
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

THE SIMULATION PROJECT LIFE-CYCLE: MODELS AND REALITIES

Robert G. Sargent
 (Panel Co-chair)

Dept. of Electrical Engineering &

Computer Science
L.C. Smith College of Engineering

and Computer Science
Syracuse University
Syracuse, NY 13244

 U.S.A.

Richard E. Nance
 (Panel Co-chair)

 ORCA Computer, Inc.

1800 Kraft Drive
Suite 111

Blacksburg, VA 24060-6370
U.S.A.

C. Michael Overstreet

Computer Science Department
Old Dominion University
Norfolk, VA 23529-0162

U.S.A.

Stewart Robinson

Warwick Business School
University of Warwick

Coventry
CV4 7AL

United Kingdom

Jayne Talbot

Virtual Technology Corporation
5510 Cherokee Avenue

Suite 350
Alexandria, VA 22312-2320

U.S.A.

ABSTRACT

This panel session will discuss various issues regarding
simulation life-cycle models. Simulation life-cycles models
have received little attention, and this panel session seeks
to generate interest in this topic and stimulate new ideas for
development, teaching, and use of these models.

1 OVERVIEW

Nance and Arthur (2006) state that the usage of formal
Software Requirements Engineering activities in Modeling
and Simulation (M&S) development and analysis is mini-
mal, at best. If one analyzes the Nance and Arthur paper
closely, one also notes the paucity of work on M&S life-
cycle models. In contrast, life-cycle models are a subject of
considerable interest in software engineering. The purpose
of this panel is to bring attention to the topic of M&S life-
cycle models. By doing so, we hope to generate interest in
this topic within the research, application, and education
communities.

The organization Project Management Institute is con-
cerned with managing projects of all types. Their book A
Guide to the Project Management Body of Knowledge
(PMBOK Guide) (Project Management Institute 2004)
provides considerable information that is applicable to
managing simulation projects including information that is
8631-4244-0501-7/06/$20.00 ©2006 IEEE
applicable to life-cycle models. In this paper we are dis-
cussing the project life-cycle of developing simulation
models and not the life-cycle of the simulation models,
which are products. Note that a project life-cycle is differ-
ent from a product life-cycle. A project has a definite be-
ginning and a definite end, and frequently produces a
product that has a life-cycle of its own. Paraphrasing or us-
ing direct information from the PMBOK Guide, a project
can be divided into project phases and collectively the
phases are known as a project life-cycle. A project phase is
a collection of logically related project activities, usually
culminating in the completion of one or more major deliv-
erables. At the conclusion of each phase a review is usually
made of each key deliverable to (a) determine if the project
should continue to the next phase and (b) detect and correct
errors in a cost effective way. The number of phases is
usually small, say less than ten, and each project phase can
have sub phases. Different project life-cycle models can be
developed for each application domain by how different
project phases are defined and related to each other for a
project and how the review of each phase is handled.
 In their survey of the literature for the use of formal
software requirements engineering in M&S, Nance and Ar-
thur (2006) found only the textbook by Robinson (2004)
discusses these requirements and that M&S life-cycle
models do not clearly specify where such requirements are
included. Another important observation in this survey is

Sargent, Nance, Overstreet, Robinson, and Talbot

that little exists in the literature on M&S life-cycle models.
Nance and Arthur (2006) report on the Balci-Nance M&S
life-cycle model (Balci and Nance 1987), the Kreutzer
(1986) model for life-cycle of a simulation project, and the
Sargent (2001) model. Note that the first two models are
products of the 1980’s and that the Sargent model, while
not developed as a M&S life-cycle model, can be used as
one as pointed out by Nance and Arthur (2006).
 The co-chairs of this panel have developed a set of
questions from which the panelists have formed their re-
sponses in this paper. Section 2 of the paper contains the
questions and subsequent sections present the responses of
the panelists. The last section is the Summary.

2 QUESTIONS FOR THE PANELISTS

1. The approaches to simulation model development
in simulation textbooks and in M&S life-cycle
models generally follow a “waterfall” approach.
How might software life-cycle models; e.g.,
Boehm’s Spiral Model (Boehm 1988), or new
software engineering methodologies; e.g., Agile
Development (Ambler 2002), Synchronize-and-
Stabilize (2006) contribute to improvements in
M&S life-cycle models?

2. Is a single life-cycle model applicable for all
M&S development projects? Would multiple life-
cycle models promote confusion and lack of uni-
formity? Would a “core life-cycle model” with
tailoring provide some uniformity but permit dif-
ferences based on budgets, schedules, and/or ob-
jectives?

3. What level of detail should be expected in an
M&S life-cycle model? Where is the proper
boundary between a life-cycle model and the
model development methodology?

4. Verification and Validation (V&V), sometimes
accompanied by “acceptance” or “certification,”
are activities extremely important in M&S. Are
the representations of these activities essentially
in a life-cycle model? Should a life-cycle model
include the “Real World” and its relations with
the “Simulation World” (Sargent 2001)?

5. Requirements specification in M&S projects or
concepts from Software Requirements Engineer-
ing are generally not discussed in simulation text-
books or included in M&S life-cycle models.
How and where should requirements be in-
cluded—in life-cycle models or in modeling
methodology?

6. Some M&S applications involve models intended
to be used for decades. Should a life-cycle model
include the long term adaptation and extension
typically labeled the “maintenance or sustain-
ment” phase in software engineering? Is the
86
proper view one of model evolution rather than a
focus on model development?

7. The differences between modeling and program-
ming are becoming “blurred” in both M&S and in
software engineering with the promulgation of
software development approaches such as model
driven development. Is this “blurring” a positive,
negative, or neutral influence? Do recently de-
veloped techniques in software engineering con-
tain helpful guidance to assist M&S development?

3 RESPONSE OF NANCE

Response to Question 4: V&V are such essential and criti-
cal activities that a M&S life-cycle model (LCM) must
portray them. The level of detail is not an issue; what is
important is to show their relationship to other activities
throughout the creation of a model. That is why the “Real
World” and “Simulation World” interplay is so revealing
in the Sargent characterization (Sargent 2001). An organi-
zation dependent on M&S for enterprise management deci-
sion support must continually draw on the comparative
analysis and instructive guidance of experimentation in the
system domain and simulation results in the model domain.

Response to Question 6: Since M&S is considered to
be most applicable for large, complex systems studies,
model evolution is the proper focus of a LCM. This claim
is not to discourage or disparage prototypes and “quick and
dirty” applications of M&S. Such uses rarely require the
directional support embodied in a LCM; but the systems
that continue for years or decades; e.g., the B-52 aircraft,
desperately need a methodology and a LCM that explicitly
treat the evolutionary perspective. If I may be permitted to
plagiarize myself, “Software don’t break, but software do
rot.” Extension of this assertion to models seems war-
ranted.

Response to Question 2: Multiple standards are never
a good idea. A single standard applicable to all instances
of M&S applications is insufficient unless that standard
permits tailoring. Note that “tailoring” presumes a core set
of activities that are present in all instances. This core set
might be small, and might extend and expand through sev-
eral stages depending on project needs.

Response to Questions 1 and 5: The absence of treat-
ment of LCMs in simulation texts devolves from the diver-
sity of academic disciplines in which M&S is taught and
used. Despite the multiple “homes” in which M&S resides,
the dominant use of the technique until the 1990’s was for
system analysis and acquisition. The overwhelming influ-
ence of operations research and management science on
the teaching of (and research in) M&S cannot be denied.
One teaches and one writes about that which appeals most
to him or her. For most of those in the INFORMS commu-
nity that neither includes LCMs, which are relegated to a
project management course, nor requirements specifica-
4

Sargent, Nance, Overstreet, Robinson, and Talbot

tions, which are assigned to software engineering. The
work of one of my colleagues on the panel (Robinson
2004) perhaps is a harbinger of a sea change, but I have
doubts. Yet, the influences of M&S uses for training and
entertainment purposes portend a future that is difficult to
predict.

The ignorance or dismissal of advances in software
engineering research and practice in M&S has already ex-
acted a heavy toll. Concepts and techniques in software re-
quirements engineering need to be adapted and integrated
in model development and sustainment. Failure to do so
will perpetuate the endorsement of the “simple matter of
programming” myopia that should by now be relegated to
antiquity.
 Response to Question 7: Treating the production of
code as the last step in a modeling process is not new to
those in M&S. This depiction of the abstraction resolution
activities in model development hark back to the 1980’s
(Balci and Nance 1987). This conceptual discovery, la-
beled “model driven development” and subsumed by
“model driven architecture,” is the latest technology du
jour in commercial software engineering. While some new
wrinkles are already evident, the conclusion is not estab-
lished that the emperor has changed his costume.

Closing Remarks: The creation of instructive LCMs is
accomplished through an insightful blending of technical
and management guidance. The recognition, identification,
organization, and level of description in a LCM and a de-
rived methodology are dictated by mutual management and
technical concerns. The extent to which the M&S commu-
nity ignores or avoids the role of LCMs could have conse-
quences for its long-term viability and relevance.

4 RESPONSE OF OVERSTREET

Question 2 for the panelists stimulated the following
thoughts about the use of alternative life cycle models in
simulation.
 Members of the software engineering community ad-
vocate different life-cycle models for software develop-
ment. The alternatives may reflect the needs of different
approaches to software development or may match the
varying characteristics of different software projects. Two
highly visible and contrasting approaches to software de-
velopment are CMMI (Software Engineering Institute
2006) and Extreme Programming (Extreme Programming
2006, Wikipedia 2006). Both approaches have experi-
enced wide and successful use; each is well supported by
documentation and training, and both have supporters and
detractors.
 CMMI is often viewed as a more traditional approach
while Extreme Programming, easily the most visible ex-
ample of the Agile Programming approaches, is seen by
proponents as incorporating newer better ways of develop-
ing software.
865
 This is not an appropriate place to evaluate the merits
of the two approaches, a difficult and complex task, but
some contrasting aspects of these approaches are relevant
to the current discussion. McBreen (2003), in his critique
of Extreme Programming, points out that CMMI was at
least initially influenced by problems arising in the devel-
opment of "traditional" software systems. Historically,
many early software systems replaced existing manual sys-
tems (e.g., payroll or inventory). Users had much experi-
ence with the existing system so requirements for their re-
placements were generally relatively easy to identify.
Conventional CMMI assumes the existence of reasonable
complete and stable requirements.
 In contrast with the past, many new systems provide
capabilities not previously possible. Thus we often have
limited or no experience in how the proposed application
should function. This is true of many highly interactive
web applications. Hence providing reasonable and stable
requirements before coding begins can be challenging or
impossible.
 Advocates of Extreme Programming assert that it has
evolved in part to address software applications where re-
quirements are poorly understood at the beginning of a
project and are thus likely to evolve substantially during
implementation. Systems built using the Extreme Pro-
gramming approach are intended to be “agile” during their
development in the sense that as users gain experience with
partial implementations of the new system and better un-
derstand their needs, the evolving system is more readily
changed to meet the improved identification of the most
important and most desirable features.
 As one example of the difficulty in identifying re-
quirements in new application domains, readers who were
developing code during the transition from keypunches and
decks of cards to time-sharing systems providing interac-
tive editors may recall how long it took to identify desir-
able editor features. The earliest text editors were often re-
ferred to as “glass keypunches” because the available
editor features basically replicated how one modified an
existing program deck using a keypunch.
 Identifying appropriate processes for use in develop-
ing simulations is one aspect of simulation that makes it an
interesting problem area. This is due in part to the variety
of purposes for which simulation models are built: some
simulations are use once and thrown away; others see ex-
tensive use over relatively long periods. Additionally, in
some simulations, the model on which the simulation is
based is well understood at the beginning of a project and
model changes are minimal during development. In others,
development of an acceptable model is an integral part of
the simulation process and repeated modification of a
model or its implementation is key to the development
process.
 A central theme of simulation is education: sometimes
a simulation is built to educate users (for example, to assist

Sargent, Nance, Overstreet, Robinson, and Talbot

in planning by allowing users to ask “what-if” questions, or
to assist in training individuals for a new environment). At
other times, it is the modelers who are seeking to be edu-
cated: they are building and evolving models to improve
their understanding of a system of interest. Sometimes the
insights gained through building a valid model of a system
are more valuable to modelers than the functional simula-
tion. This can be true for both planners and scientists
evaluating proposed theories.
 Different simulation projects have different software
development needs; some simulation projects such as
OneSAF (SAIC 2003) involve the development, use and
reuse of large code bases (sometimes more than 1,000,000
lines of code). Success of such projects requires reliance
on a sound, proven software development process. CMMI-
like approaches seem appropriate for projects of this mag-
nitude since the simulation is likely to have a relatively
long life both for its intended use (training in the case of
OneSAF) and through likely reuse of major software com-
ponents that are part of the implementation.
 Other uses of simulation have different development
needs and use of more agile software development tech-
niques seem appropriate. For example, when a simulation
is used to assist in the development a new design, the simu-
lation may be discarded after design decisions are made. In
a project where simulation was used to develop and evalu-
ate the specification of a parallel network protocol
(Foudriat et al. 1991), it is only a sight exaggeration to
state that the same simulation was never run twice. The
simulation process used (somewhat simplified) was one of
continual code change and consisted (in part) of the steps:
run the simulation, examine the data produced by the simu-
lation, identify changes to be made to the model or code
based on this data analysis and then repeat. The model or
implementation was changed in each iteration for one of
three reasons: insight was gained into the behavior of the
protocol and the model was modified to improve protocol
performance (for example, to eliminate a bottleneck identi-
fied by the simulation), defects were found in the model or
its implementation, or the output was confusing so that
code was changed to provide more details about what hap-
pened during execution (since either the implementation
was defective or our understanding of the protocol behav-
ior was defective). So the ability to make repeated changes
was key to the success of the simulation approach and one
reason why simulation was the technique of choice for ana-
lyzing the new protocol.
 While both CMMI and Extreme Programming can be
tailored to some extent to meet the different needs of dif-
ferent simulation projects, the Extreme Programming ap-
proach seems more appropriate for some smaller quickly
evolving simulation projects. CMMI seems better for large,
multi-team, multi-site long-lived simulation projects.

One view in the software engineering community is
that the various life-cycle models were developed based on
866
different perceptions of the most important risks associated
with software projects. It is admittedly an over-
simplification to state that CMMI reflects concerns with
budgets and deadlines, Extreme Programming with creat-
ing appropriate software solutions in new application do-
mains.
 It is our belief that since different simulation projects
often have different risks, the choice of an appropriate life
cycle model for a project should be based on that model’s
ability to address the most important risks. Thus multiple
life cycle models are useful in simulation; the choice of
which life cycle model is appropriate for a particular simu-
lation depends on characteristics of that projects.

5 RESPONSE OF ROBINSON

The primary question I would like to address is question 2.
In doing so, however, I will also touch upon issues related
to question 1.

We should first recognize that simulation is not a uni-
form field. Simulation modellers adopt diverse approaches
to developing and using simulation models, and therefore
they follow (and require) quite different life-cycle models.

Robinson (2002) identifies three modes of simulation
practice. The first is referred to as ‘simulation as software
engineering’ and centers on the provision of a product, in
this case a simulation model. This involves large models,
whose prime motivation is representation of a real system.
These models are often used over many years. The devel-
opment of the model involves multiple modellers, develop-
ing code in a programming language, whose predominant
skill is software development. It may take years (certainly
many person years) to develop the model. Verification and
validation is performed by the modellers and on some oc-
casions by independent assessors. In this mode of practice
there is much interest in model reuse and distributed simu-
lation. Such an approach to modelling is commonplace in
the military.

The second mode of practice is described as ‘simula-
tion as a process of organizational change’. In this mode
the work centers on the provision of a service, with the
prime motivation being to intervene in a problem situation.
This involves small scale models that are used for a short
period and then normally thrown away. The model is de-
veloped by a lone modeller, typically using a simulation
package, and skilled in modelling. Model development re-
quires only a matter of weeks. Assessment of the model is
carried out jointly between the modeller and the client.
There is some interest in model reuse (e.g. generic models)
and distributed simulation, but this is only limited as model
development and simulation are generally not onerous.
This approach to simulation is common in business.

The final mode of practice, ‘simulation as facilitation’,
is about understanding and provoking debate about a prob-
lem situation. These models could be described as ‘quick-

Sargent, Nance, Overstreet, Robinson, and Talbot

and-dirty’ with no expectation of being used in the long-
term. Again the model is developed by a lone modeller us-
ing a simulation package, but now with the close involve-
ment of the client throughout. The predominant skill re-
quired is process management. The model may be
developed in a matter of hours and it is validated with re-
spect to the extent that it aids understanding of the problem
and debate. Indeed, even if the fidelity of such models is
very low, they could still be considered valid if they are
seen as useful. Model reuse is beneficial to the extent that
it can aid rapid model development. Distributed simula-
tion is almost certainly of no specific interest. Such an ap-
proach to simulation has become possible in recent years
through the availability of visual interactive modelling sys-
tems, albeit that these are still far from enabling live model
building in all but the simplest of situations.

Given these modes of practice we can reflect on the
M&S life-cycle models that are implied. Simulation as
software engineering, as the name implies, bears close cor-
respondence to software engineering (although Balci
(1994) identifies some significant differences). As a result,
investigating the adoption of software engineering life-
cycle models would seem a fruitful line of enquiry. Any
such investigation would, of course, have to take account
of the differences arising from the simulation arena. Just
as software engineering has moved on from the original
conceptualization of a waterfall model, so too, simulation
as software engineering needs to do so. At present the
model of Balci (1985) provides what is probably the most
recognized description of the simulation life-cycle in the
software engineering domain.

One of the critical issues in describing the life-cycle
model in the first mode of practice is the extent of iteration
between phases in the modelling process. Such projects
are less amenable to iteration due to their complexity.
With many participants, iteration would require a large in-
vestment in coordination and communication between all
parties; something that the more recently developed soft-
ware life-cycle models might help to create. On the other
hand, iteration allows for a less well specified problem and
model; something which is beneficial in some environ-
ments. Whichever, the benefits of iteration should be
weighed against the cost. The conclusion may be that the
waterfall model with its limited scope for iteration is ap-
propriate, but this will not always be the case. As such, a
number of simulation life-cycle models should be pro-
posed, and their relative strengths and weaknesses identi-
fied.

Moving to simulation as a process of organizational
change, software engineering probably has fewer direct
lessons for simulation modellers. That said, ideas such as
rapid prototyping, for instance, would certainly provide
benefits (Powell 1995; Pidd 1999), enabling faster and
more iterative model development. In this domain, I have
found Sargent’s original model (Sargent 1982), as adapted
867
by Landry et al. (1983), the most convenient way of de-
scribing the simulation life-cycle (Robinson 2004). A par-
ticular strength is the emphasis on iteration and the parallel
activities of verification and validation during model de-
velopment and use.

In the third mode of practice, simulation as facilitation,
a very different life-cycle model is required. In this do-
main the simulation model is becoming more incidental,
acting as a catalyst for understanding and debate, but not
necessarily deriving results directly about potential im-
provements and solutions to the real world problem. This
mode of practice bears some resemblance to the ideas
found in ‘soft’ operational research or problem structuring
methods (Rosenhead and Mingers, 2001). These ideas are
founded on the following principles:

• Ability to deal with unclear, multiple and conflict-
ing objectives

• People are seen as active subjects in an interven-
tion, not as passive objects

• Facilitating debate around a problem situation
• Acceptance of uncertainty
• Reduced data demands
• Focus on seeking improvements to a problem

situation not a solution, since the goal of a solu-
tion is often unattainable

Robinson (2001) describes an example of simulation

as facilitation. In doing so a life-cycle model is proposed
based on the work of Lane and Oliva (1998) in system dy-
namics. This is shown in Figure 1. The key processes
identified in the simulation life-cycle are: conceptualiza-
tion, model development and facilitation. Under each of
these are a number of sub-processes. Iteration between
processes is shown through the double arrows. Validation
is identified as a continuous process that is carried out
throughout the life-cycle, albeit that there is a specific
point where validation of the completed model takes place.

Figure 1: Life-Cycle Model for Simulation as Facilitation
(Robinson 2001).

In describing these three modes of simulation practice
we are able to see that one life-cycle model is unlikely to

Conceptualisation Model
development

Facilitation

Problem situation expressed

Identify modelling objectives

Conceptual modelling
(process mapping)

Model coding

Verification

Validation of completed
model (face and black-box)

Calibration

Group learning around the model

Identifying key findings

Making recommendations

Validation

Stage 1 Stage 3Stage 2

Sargent, Nance, Overstreet, Robinson, and Talbot

be appropriate to all. Indeed, even within a mode of prac-
tice a range of life-cycle models may apply. This could be
a result of personal preference, the modelling domain or
the existence of a range of sub-modes of practice. Indeed,
the modes of practice identified are not meant to be seen as
discrete, but part of a continuum of practices from software
engineering through to facilitation. As a result, I would
suggest that a range of M&S life-cycle models should exist
and that further, their relevance to a mode of practice
should be explicitly identified.

6 RESPONSE OF SARGENT

Response to Question 1: I believe that the development of
simulation models is, in general, iterative and as a result
“waterfall” models are usually not appropriate. As dis-
cussed in the responses below, different M&S life-cycle
models can and should be developed. Furthermore, M&S
life-cycle models should be included in simulation text-
books.
 Response to Questions 2 and 3: Because I believe in
the KISS (Keep It Simple ‘Sarge’) Principle, I believe that
M&S life-cycle models should be simple and each model
should use a graph to show the relationships among the
phases and any sub phases. This approach to M&S life-
cycle models probably results in the development method-
ologies containing more information than those for com-
plex life-cycle models. (I am of the opinion that life-cycle
models should be developed first and than the development
methodologies developed for each life-cycle model.)
 I believe it is desirable to have a single M&S life-
cycle model; however, I believe it is difficult to have a sin-
gle model that is not complex. Large simulation projects
usually use multiple teams of people to develop a simula-
tion model over several months and these projects have
many more requirements and activities than a small project
that uses, e.g., only a single individual to develop a simula-
tion model over a few weeks. Having a single model to
handle the range of requirements and activities for the dif-
ferent size projects would in all likelihood require more
complexity than individual life-cycle models developed for
different size and types of simulation projects.

I believe a simple life-cycle model containing only a
few phases can show the “high” level development of a
simulation modeling project. However, I am of the opinion
that such a “high” level model would not be adequate for
large scale simulation projects because it would not contain
the necessary phases (and perhaps sub phases) and their
relationships, requirements, and deliverables that are
needed for large size projects. Thus it might be better to
have a few, say less than five, different simulation life-
cycle models including one that contains only the high
level phases.
868
 Response to Question 4: I strongly believe that M&S
life-cycle models should contain V&V. While at least one
V&V phase should be included in any M&S life-cycle
model, the methods and/or techniques used should be part
of the methodology and not part of the life-cycle model. I
further believe both the “real world” and the “simulation
world” should be included in an M&S life-cycle model in
some form. In both of the models that I use in my V&V
work (Sargent 2005), I have the “real world” and the
“simulation world” represented in some way.
 Response to Question 5: High-level software require-
ments should be included in life-cycle models for large
size simulation projects; however, they probably are not
needed for small size simulation projects, especially for
simulation projects where a simulation language that has
modeling capability is being used.
 Response to Question 6: One of the critical questions
that needs to be addressed when starting a simulation pro-
ject is (a) how long is the simulation model going to be
used and (b) if appropriate, who is responsible for main-
taining the model including keep it current with the system
that it is representing. There is the management of develop-
ing a simulation model, a project that should have a defi-
nite ending, that results in a simulation model, a product.
(In this panel session we are discussing life-cycle models
of developing simulation models, which are projects.)
Whether the model development team is responsible for
maintaining or sustaining a simulation model for some pe-
riod of time or a different team is responsible depends on
the simulation project and the environment in which the
simulation model is going to be used in. For example, if a
simulation model is being developed for the planning of a
new factory, then it may be most appropriate for the model
development team (the project team) to handle the simula-
tion model until the factory is under operation and then the
simulation model turned over for maintenance to some
other team (the product team) if the simulation model is
going to be used in operations. (See Banks and Gibson
(1998) for an example of case where the ‘maintenance’ of
a simulation model was not performed during the design
and start up of an industrial system resulting in the simula-
tion model not being representative of the system as the
system evolved.) Thus an M&S life-cycle model should
allow for the ‘maintenance or evolution’ of a simulation
model for a determined period.

7 RESPONSE OF TALBOT

I have spent my engineering career supporting the Depart-
ment of Defense M&S community and have been a pro-
vider of M&S products that support a variety of DoD ap-
plications including analysis, concept exploration, system
testing, and training. The following observations and
comments are based on my collective experiences in pro-
viding M&S solutions to DoD.

Sargent, Nance, Overstreet, Robinson, and Talbot

 My response to question 1 follows: The waterfall ap-
proach described in M&S textbooks as the traditional life-
cycle model for M&S products is flawed because it fails to
capture the iterative nature of the requirements specifica-
tion phase. In my experience, detailed, actionable re-
quirements for M&S projects are often not known at the
onset of the project. A life-cycle model should reflect the
process of gleaning and refining requirements. Agile
Modeling (Ambler 2002) and the WinWin model (Boehm
1998) do a fair job at capturing what, in practice, turns out
to be a collaborative and iterative process to elicit require-
ments.
 It seems imperative and logical that requirements
specification be well understood prior to starting develop-
ment in an M&S project. However, it has been my experi-
ence in the DoD M&S field that complete and testable re-
quirements are rarely well understood by the customer. At
the onset of a project, customers approach developers with
objectives or goals for M&S products rather than require-
ments. In addition, customers rarely comprehend the soft-
ware complexities and limitations associated with their
M&S project objectives. Lastly, to further complicate the
requirements definition and capture, it is often acknowl-
edged up front that the goals and objectives are subject to
change or expected to evolve over the course of the devel-
opment. The ability to support changing requirements
therefore becomes a requirement.
 In several successful M&S procurements that I have
observed, a process to compensate for the lack of a formal
requirements specification phase has been used. It consists
of rapid prototyping to elicit customer requirements result-
ing in concrete customer objectives. The five steps de-
scribed below are tightly coupled and iterative and are not
inclusive of all steps required to build validated M&S
products. They focus on meeting customer needs when a
lack of formal requirements definition exists.

1. Discussion between customer and developer about
objectives/goals/requirements: The objective of
the discussion is get a shared understanding of a
vision of the end product with an understanding
that detailed requirements needed to complete the
project may not be known at this time.

2. Story boarding: Taking from what is learned
from the objectives discussion, design a concept,
view or picture of the resulting product that can be
reviewed by the customer and illicit more con-
crete requirements. In a course way, this becomes
a requirements set.

3. Customer review: Review the concept, view or
picture with the customer to gain concurrence that
the project vision is on track and uncover issues or
discrepancies with the addition of new features or
functionality. Form an agreement as to what is to
be implemented in the next phase.
869
4. Implementation: Develop the full functionality
agreed to in the customer review creating a proto-
type of the final product, albeit incomplete.

5. Demonstration: Demonstrate the agreed upon
functionality implemented in the previous phase
to ensure it is in keeping with what was agreed to
in the review phase.

 Over time, the process is repeated and more require-
ments are unearthed. This process requires a regular com-
munication rhythm between the customer and the develop-
ers to keep the process going and is thereby reliant on a
committed customer. I have seen this process work well
with a development team of five and iteration cycles last-
ing one week.
 The challenges in this approach are several. This
process depends on an underlying M&S architecture that is
designed with flexibility and scalability. Without this, the
final product has the potential to fail to expand to meet the
emerging requirements as they are uncovered. Focus on
the upfront phases, requires discipline in testing. Often
end-to-end testing is not given proper concentration and
must be accounted for in the overall process. Lastly, reli-
ance on customer feedback and verbal communication to
create requirements can be dangerous as compared to bas-
ing development on a formal set of written requirements.
Tools to carefully document customers’ communication
and feedback are critical to this iterative process.
 This process is not ideal for all M&S development ef-
forts and I suspect does not scale well to large M&S prod-
uct procurements. It has proven successful in a number of
M&S procurements where the formal requirements were
not well known at the onset of the project and hope that the
customer would independently refine them over time was
nil.
 Interestingly, in spite of customers’ inability to clearly
specify requirements, I have come across very few cus-
tomers that require any type of process or methodology for
M&S development. Given that procuring M&S products
have continued without adherence to an accepted process
or methodology, I suspect that even if a process were
promulgated and promoted, that DoD would not embrace it
readily. In the end, customers are reliant on developers to
“do a good job” and I suspect that conscientious develop-
ers will employ an M&S development process where it
makes financial sense for them to do so. If they can “get
away” without it, I suspect they will continue to do so.

8 SUMMARY

Let us first look at the questions. Question one was regard-
ing types of life-cycle models and Question two was
whether there should be more than one life-cycle model.
The remaining five questions were regarding specific de-

Sargent, Nance, Overstreet, Robinson, and Talbot

tails of life-cycle models. Each panelist could select which
questions and how many questions to response to.

It is interesting that the three panelists who were not
the co-chairs choose to respond to only one question and
that was either Question one or Question two. Perhaps this
indicates the paucity of work on M&S life-cycle models.
Both co-chairs responded to both Questions one and two
and some of the other questions.

A few conclusions regarding the “answers” to the
questions can be made.

• The panelists agree that “waterfall” life-cycle

models are not appropriate except in some special
cases.

• Most of the panelists believe that more than one
life-cycle model is needed. One panelist believes
that only one model (with tailoring allowed)
should be used. This will perhaps lead to an in-
teresting discussion during the panel session.

• Both co-chairs agree that V&V should be in-
cluded in life-cycle models.

• Both co-chairs agree that the “Real World” and
the “Simulation World” should be included in
life-cycle models in some form.

• The two co-chairs have differences in their “an-
swers” to the other questions that they both re-
sponded to.

Based on the panelists’ responses, much work is

needed on M&S life-cycle models by the research, applica-
tion, and education communities.

REFERENCES

Ambler, S. W. 2002. Agile Modeling: Effective Practices
for XP and RUP. New York: John Wiley & Sons.

Balci, O. 1985. Guidelines for successful simulation stud-
ies. Technical Report TR-85-2, Department of Com-
puter Science, Virginia Tech, Blacksburg, VA.

Balci, O. 1994. Validation, verification, and testing tech-
niques throughout the life cycle of a simulation study.
Annals of Operations Research 53: 121-173.

Balci, O. and R. E. Nance. 1987. Simulation development
environments: a research prototype. Journal of the
Operational Research Society 38: 8, 753-763.

Banks, J. and R. Gibson. 1998. Simulation evolution, IIE
Solutions, November 1998, 26-29.

Boehm, B. 1988. A spiral model of software development
and enhancement. IEEE Computer 21: 6, 61-72.

Boehm, B. 1998. Using the win-win spiral model: a case
study. IEEE Computer 31: 7, 33-44.

Extreme Programming. 2006. <http://www.extreme
programming.org>. [accessed July 1, 2006].

Foudriat, E. C, K. Maly, C. M. Overstreet, S. Khanna, F.
Paterra. 1991. A carrier sense multiple access protocol
870
for high data rate ring networks. Computer Communi-
cations Review. pp.59-70.

Kreutzer, W. 1986. System Simulation – Programming
Styles and Languages. New York: Addison Wesley.

Landry, M, J.L. Malouin, and M. Oral. 1983. Model vali-
dation in operations research. European Journal of
Operational Research 14 (3): 207-220.

Lane, D.C. and R. Oliva. 1998. The greater whole: to-
wards a synthesis of system dynamics and soft sys-
tems methodology. European Journal of Operational
Research 107: 214-235.

Kreutzer, W. 1986. System Simulation – Programming
Styles and Languages. New York: Addison Wesley.

McBreen, 2003. Questioning Extreme Programming, New
York: Addison Wesley.

Nance, R. E. and J. D. Arthur. 2006. Software require-
ments engineering: exploring the role in simulation
model development. In Proceedings of the 2006 Op-
erational Research Society Simulation Workshop
(SW06), eds., J. Garnett, S. Brailsford, S. Robinson
and S. Taylor, 117-127. The Operational Research So-
ciety, Birmingham, United Kingdom.

Pidd, M. 1999. Just modeling through: a rough guide to
modeling. Interfaces 29 (2): 118-132.

Powell. S.G. 1995. Six key modeling heuristics. Interfaces
25 (4): 114-125.

Project Management Institute. 2004. A Guide to the Project
Management Body of Knowledge (PMBOK Guide), 3rd
edition, Project Management Institute, Four Campus
Boulevard, Newtown Square, PA 19073-3299.

Robinson, S. 2001. Soft with a hard centre: discrete-event
simulation in facilitation. Journal of the Operational
Research Society 52: 905-915.

Robinson, S. 2002. Modes of simulation practice: ap-
proaches to business and military simulation. Simula-
tion Modelling Practice and Theory 10: 513-523.

Robinson, S. 2004. Simulation: The Practice of Model De-
velopment and Use. Chichester, West Sussex, Eng-
land: John Wiley.

Rosenhead, J. and J. Mingers. 2001. Rational Analysis for
a Problematic World Revisited, 2nd ed. Wiley, Chich-
ester, UK.

SAIC. 2003. The future of simulation. SAIC Magazine,
Summer 2003. Available at <http://www.aic
.com/news/saicmag/2003-summer/
simulation.htm>. [accessed July 1, 2006].

Synchronize-and-Stabilize. 2006.
<http://searchwebservices.techtarget
.com/sDefinition/0,,sid26_gci922408,
00.html>. [accessed July 13, 2006].

Sargent, R.G. (1982). Verification and validation of simu-
lation models. In: Progress in Modelling and Simula-
tion (Cellier, F.E., ed.). Academic Press, London: 159-
169.

http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci922408,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci922408,00.html
http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci922408,00.html
http://www.extremeprogramming.org
http://www.extremeprogramming.org
http://www.aic.com/news/saicmag/2003-summer/simulation.htm
http://www.aic.com/news/saicmag/2003-summer/simulation.htm
http://www.aic.com/news/saicmag/2003-summer/simulation.htm

Sargent, Nance, Overstreet, Robinson, and Talbot

Sargent, R. G. 2001. Some approaches and paradigms for

verifying and validating simulation models. In Pro-
ceedings of the 2001 Winter Simulation Conference,
eds. E. Yucesan, C.-H. Chen, J. L. Snowdon, and, J.
M. Charnes, 106-114. Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

Sargent, R. G. 2005. Verification and validation of simula-
tion models. In Proceedings of the 2005 Winter Simu-
lation Conference, eds. M. E. Kuhl, N. M. Stieger, F.
B. Armstrong, and J. A. Jones, 130-143. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Software Engineering Institute. 2006. <http://www.
sei.cmo/cmmi>. [accessed July 1, 2006].

Wikipedia. 2006. <http://en.wikipdia.org/wiki
/Extreme_programming>. [accessed July 1, 2006]

AUTHOR BIOGRAPHIES

RICHARD E. NANCE is an Emeritus Professor of Com-
puter Science at Virginia Tech and a Faculty Fellow in
Systems Engineering at Stevens Institute of Technology.
Dr. Nance is also Chief Scientist, Orca Computer, Inc. He
received B.S. and M.S. degrees from N.C. State University
in 1962 and 1966, and the Ph.D. degree from Purdue Uni-
versity in 1968. He has served on the faculties of Southern
Methodist University and Virginia Tech, where he was
Department Head of Computer Science, 1973-1979. Dr.
Nance held research appointments at the Naval Surface
Weapons Center (1979-80) and at the Imperial College of
Science and Technology (UK). Within ACM, he has
chaired two special interest groups: Information Retrieval
(SIGIR), 1970-71 and Simulation (SIGSIM), 1983-85. He
has served as Chair of the External Activities Board and
several ACM committees. He is the author of over 150 pa-
pers on discrete event simulation, performance modeling
and evaluation, computer networks, and software engineer-
ing. Dr. Nance has held several editorial positions and
was the founding Editor-in-Chief of the ACM Transactions
on Modeling and Computer Simulation, 1990-1995. He
served as Program Chair for the 1990 Winter Simulation
Conference. Dr. Nance has received several awards for his
editorial and professional contributions. In 1996, he was
named an ACM Fellow. He is a member of Sigma Xi, Al-
pha Pi Mu, Upsilon Pi Epsilon, ACM, and INFORMS. His
e-mail address is <nance@vt.edu>.

C. MICHAEL OVERSTREET is an Associate Professor
of Computer Science at Old Dominion University. A mem-
ber of ACM and IEEE/CS, he is a former chair of SIGSIM,
and has authored or co-authored over 80 refereed journal
and conference articles. He received a B.S. from the Univer-
sity of Tennessee, an M.S. from Idaho State University and
an M.S. and Ph.D. from Virginia Tech. He has held visiting
appointments at the Kyushu Institute of Technology in Ii-
zuka, Japan, and at the Fachhochschule fŭrs Technik und
871
Wirtschaft in Berlin, Germany. His current research interests
include analysis of simulation models to enhance model un-
derstanding and static code analysis. Dr. Overstreet's home
page is <www.cs.odu.edu/~cmo>. He can be reached
by e-mail at <cmo@cs.odu.edu>.

STEWART ROBINSON is Professor of Operational Re-
search at Warwick Business School. He holds a BSc and
PhD in Management Science from Lancaster University.
Previously employed in simulation consultancy, he sup-
ported the use of simulation in companies throughout
Europe and the rest of the world. He is author/co-author of
three books on simulation. His research focuses on the
practice of simulation model development and use. Key
areas of interest are conceptual modelling, model valida-
tion, output analysis and modelling human factors in simu-
lation models. His email address is
<stewart.robinson@warwick.ac.uk> and his
Web address is <www.btinternet.com/~stewart
.robinson1/sr.htm>.

ROBERT G. SARGENT is a Professor Emeritus of Syra-
cuse University. He received his education at The Univer-
sity of Michigan. Dr. Sargent has served his profession in
numerous ways including being the General Chair of the
1977 Winter Simulation Conference, serving on the WSC
Board of Directors for ten years and chairing the Board for
two years, being a Department Editor for the Communica-
tions of the ACM, holding the Presidency and other offices
of what is now the INFORMS Simulation Society, and
serving as President of the WSC Foundation. He has re-
ceived several awards for his professional contributions in-
cluding the INFORMS Simulation Society Lifetime Pro-
fessional Achievement Award and their Distinguished
Service Award, and is a Fellow of INFORMS. His current
research interests include the methodology areas of model-
ing and of discrete event simulation, model validation, and
performance evaluation. Professor Sargent has published
extensively and is listed in Who’s Who in America and in
Who’s Who in the World. His e-mail is
<rsargent@syr.edu>.

JAYNE E. TALBOT attended the University of Virginia
and was trained as an electrical engineer. She started her
career in 1985 with the Army’s Night Vision Lab and the
Environmental Research Institute of Michigan working on
the physics-based modeling of infrared systems. She joined
MITRE in 1992 and worked on a large variety of M&S
programs supporting the training and analysis communi-
ties. Jayne is currently employed by the Virtual Technol-
ogy Corporation, a distributed simulation company, in
2002 as a Group Manager. She has responsibilities for
M&S programs that support hardware and software joint
testing, system concept exploration and analysis, and mili-
tary staff training.

http://en.wikipdia.org/wiki/Extreme_programming
http://en.wikipdia.org/wiki/Extreme_programming
mailto:nance@vt.edu
http://www.cs.odu.edu/~cmo
mailto:cmo@cs.odu.edu
mailto:stewart.robinson@warwick.ac.uk
http://www.btinternet.com/~stewart.robinson1/sr.htm
http://www.btinternet.com/~stewart.robinson1/sr.htm
mailto:rsargent@syr.edu
http://www.sei.cmo/cmmi
http://www.sei.cmo/cmmi

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

