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ABSTRACT 

The Joint Integrated Mission Model (JIMM) is a legacy 
real-time discrete-event simulator.  Its initial single-
threaded implementation employed a memory pool to 
speed up run-time performance and easily checkpoint 
simulation state.  Unfortunately, when JIMM started mi-
grating to a multi-threaded implementation, this legacy 
memory pool was quickly identified as a bottleneck.  This 
problem is addressed by dividing the memory into large 
chunks managed by a global controller but where thread-
specific memory managers handled lower level memory 
allocation.  This paper will focus on the legacy memory 
pool in JIMM and enhancements necessary for an efficient 
multi-threaded implementation. 

1 THE JOINT INTEGRATED MISSION MODEL 
(JIMM) 

The Joint Integrated Mission Model (JIMM) is a legacy 
real-time discrete-event simulator employed by the 
NAVAIR Air Combat Environment Test and Evaluation 
Facility (ACETEF), the Joint Strike Fighter Program Of-
fice (JSFPO), and other agencies for constructive analyses, 
training, and installed system test (Lattimore et al. 2005).  
Specific uses of JIMM include analysis of swarms of Un-
manned Aerial Vehicles (Niland and Skolnik et al. 2005), 
radar simulation (Worsham 2002), Goal-Oriented Human 
Performance (Hoagland, Martin, Anesgart et al. 2001), and 
Weather Effects in Combat (Kelly, Vick, Schloman, and 
Zawada 2004).  JIMM was initially created in 1998 as a 
merger of the Simulated Warfare Environment Generator 
(SWEG) (Lattimore et al. 1996) and the Suppressor models 
and thus, is derived from a line of models dating back to 
1968.   
 

To generate scenarios, JIMM uses its own simulation 
language known as the JIMM Conflict Language (JCL) as 
input.  JCL uses generic systems and basic tactical criteria 
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to build complex players with extensive tactics and doc-
trines.  Coupled with its extensive and programmable data 
capture, JIMM is highly useful in standalone constructive 
analyses (Duquette, Nalepka, and Luczak 2004; Mutschler 
2005; Nalepka 2000). 
 

In addition, JIMM permits integrated operation 
through a shared memory protocol known as Simulated 
Warfare Environment Data Transfer (SWEDAT).  With 
this protocol, any number of external systems can be inter-
faced into a JIMM scenario and thus, act and react as if op-
erating in the simulated environment (Mutschler 2005).  
When operating at real-time, JIMM thus provides a threat 
environment highly useful for installed system test.  Fur-
thermore, in addition to hardware, the interfaced system 
could be a virtual cockpit, a stealth viewer, an engineering 
level simulation, or another threat environment provided 
by another protocol such as the Distributed Interoperability 
Simulation (DIS) or the High Level Architecture. 
 
 
 
 
 
 
 
 
 
 

 

Figure 1:  JIMM and the SWEDAT Architecture 
 

Internally, SWEG (and hence JIMM) was initially im-
plemented with a single-threaded architecture using the 
C++ programming language.  However, as entities became 
more complex and as more entities were employed in sce-
narios, JIMM had difficulty meeting its real-time dead-
lines.  Extensive work by ACETEF and others to improve 
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performance was highly successful.  However, the limits 
imposed by the single-threaded architecture became appar-
ent (Mutschler 2005).   
 

Work to migrate JIMM to a multi-threaded implemen-
tation was started in the year 2000 when the High Perform-
ance Computing Modernization Program Office 
(HPCMPO) selected the effort as Project 7 of the Forces 
Modeling and Simulation (FMS-7) Computation Technol-
ogy Area (CTA) (Michelletti 2003).  The overall approach 
employed POSIX threads or “pthreads”.  First to be im-
plemented were separate threads for output and then later, 
execution of events in parallel (Mutschler 2005).  Early in 
the effort, the memory pool was identified as a significant 
potential bottleneck.  

2 THE LEGACY MEMORY POOL 

Both the SWEG and the JIMM simulators employed a leg-
acy memory known as “general purpose memory” (Bulka 
and Mayhew 2000) or  “gpMemJnr” (Lattimore et al. 
2005).  Though later translated to the C++ programming 
language, SWEG was initially written in FORTRAN and 
this framed the construction of the memory pool (Latti-
more et al. 2005).  The memory pool is essentially one 
large 32-bit integer array.   A “free” index is maintained in 
the array to show what memory is allocated for use within 
the simulation.  Initially, memory of a needed size is ob-
tained by moving the free index further in the array. 

 
 
 
 
 
 
 

 
Figure 2:  The Memory Pool and the Free Index 

 
When memory was no longer needed and if it was lo-

cated next to the free index, then the free index could be 
moved back.  More often however, the memory was stored 
in an array of lists of the same-sized memory chunks.  The 
size of the chunks was always aligned on a 64-bit boundary 
for the use of double-precision variables.  Since integers 
were 32 bits, size was always specified as an even number 
where an additional integer was added to requests of an 
odd size.  Moreover, if the memory chunk was larger than 
the maximum size in the array, a linked list of the larger 
chunks was maintained.  These lists (known as ‘buckets’) 
of both fixed-sized and large variably sized chunks would 
be referenced first before moving the free index.  In this 
manner, overall memory usage was reduced. 
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Figure 3:  JIMM Memory Buckets 
 
The gpMemJnr memory pool has several advantages.   
 
1. The allocation and subsequent return of memory 

avoids the system overhead within procedures 
provided by the operating system.  Hence, it oper-
ates more quickly. 

2. The index of a data structure within the array 
serves as a unique identifier in cases where the 
data structure location is the same throughout the 
simulation.   

3. The index also serves as an address.  Conversion 
from the index to a pointer is achieved by adding 
the value of the index to the address of the first 
element of the array.   

4. Lastly, the state of the simulation is easily saved 
(or “checkpointed”) to a single file (a.k.a. a 
“checkpoint”) by a single write operation from its 
beginning of the array to the free index.  The use 
of indices remains the same between successive 
checkpoints.  If the old value of the array ad-
dressed is retained, then pointers in the array can 
be “fixed” or adjusted by the difference between 
the old value and the new value. 

 
The main disadvantage is that the scenario developer 

must explicitly state the size of the memory pool.  Should 
additional memory be required, then the simulation would 
terminate.  Hence, the developer had to be sure that suffi-
cient memory was specified and that a contiguous array of 
that size could be provided by the underlying operating 
system. 

2.1 Checkpointing 

Checkpointing is a critical component of JIMM operation 
(Lattimore et al. 2005).  Though it can occur during an 
execution, it more commonly occurs at the end of an exe-
cution.  A checkpoint could be used in case of error recov-
ery.  However, it is more often used to allow a simulation 
to proceed past its initial stage.  Once the checkpoint (also 
known as a “big bang” in Lattimore et al. 2005) is taken, 
an analyst could execute multiple runs from that point or 
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modify the simulation as required using the checkpointed 
state of the simulation as a baseline. 
 

More importantly, since checkpointing is also done at 
the end of a JIMM execution, it also allows simulation 
construction to proceed in steps where each step builds on 
the results of the previous step.  Normally, JIMM scenarios 
are constructed and executed using nine distinct steps.  The 
transition from one step to the next is provided via the 
checkpoint. 
 

The nine steps of JIMM are provided in Table 1 in the 
order they are normally executed. 

 
Table 1:  The Nine Steps of JIMM 

Step Name Acronym Purpose and Comments 
Language 
Data Base 

LDB Sets up the JIMM Conflict 
Language (JCL) for the 
following steps 

Icon Data 
Base 

IDB Sets up the icons and col-
ors for the JIMM graphics 
display.  This is skipped 
when no graphics are used. 

Ground Data 
Base 

GDB Translates Digital Terrain 
Elevation Data (DTED) 
data for use by the EDB.  
This step is normally not 
checkpointed. 

Environment 
Data Base 

EDB Takes terrain output from 
the GDB step and provides 
a “terrain skin”.  This skin 
is kept in a separate file 
and this step is also not 
commonly checkpointed. 

Type Data 
Base 

TDB Develops specific player 
(simulation object) types.  
Includes characteristics 
and the tactics the player 
types employ. 

Scenario 
Data Base 

SDB Specifies specific instances 
of player types and their 
laydown. 

Run Data 
Base 

RDB Actual execution of the 
simulation 

Configuration 
Data Base 

CDB Actual execution of the 
simulation with the addi-
tion of instructions for in-
tegrated operation with 
SWEDAT. 

Analysis 
Data Base 

ADB Post-processing of simula-
tion runs such as filtering 
of captured data, counts of 
events for analysis etc. 
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The use of checkpointing within the nine steps is dia-
grammed in Figure 4 with solid arrows indicating transi-
tions via checkpoints. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Figure 4:  Checkpointing in the Nine Steps of JIMM 

 

2.2 Temporary Memory 

Initially, JIMM also extended the memory pool to allow 
“temporary” memory (Lattimore et al. 2005).  Temporary 
memory had its own free index and was allocated from the 
end of the array as opposed to the beginning.  In this man-
ner it could be referenced and used in the same manner as 
“permanent” memory.  However, it would not be saved 
whenever a checkpoint was taken. 
 

Temporary Memory was commonly used for simulator 
graphics.  It was also used is cases when permanence be-
tween checkpoints was not anticipated. 

 
 
 
 
 
 
 

 
Figure 5:  Memory Pool with Temporary Memory 

 
Temporary memory also had its drawbacks.   
 
1. Programmers sometimes used temporary memory 

for data that could be required to persist between 
successive events.  Since a checkpoint could oc-
cur between these events, the data would be lost.  
This was a common source of error. 

2. Since the memory operation was common, the 
small amount of overhead associated with differ-
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entiating permanent and temporary memory was 
still significant and reduced simulation execution 
speed. 

 
In the initial phases of the multi-threading effort, it 

was determined that the temporary memory mechanism 
should be removed and “permanent” memory used instead.  
In cases where temporary memory was useful, memory 
recollection procedures were employed.  The capabilities 
that temporary memory possessed were also later provided 
by use of the multi-threaded memory pool. 

3 PROTECTING THE POOL WITH MUTUAL 
EXCLUSION 

When the effort for multi-threading in JIMM was started, 
internal operation of the memory pool had to be protected.  
The first approach was to employ a pthreads “mutex” vari-
able.  This variable ensured mutual exclusion in that one 
and only one thread could operate within a critical region 
of code.  Unfortunately, given the large number of memory 
operations, the overhead associated with the mutex was 
very high.  Initial timing studies (later confirmed by the au-
thor) showed an increase of nearly 16% in execution time.  
Given the desire to improve performance through parallel-
ism, this drop was deemed to be too great.  

4 THE MULTI-THREADED MEMORY POOL 

After it was determined that the single memory pool could 
not effectively protected, the use of separate memories was 
explored.  Each of the memory managers would have a 
separate set of buckets and would also have a separate 
store of memory from which to allocate. 
 

After some analysis, the following requirements for 
these memories were determined. 

 
1. Indices and Pointers from one memory should be 

usable by other memories. 
2. Overhead should not be high. 
3. Memory use should be reasonably efficient. 
4. Checkpointing should still occur in a single write 

operation. 
5. Memories should be able to combine with other 

memories. 
6. If a memory does not contain references to data in 

other memories, then it can be deleted easily. 
 

The mechanism developed was based on a two-tiered 
approach.  First, the array was divided into large fixed-size 
chunks controlled by a single manager known as 
‘TJNRmemory’.  The control of memory within the single 
TJNRmemory is protected by a mutex variable.   
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In turn, each thread has its own memory manager 
(known as a ‘TJMemory’).  Whenever a new TJMemory 
manager is created, it obtains a chunk from TJNRmemory.  
It then allocates and returns memory from this chunk as 
needed.  Since this access is only from a single thread, 
there is no need for mutex protection.  In a similar manner, 
if additional memory is needed, it obtains an additional 
chunk from TJNRmemory.  Fortunately, most memory op-
erations do not require acquisition of additional chunks.  
Thereby, the need to access a mutex variable is signifi-
cantly reduced. 

 
In effect, the need for mutex protection is removed 

from the immediate thread memory manager and moved to 
the TJNRmemory.  Hence, the protection is needed signifi-
cantly less often and overhead is reduced.  Initial perform-
ance studies showed that the additional overhead was neg-
ligible. 

 
The construction also satisfies the other requirements.  

The use of a single array in TJNRmemory means that array 
indices employed by the different memories would be in-
terpreted in the same way since the offset is from the be-
ginning of the overall array.  Hence, an index of memory 
created from one thread memory manager could be prop-
erly referenced by another thread.  In addition, memory al-
located from one manager could be added to the buckets of 
another without difficulty. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6:  Multiple Thread Memories 

 
Moreover, if the chunks were reasonably sized, then 

the loss of usable memory through internal fragmentation 
within the larger chunks would be small.  Thus, the use of 
memory is still reasonably efficient. 

 
Rapid checkpointing is still achieved via the 

TJNRmemory since it allocates the chunks in order of as-
cending index.  Thereby, the checkpoint still consists of a 
single file to the chunk last allocated. 

 
Thread memories can merge by combining their buck-

ets and their chunks.  The large fragment at the end of the 
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chunk being processed and merged is added to the buckets.  
If the chunk is large, it is added to the variable list.  More-
over, allocation of memory is modified to look at larger 
chunks in the buckets before requested memory from the 
TJNRmemory manager. 

 
Lastly, if thread is isolated such that the memory from 

its memory manager cannot be placed into another man-
ager’s buckets, then the memory can be restored at thread 
termination by simply returning the chunks back to 
TJNRmemory control.  This mimics the capability previ-
ously provided by “temporary” memory. 

4.1 Other Memory Types 

In some cases such as terrain (constructed in the EDB step) 
and contour graphics, it was found that memory operation 
via memory pools was desirable but that there was also no 
need to intermix the required memory with memory used 
for the general simulation.  Furthermore, the specific 
amount of memory required could be determined in ad-
vance.  For these cases, specific instances of memory 
without a TJNRmemory manager were created.  This was 
implemented using a base class for a memory (TBMem-
ory) and derived classes for the thread memory mangers 
(TJMemory) and these other more simple managers 
(TMemory). 

5 EXPERIMENTAL WORK 

The performance of the initial solution of protecting the 
memory pool directly and the solution using fixed-sized 
chunks of memory was confirmed by the author.  The tim-
ing test result is the average of one hundred (100) runs of 
JIMM ACE 2.4.1 A29 using the default JIMM “Final Bat-
tle Obruty” Scenario (Lattimore et al. 2005).  The size of 
the chuck was set to 16K 32-bit integers.  A count of the 
calls to pthreads “mutex” operations was also taken. 
 

Table 2:  Timing Test of Proposed Solutions 
Solution Mutex 

Call Count 
Average 
Time (100 
runs) 

No Solution Implemented 0 60.7 sec. 
Protecting the memory 
pool directly (call for every 
allocation from the pool 
and return of memory to 
the pool) 

88,989,102 70.4 sec. 

Memory chunks (with a 
call every time a chunk is 
allocated or returned to its 
pool) 

242 60.7 sec. 
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The scenario itself is used to provide users with exam-
ples of JIMM operation and thus contains a wide variety of 
simulated activities.  The scenario runs for an extended pe-
riod of simulated time (4.2 hours) and requires more than 
two million events.  The experiment was executed on an 
866 MHz IBM PC running the Red Hat 9 Linux Operating 
System.  The code was compiled with the default GNU 
compiler with optimization (-02) turned on. 

 
The effect of the size of the chunks was also tested.  

Over the range of the test, the difference in timing was not 
significant when compared to the solution of protecting the 
memory pool directly.  Figure 7 shows the indirect rela-
tionship between the number of mutex calls given the page 
chunk size. 
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Figure 7:  Relation of Chunk Size to Mutex Calls 
 
In JIMM ACE 5.0 (Lattimore et al. 2006), the size of 

the memory chunk is set to 16K 32-bit bytes. 

6 EXPANDING THE MEMORY POOL 

One of the main shortcomings of memory pools is the re-
quirement for a single contiguous allocation of memory.  
However, once the implementation of multiple thread man-
agers was tested and proven, it was noted that the fixed-
size chunks in TJNRmemory are similar to pages (or 
frames) as commonly used by operating systems.  There-
fore, if a mechanism akin to a page table was added to the 
memory managers, then the chunks would not need to be 
part of a contiguous array and additional chunks could be 
obtained from the operating system should additional 
memory be required (Kitchen, 2005).  
 

In work done by Mr. Blair Kitchen, each chunk of al-
located memory was referenced in a thread memories page 
table.  The operations where indices and pointers were con-
verted back and forth were modified to use these page ta-
bles.  Conversion from an index to a pointer was handled 
by a single table lookup.  However, the reverse conversion 
required a search of the table.  This significantly increased 
overhead. 
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Checkpointing was achieved by writing each of the 
pages (chunks) to the file in order of initial indices.  This 
would restore the contiguous nature of the memory man-
ager.  Furthermore, the old page table was retained for 
conversion of pointers should the checkpoint be utilized.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8:  Thread Memories without a Contiguous Under-
lying Array 

 
This work with page tables was done as a prototype.  

It showed that a paging scheme could be implemented and 
still maintain correct operation of the model.  However, the 
overhead in use of a single page table as well as the over-
head of the page lookup was deemed to be too great to im-
plement in its current form (Kitchen 2005). 

 
Anecdotal evidence suggests that as modification of 

JIMM progresses, there will be less explicit use of indices 
for memory addresses.  Hence, the use of tables can be ex-
plored at a later case since greater source of overhead will 
be reduced.  Moreover, the use of multiple page tables to 
relieve contention can also be explored to further improve 
efficiency. 

7 CONCLUSION 

This paper has described the successful implementation of 
multiple thread-specific memory managers as a solution to 
multi-threading given a common memory pool.  The addi-
tional cost was significantly lower than the cost of the ini-
tial implementation using a single mutex variable. 
 

The use of smaller memory chunks leads to the em-
ployment of a mechanism similar to page tables.  This 
eliminates the constraint given the limits of contiguous in a 
similar and the need for a scenario programmer to specify 
the size of memory pool.  The implementation was shown 
to be correct.  However, further efficiencies are currently 
needed for integration into JIMM operation. 

TJNRMemory 
(with mutex) 
 
 

Thread Memory 
Manager #1 
 

Thread Memory 
Manager #2 
 

Free Pointer0 

TJMemories 

Page Table 
861
ACKNOWLEDGMENTS 

The acknowledged creator of the SWEG and JIMM family 
of models is Peter Lattimore.  The initial implementation 
of the memory pool was conducted under his guidance and 
leadership. 
 

The work to initially create the thread memory manag-
ers was done as part of project FMS-7 from the High Per-
formance Computing Modernization Program Office.  The 
CTA leader was Dr. Larry Peterson.  Dr. Michael Chap-
man and Ralph Gibson were instrumental in testing the re-
sults and showing correctness.  William E. Brooks pro-
vided the initial implementation with mutual exclusion and 
performed that initial timing study.  Other team members 
include Jon Anderson, Stuart Baldwin, Ronald Chesley, 
Doug Pickeral and Jonathan Smith.  The work for tables of 
non-contiguous memory was done in 2004 by Blair 
Kitchen after completion of the parallelization project. 

 
This work has been cleared for open publication by the 

Naval Air Systems Command (NAVAIR) Public Affairs 
Office (PAO) as NAVAIR Public Release 06-0079, Distri-
bution Statement A – “Approved for public release; distri-
bution is unlimited”. 

 
The multi-threaded version of JIMM is known as 

JIMM ACE.  All versions of JIMM are currently managed 
by the JIMM Model Management Office (JMMO).  Cur-
rent members of the JMMO include Natasha Bailey, Sum-
mer Brandt, David Cassidy, Michael Chapman, Ronald 
Chesley, Jeffrey Fischer, Ralph Gibson, and Maritza 
Miller.  The JIMM Model Manager and head of the JMMO 
is Gordon Long.  The JMMO can be contacted via e-mail 
at <jmmo@navy.mil>. 

REFERENCES 

Bulka, D. and D. Mayhew. 2000. Efficient C++ -- Per-
formance Programming Techniques.  Addison 
Wesley, Boston Mass. 

Duquette, M., J. Nalepka, and R. Luczak. 2004. The en-
hanced generic air defense system.  AIAA Modeling 
and Simulation Technologies Conference and Exhibit 
AIAA-2004-4799. Providence RI, Aug 16-19.  

Hoagland, D., E. Martin, and M. Anesgart. 2001. Repre-
senting goal-oriented human performance in construc-
tive simulations:  validation of a model performing 
complex time-critical-target missions.  Proceedings 
from the Spring 2001 Simulation Interoperability 
Workshop.  Simulation Interoperability Standards Or-
ganization.  San Diego CA.  Paper Number 01S-SIW-
137. 

Kelly, M., S. Vick, J. Schloman, and F. Zawada. 2004. A 
weather service for introducing dynamic attenuation 

mailto:jmmo@navy.mil


Mutschler 

 

 
factors in the joint integrated mission model (JIMM).  
Proceedings from the Simulation Interoperability 
Workshop.  Simulation Interoperability Standards Or-
ganization.  04F-SIW-107, Fall. 

Kitchen, B. 2005. Eliminating memory constraints in 
JIMM.  JIMM Users Group, May 2005.  JIMM Model 
Management Office, Patuxent River MD 2005.  Avail-
able via the JMMO at <jmmo@navy.mil>. 

Lattimore, P. et al. 2005. SWEG 6.5.5 source code and 
user guides.  JIMM Model Management Office.  
Patuxent River MD 2005. Available via the JMMO at 
<jmmo@navy.mil>. 

Lattimore, P. et al. 2005. JIMM 2.4.1 volume I users guide.   
JIMM Model Management Office.  Patuxent River 
MD 2005. Available via the JMMO at 
<jmmo@navy.mil>. 

Lattimore, P. et al. 2005. JIMM ACE 5.0 source code.  
JIMM Model Management Office.  Patuxent River 
MD 2005. Available via the JMMO at 
<jmmo@navy.mil>. 

Michelletti, M.L. 2003. “FMS-7 JIMM ACE beta test re-
view JIMM ACE 2.4.1_A529”.  DoD High Perform-
ance Computing Modernization Program Office 
(HPCMPO).  31 July. Available via the JMMO at 
<jmmo@navy.mil>. 

Mutschler, D.W. 2005. Parallelization of the joint inte-
grated mission model (JIMM) using cautious optimis-
tic control.  Proceedings of the 2005 Summer Com-
puter Simulation Conference.  Society for Modeling 
and Simulation International, July, pg. 145-152.   

Mutschler, D.W. 2005. Language-based simulation, flexi-
bility and development speed in the joint integrated 
mission model.  Proceedings of the 2005 Winter Simu-
lation Conference.  Orlando FL, December 2005 

Mutschler, D.W. 2005. Improved integrated operation in 
the joint integrated mission model (JIMM) and the 
simulated warfare environment data transfer 
(SWEDAT) protocol”.  ITEA Modeling and Simula-
tion Conference, Las Cruces NM, December. 

Nalepka, J.P. 2000. JIMM: the next step for mission level 
Simulation models.  AIAA Modeling and Simulation 
Technologies Conference.  AIAA 2000-4491, AIAA, 
Washington D.C. 

Niland, W., B. Skolnik, S. Rasmussen, K. Finle, and K. Al-
len. 2005. Enhancing a collaborative UAV mission 
simulation using JIMM and the HLA.  Proceedings of 
the Spring 2005 Simulation Interoperability Work-
shop, Simulation Interoperability Standards Organiza-
tion, San Diego CA, Spring. 

Worsham, R. 2002. Northrop Grumman radar simulation 
(AVSIM).  Proceedings of the 2002 IEEE Radar Con-
ference.  April.  pg 176-186. 
862
AUTHOR BIOGRAPHY 

DAVID MUTSCHLER obtained his Ph.D. in Computer 
and Information Sciences from Temple University in 1998.  
He has been employed by the Naval Air Systems Command 
(NAVAIR) since 1985 working for ten years at Warminster 
PA and the remainder at Patuxent River, MD.  He has served 
as the principal investigator of the project “Parallelization of 
the Joint Integrated Mission Model (JIMM) Using Cautious 
Optimistic Control (COC)” and as the JIMM Model Man-
ager and head of the JIMM Model Management Office 
(JMMO).  He is also an Associate Professor at the Florida 
Institute of Technology School University College.  He is a 
member of Association for Computing Machinery (ACM) 
and its Special Interest Group in Simulation (ACM/SIGSIM) 
and the Institute of Electrical and Electronics Engineers 
Computer Society (IEEE, IEEE/CS).   His research interests 
include modeling and simulation, parallel discrete event 
simulation, and software engineering. His e-mail address is 
<david.mutschler@navy.mil>. 

mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:david.mutschler@navy.mil

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



