

behavior (e.g., traffic simulators or manufacturing process

optimisation).

In this text the term simulator will be used for such a

complex computer model, the term system will be reserved

for the real-life phenomenon under consideration. For their

computations simulators take one or more parameters as

inputs, e.g., frequencies and length’s for an EM-simulator.

Based on these input parameters the simulator computes

the system’s behavior. The term behavior is very general,

it can be electrical and/or magnetic fields, current lines for

fluid flow, etc. In many cases the end-user is not interested

in the full behavior of the system, but rather in some scalar

values that can be derived from the simulator’s calculations.

In electromagnetics, the (scalar) scattering parameters of a
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electronic component can be computed based on the EM-

fields. In fluid dynamics, pressures and flow rates can be

computed. Typically, these scalar values capture the essence

of the system’s behavior. These scalar values will be called

the outputs of the simulator.

From hereon, the simulator will be regarded as a black-

box with multiple inputs and outputs. The number of inputs

will be called d, while the number of outputs is denoted by

s. So the simulator can be seen as a function S : R
d → R

s.

In many cases, a simulator is computationally expensive.

Therefore, in order to gain a global overview of the output

of the simulator as a function of its inputs, one tries to build

metamodels or surrogate models. These are mathematical

expressions or models-of-models which map the inputs onto

the outputs. Converse to the original simulator, metamodels

can be evaluated at almost no cost. Metamodels can be

used for optimisation, sensitivity analysis or to “browse”

through the input-output behavior of the simulator.

2.2 Overview

A lot of innovative research has been conducted in the field

of metamodeling. This section tries to give a very brief

survey of such efforts. Some of these focus on optimisation,

while others want to gain insight in the global input-output

relationship.

The idea of building metamodels for computer sim-

ulations is not new. Sacks et al. (1989) propose to use

Kriging-like metamodels for predicting simulator outputs.

They call their approach Design and Analysis of Computer

Experiments, or DACE (see, e.g., Santner et al. 2003).

Søndergaard (2003) uses the Space Mapping technique to

align a simple circuit model with complex computer sim-

ulator code, in order to find an optimum. Lamecki et al.

(2003) use Radial Basis Function (RBF) interpolants to

approximate the behavior of electromagnetic components.

De Geest et al. (1999) constructs polynomial and rational

metamodels of electronic circuitry. Barton (1998) gives an

overview of different kinds of modeling techniques used

for metamodeling of simulation outputs.

3 MODEL FLAVORS

This section gives an overview of the three different kinds

of models implemented in the M3 Toolbox. Examples are

given in the two-dimensional case, but can be extended

to more dimensions in a straightforward manner. Other

modelling techniques, such as DACE and Support Vector

Machines will be added to the Toolbox’ codebase shortly.

3.1 Artificial Neural Networks

Since their initial conception as crude models of biological

neurons Artificial Neural Networks (ANN) have proven very
873
useful, flexible and powerful tools for solving a wide range

of complex problems: classification, pattern recognition,

system control, time series prediction, function approxima-

tion, regression, optimisation, reasoning, etc.

In the context of metamodeling they constitute a particu-

larly attractive method considering their universal, black-box

nature. ANN have been proven, under reasonable conditions,

to be able to approximate any computable function with

arbitrary accuracy through learning (White 1990, Valiant

1988) without requiring any a priori knowledge of the un-

derlying system. However, this universality often proves to

be a double edged sword, as will be described below.

Nevertheless ANN have successfully been applied to

many metamodeling problems (Xiao et al. 2003, Hillbrand

and Karagiannis 2002, Dahm and Ziegler 2002, Panayiotou

et al. 2000) ranging from economic validation of capi-

tal projects (Chaveesuk and Smith 2003), through process

optimisation (Chambers and Mount-Campbell 2002), to mi-

crowave circuit modeling (Devabhaktuni et al. 2001, Zhang

et al. 2003).

An ANN consists of a number of, usually adaptive,

artificial neurons that are interconnected to form a network.

This is illustrated in figure 1.

Figure 1: Structure of a Typical Multi Layer Perceptron

with One Hidden Layer with k Units

The most popular network type is the feed-forward

Multi-Layer Perceptron (MLP) but many others exist:

CSOM, Cellular Networks, ART, Polynomial Neural Net-

works, RBF Networks, Hopfield, Neural-GAS, Fuzzy Nets,

etc. Each neuron in the network is intended to respond to

stimuli in a manner not unlike their biological counterparts.

A neuron typically takes a weighted sum of its inputs ξi

and bias θ and computes an output value y = g(h) where

h is defined as (see figure 2):

h =

(

n
∑

i=1

ξiwi

)

+ θ (1)
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The weights and biases wi, θ constitute the free parameters of

the network. These are initialised randomly and gradually

adapted through training the network with a number of

examples.

Figure 2: A Typical Neuron

The training algorithms used are usually gradient based

algorithms such as Levenberg-Marquardt or Resilient Back-

propagation. The objective is to adapt the weights in such a

way that they minimise the mean squared error between the

prediction of the network and the true values. The function

g(.) is referred to as the activation function and is typically

a logistic function like the sigmoid:

g(h) =
1

1 + e−h
(2)

Together equations (1) and (2) from the transfer function

of the neuron. The high nonlinear nature of such a transfer

function means that a neural network is able to model

exceedingly complex systems. However, care must be taken

to ensure the network is not too complex for else the

nonlinearities become uncontrollable.

This brings us to an important point. Though attractive

theoretically due to their universal approximation properties,

the design and application of ANN in practical settings is

not all that straightforward. The problem is twofold. First

there is the problem of choosing an appropriate network

model (RBF, MLP, GRNN, etc.) and then the classic prob-

lem of choosing the best network parameters. Due to their

versatility ANN have a great number of parameters that

may be tuned: number of hidden layers, number of hid-

den units, training function, learning rate, update method

(batch/incremental), number of epochs, stopping criteria,

etc. Concerning the network topology there are many anec-

dotal and published “rules of thumb”. However for all

but the most specific cases such guidelines are very vague

and fail to capture the complex interaction between the

numbers of input and output units, the number of training

cases, the amount of noise in the targets, the complexity of

the function or classification to be learned and many other

factors (Neural Networks ).

To tackle this researchers have come up with three types

of solutions: constructive algorithms that grow or prune the

network as training proceeds (e.g., Cascade Correlation,

Tiling, Optimal Brain Damage), population based methods
874
(e.g., committees (ensembles), genetic algorithms, genetic

programming) and combinations of both. By smartly explor-

ing the search space of networks such methods have proven

to perform much better than their one-shot counterparts.

3.2 Radial Basis Functions

Radial Basis Function (RBF) interpolants are a very sim-

ple yet powerful tool in multivariable approximation. The

book (Wendland 2005) can be used as a reference on the

subject. RBF interpolants have been used in a wide range

of applications, going form solving partial differential equa-

tions (Kansa 1990) to surface smoothing in computer graph-

ics (Carr et al. 2001). Their simple formulation makes RBF

interpolants easy to use and understand, although sometimes

a more complex meta-model would produce more satisfac-

tory results.

The main ingredient of an RBF interpolant, is a func-

tion φ : [0,∞[→ R, for example the bell-shaped Gaussian

function x 7→ e−αx2

for some α. Given a set of points

(ζk, ξk) ∈ R
2, called centers, one searches for a function

H(x, y) =
∑K

k=1 βkφ (‖(x, y) − (ζk, ξk)‖2)

=
∑K

k=1 βke−α((x−ζk)2+(y−ξk)2) (3)

which is linear in the unknowns βk. This can be seen as

an overlay of shifted φ’s scaled by the different βk’s. An

approximant of the form (3) to a set of data points and

values (xl, yl, fl) can be found by solving a least-squares

linear system.

3.3 Rational Approximants

Linear regression models have always been a key tool for

modeling a wide variety of systems. Specifically, using

polynomials for interpolation and approximation of scattered

data has been popular for many years. In the context of

metamodeling, De Geest et al. (1999) and Lamecki et al.

(2004) have modeled simulation outputs with polynomials

and ratios of polynomials:

H(x, y) =
α1 + α2x + α3y + α4xy + . . .

1 + β2x + β3y + β4xy + . . .
(4)

Ratios of polynomials are known as rational functions.

A main drawback is that they are not linear in their

unknowns. To overcome this inconvenience, one usually

solves the linearized system of equations

(α1 + α2xk + α3yk + α4xkyk + . . .)

− f(xk, yk) (1 + β2xk + β3yk + β4xkyk + . . .) = 0 (5)
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When the number of design points matches the number of

unknowns exactly, an interpolant can be found most of the

times. Otherwise, the least-squares solution to this system

differs from the true nonlinear least-squares approximant,

which would minimise
∑

k |f(xk, yk) − H(xk, yk)|2. In

many cases, it is acceptable to neglect the error caused by

the linearisation and just use the solution of the linearized

equations.

To create a diversity of different rational metamodels

through the same set of sample points, the degrees of x and

y present in numerator and denominator can be varied. Our

current implementation assigns weights to each variable, and

uses these weights to select which degrees to use. Also,

the number of degrees of freedom can be varied between

different rational models.

4 GRID COMPUTING

This section briefly introduces some ideas and concepts

behind distributed computing using grids. It discusses a

number of middlewares that enable grid computing and

their application to metamodeling problems.

Grid computing is a decade old research field within

distributed computing which can conceptually be described

as follows: the interconnecting of heterogeneous, non-

dedicated, geographically distributed, computing resources

(clusters, desktop machines, disk arrays, etc.) into a large,

aggregate pool of resources that may be shared among users.

An often used and intuitively appealing analogy is that the

computing power of a grid should be as ubiquitous and eas-

ily accessible to researchers as electricity from the power

grid.

As such, grid computing differs markedly from clus-

ter computing which only deals with limited, dedicated,

homogenous resources over which the user typically has

complete control.

4.1 Grid Systems

Multiple software layers have been developed to make

grid computing possible. These are referred to as middle-

wares. Popular middlewares include Globus (Foster et al.

2001), Unicore (Erwin 2002), Legion Natrajan et al. 2002,

JGrid Pota et al. 2003, VgrADS (Berman et al. 2005),

ProActive (Huet et al. 2004), Gridbus (Buyya and Venu-

gopal 2004), and Triana (Taylor et al. 2005), of which

Globus is the most well known. Together these have been

used to help solve a wide variety of computationally expen-

sive or data intensive problems such as airflow simulation,

virtual reality environments, image rendering and weather

prediction.
875
4.2 Grid-based Metamodeling

Grid computing and metamodeling form a potentially per-

fect match. A problem typically encountered in sequential

metamodeling is that many evaluations of the original sim-

ulator are required to build a metamodel. If the simulator

can be evaluated cheaply this is no problem. Typically

one simulation run may require many minutes or hours of

computing time. Requiring many simulation points to build

an accurate metamodel thus quickly becomes intractable,

especially if done sequentially. This is where grid comput-

ing can provide a solution. By delegating the evaluation of

the expensive simulator to the grid, computing time may

be greatly reduced.

Research efforts and tools that integrate metamodeling

and grid computing techniques can be divided into two

categories: those catered towards design optimisation and

those geared towards the building of standalone scalable

metamodels. The first is by far the most populous with

projects as GEODISE (Eres et al. 2005), DAKOTA Giunta

and Eldred 2000, Nimrod/O (Abramson et al. 2001) and

the work in Ong et al. 2003, Ong et al. 2004. The latter

take an evolutionary approach to metamodel based design

optimisation while simultaneously harnessing the power of

the grid (Ng et al. 2005, Ng et al. 2005).

While all projects mentioned above are tailored towards

optimisation, they are not concerned with creating a global,

scalable metamodel. Research efforts that do build re-

placement metamodels exist (Lehmensiek and Meyer 2001,

De Geest et al. 1999, Martin and Simpson 2002, Hendrickx

and Dhaene 2005a), but fail to tackle the computational bur-

den by distributing and parellizing sample evaluation. To

the authors knowledge there are no other real projects that

solve this problem. Perhaps the project that comes closest

to what is achieved in this work is described in (Parmee

et al. 2005), though it is also biased towards optimisation.

5 ADAPTIVE MODELING

While building stand-alone metamodels can be useful, usu-

ally one does not know in advance which model to build for

a given problem. The correct model complexity is unknown

and a lot of questions have to be answered, like which de-

grees should be selected for rational models, which basis

function and shape parameter α should be used when creat-

ing RBF metamodels, or how many hidden nodes and which

transfer functions give rise to a useful ANN metamodel?

5.1 Model Parameter Selection

An Adaptive Modeling tool solves this by shifting the respon-

sibility for selecting suitable metamodel parameters from

the end-user to the modeling software. Adaptive modeling

is the process of iteratively generating and selecting model
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parameters in a manner akin to natural selection. Each it-

eration the usefulness of a population of model parameters

is assessed by verifying the accuracy of the corresponding

models. New parameters are generated to replace the least

fit individuals (those producing the worst models). Fig-

ure 3 shows a flow chart illustrating the adaptive modeling

process.

Depending on the number and type of model parameters,

several techniques for adaptive modeling are at hand. In the

case of rational metamodels, a simple scheme for selecting

new model parameters already produces promising results:

select new variable weightings in the neighb!ourhood of

those that generated the best models. For RBF models, the

variable parameter is the shape parameter (α in the case

of the Gaussian basis function). For ANN models adaptive

modeling gets more interesting. Due to the large number of

free parameters (network topology, training algorithm, etc.)

the search space of possible ANN models is much larger

than that of the polynomial or RBF models. Thus automatic

tuning of parameters through a parallel evolutionary search

makes sense.

Implementing adaptive modeling can be done in roughly

three ways (from simple to complex): Evolution Strategies

(ES), Genetic Algorithms (GA) and Genetic Programming

(GP). ES are popular in numerical optimisation and rep-

resent an individual metamodel as a vector of real-valued

features (variables). They typically utilise uniform random

selection, a discrete or intermediary recombination opera-

tor and a Gaussian, self-adaptive mutation operator. GAs

are more complex in that they use more involved selection

(non-uniform), recombination and mutation operators and

generally use larger populations. GP is similar to GAs

except that it uses an indirect encoding instead of a direct

one. In GP a population of programs that generate solutions

is evolved instead of the solutions themselves. However,

these are just simple guidelines, in practise many variations

exist and the distinctions are less clear cut.

Figure 3: Adaptive Modeling Flow-Chart
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5.2 Example

To demonstrate the usefulness of adaptive modeling, exper-

iments were conducted on the test function

K : [0, 4]5 → R :

(x, y, a, b, c) 7→
e−(x−1)2

1.2 + (y − 2.5)2
+ noise (6)

The output value of this function only depends on the first

two inputs. Some noise is added to the outputs in order to

obscure the irrelevance of the last three variables (a uniformly

distributed random error in [−0.001, 0.001] was used for

this purpose). As a basic test case, 100 samples where

randomly taken in the domain, and rational metamodels

where constructed approximating the data. Each iteration,

the best models were kept and the worst were replaced by

new ones (resembling the best models). Figure 4 shows the

evolution of the weights the rational modeler assigns to each

variable. A lower weight implies increased importance.

The code clearly identifies the important factors, while

marginalizing the others. These tests were run on the

adaptive modelling code as it appears in the M3 Toolbox’

implementation. Therefore it is reasonable to assume the

adaptive modelling technology is working and provides a

valuable contribution to the entire meta-modelling process.
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Figure 4: Evolution of the Weights for Each Factor, Lower

Weight Means More Importance

A similar result is observed when adaptively modeling

using ANN metamodels. ANN have the attractive property

that they are able to automatically detect complex relation-

ships in the data. In this case an MLP with 5 inputs, one

output and 2 hidden layers with 3 nodes was trained with a

similar set of 100 points. That it detected the irrelevance of

the last three input variables can be seen from the connection

weights connecting the inputs to the first hidden layer: the

weights leaving the inputs a, b and c tend to zero, while

the ones for x and y remain significant (see table 1). Note
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that this is a property of the ANN itself and not attributed

to the adaptive modeling process. An example of adaptive

modeling using ANN is illustrated in figure 5. The modeled

system is is the EM simulator described in section 7 and

depicted in figure 7.

Figure 5: Evolution of the Number of Hidden Nodes

As can be seen from the figure the adaptive model-

ing process will automatically select the optimal number

of hidden units given the data. The evolution mechanism

used here was a simple (µ + λ)-Evolution Strategy (µ=20,

λ=10) with a Gaussian mutation operator and no recombi-

nation operator. Evolution was allowed to proceed for 10

generations before moving on to the next sequential design

iteration. Training was done using 4-fold crossvalidation

and regularisation for an evolved average of 800 epochs. To

further reduce the risk of overfitting a constraint was placed

on the network complexity. The number of free parameters

should never be more than k times the number of avail-

able samples. It seems obvious to choose k < 1, however,

Sarle (1995), Caruana et al. (2001), and others have shown

that allowing more weights than datapoints is not always a

bad thing and can actually provide better results, especially

when using early stopping. Therefore we have set k = 2
in this case.

While this already gives good results, 10 generations

is really to small to truly benefit from natural selection.

Also more powerfull mutation and recombination operators

are needed that not only act on the topology but also on

training-related parameters. Valuable work in this respect

has already been done (Yao 1999).

Altough the current imlementation performs fine in our

two testcases, there is still room for improvement. More

general Genetic Algorithm (GA) inspired techniques can be

used to select optimal model parameters. Other optimization

techniques might also be used to select the optimal model.

6 SEQUENTIAL DESIGN

Usually, in real-life experiments, a design in the input space

is constructed and all experiments are conducted. Only
877
Table 1: Connection Weights Between the Input Layer and

the First Hidden Layer, Redundant Inputs Receive Lower

Weights

Input Neuron

1 2 3 4 5

Hidden

Neuron

1 0.126 0.957 -0.003 -0.005 -0.012

2 -0.652 0.522 0.003 0.005 -0.009

3 0.189 -1.134 -0.001 -0.002 0.013

after all data has been collected are models constructed

to approximate the input-output relation. Quite often it

is impossible or too expensive to conduct more real-life

experiments.

6.1 Adaptive Sample Selection

When performing computer simulations, it is still feasible

to conduct more experiments after initial metamodels have

been built. Sequential design or adaptive sampling is the

process of iterative metamodel construction, while running

new simulations each iteration.

One-shot design based metamodeling has some major

drawbacks. In some regions the design will be too dense,

the complexity of the input-output relation could be found

with far less sample points. In other regions, the simulator

output is far more complex than expected and more sample

points are needed. Likewise, for optimisation it might be

beneficial to select more sample points in the regions where

extrema are located.

These drawbacks are overcome by sequential design:

initially, a small amount of sample points is selected in

the input space and simulations are run for these points.

Using this data, metamodels are built in an adaptive loop, as

described in the previous section. The models that are the

most accurate are then used to select new inputs. For these

new data points simulation outputs are computed and added

to the set of samples. These steps are iterated until the

estimated accuracy reaches a threshold, or when no further

progress seems possible. Figure 6 shows a flow-chart of

the sequential design process combined with an adaptive

modeling loop.

Sequential design has been used for metamodeling pur-

poses on several occasions (Kleijnen and Van Beers 2003,

De Geest et al. 1999, Hendrickx and Dhaene 2005b).

6.2 Grid computing for adaptive sampling

Distributed computing can further improve the performance

(run time) of the sequential design and adaptive modeling

scheme. There are several levels of integration when com-
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bining grid computing with a sequential design automaton

as shown in figure 6.

In a first phase, each iteration of the sequential de-

sign loop (the outer loop) can be sped up by evaluating

the new samples in parallel on the grid. Assuming the

network transfer times are negligible (which is the case for

expensive simulations), a speed-up of number of samples

to be evaluated over number of machines can be achieved

(assuming more samples than hosts). The main advantage

of this approach is that it yields a major performance im-

provement, without interfering with the standard sequential

design work flow.

The adaptive modeling loop can repeatedly build new

models and suggest new inputs to simulate by maintaining

a priority queue. A grid computing interface then selects

inputs from the queue proportional to their priority, runs

simulations and feeds the results back into the adaptive

modeling loop. In this process, it is important to keep the

queue balanced: one has to ensure that the queue remains

filled without flooding it with useless sets of design points.

Currently, our code features a back-end for distributed

computing using the AppleS framework, using the ProActive

framework and using the Globus middleware. Through

AppleS tests can be run by just grouping several desktop

computers into a simple computer cluster. The ProActive

framework provides us with access to the CalcUA computer

cluster of our department. The Globus middleware enables

us to run distributed tests on larger scale grid infrastructures.

Figure 6: Sequential Design with Adaptive Modeling
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7 COMPLETE EXAMPLE

To demonstrate the usefulness of distributed metamodeling,

an electromagnetic simulator is used. In this particular

case, the simulator computes the scattering parameters for

a step discontinuity in a rectangular waveguide. The inputs

consists of input frequency, the gap height and the gap

length. The outputs are the scattering parameters of this

2-port system. Figure 7 shows an approximate plot of the

input-output relation at three different discrete frequencies.
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Figure 7: A Plot of |S11|, the Modulus of the First Scattering

Parameter

Adaptive modeling and sequential design techniques

were used on this dataset, first using rational metamodels

and then using ANN metamodels. Figures 8 and 9 show

the evolution of the errors as a function of the number

of samples. The horizontal axis contains the number of

samples, while the vertical axis gives percentages. Each

shaded region corresponds to a specific error range given

in the legend. Each of the metamodels was compared to

reference data on a 503 full factorial design for verification.

The height of each region depicts the percentage of these

verification points that have an error within the error range

for that region. Note the difference in scale on the horizontal

axis between the two figures. Rational metamodels tend to

be more suitable for relatively simple physical systems, as

they can capture the system’s global behavior more easily.

The ANN metamodels are expected to do much better when

the system’s outputs are more complex.

As EM-simulators are computationally expensive, the

use of grid computing is crucial for fast and efficient meta-

modeling. Although the previous tests were run on a single

machine, we also conducted some distributed tests. In order

to emulate a real life situation, the step discontinuity sim-

ulator code was first slowed down by adding some sleeps.

The APST framework was used to distribute the tests over

a small testbed of 6 desktop computers. It would have

been preferable to run these tests on “real” grid resources,

but this is not really an issue since (1) we are currently
8
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only interested in a proof-of-concept, and (2) the speedup

is expected to increase linearly as the number of machines

increases. The total time spent on running simulations when

using one machine averages to 2170 seconds, while in the

distributed setting the simulation time averages to 561 sec-

onds. The reason an ideal speedup of 6 was not reaches, is

that the adaptive sampling loop selects 3 to 6 samples each

iteration. Some machines are running idle part of the time.
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Figure 8: Error Percentage Plots Using Rational Metamodels
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Figure 9: Error Percentage Plots Using ANN Metamodels

8 CONCLUSIONS

Grid computing, adaptive modeling and sequential design

have proven useful for many applications. This work inte-

grates all into a single metamodeling framework (that we

have implemented as the publically available M3 Toolbox)

that benefits from the advantages of all three of these key

concepts. Future research will improve and fine-tune the

concepts laid out in this paper.
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