
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A NON-FRAGMENTING PARTITIONING ALGORITHM FOR HIERARCHICAL MODELS

Roland Ewald

Jan Himmelspach

Adelinde M. Uhrmacher

University of Rostock

18059 Rostock, Germany
ABSTRACT

The simulation system JAMES II is aimed at supporting a

range of modeling formalisms and simulation engines. The

partitioning of models is essential for distributed simulation.

A suitable partition depends on model, hardware, and sim-

ulation algorithm characteristics. Therefore, a partitioning

layer has been created in JAMES II which allows to plug

in partitioning algorithms on demand. Three different par-

titioning algorithms have been implemented. In addition to

the well known Kernighan-Lin algorithm and a geometric

approach, a partitioning algorithm for hierarchically struc-

tured models has been developed whose performance is

evaluated.

1 INTRODUCTION

Experimenting with large or computational intensive models

requires special mechanisms due to the restrictions a single

machine implies. One solution is the distributed simulation

of the model. A model is split up into partitions which are

computed on different machines, so that the overall com-

putation time for the model is decreased. Several aspects

must be considered thereby, otherwise the computation time

may even increase. One of the most important aspects is

the network communication cost factor (Nicol 1998). Parti-

tioning research has been done for over three decades, thus

quite a lot of different approaches have been developed

so far (Schloegel, Karypis, and Kumar 2000). Similarly

to the efficiency and effectiveness of parallel distributed

simulation, the way of partitioning depends largely on the

characteristics of the model and the hardware. E.g., if the

model graph consists of highly symmetrical subgraphs, spe-

cialized hierarchical partitioning approaches can be applied

(Lemeire et al. 2004).

However, most partitioning algorithms have been de-

veloped for general graphs (Fjällström 1998), and do not

make use of the particular constraints that some modeling
8481-4244-0501-7/06/$20.00 ©2006 IEEE
formalisms put on the model structure. Instead, they are

aimed at working well for a broad class of problems.

Not only the structure of the model, but also the type of

simulation has an impact on the partitioning (Boukerche and

Tropper 1994). However, typically partitioning algorithms

in simulation are only evaluated in the context of a particular

modeling formalism and simulation engine, e.g., (Bailey,

Briner, and Chamberlain 1994). To evaluate different parti-

tioning algorithms for different formalisms and simulators, a

flexible partitioning system is required that supports to plug

in different partitioning algorithms on demand. In addition,

such a partitioning system will allow to tailor partitioning

algorithms to the characteristics and demands of specific

models, simulators, and hardware environments.

Flexibility of simulators has been achieved by exploiting

software patterns, like the template method (Himmelspach

and Uhrmacher 2004a), which also lend themselves for

designing a partitioning layer, e.g., (Li, Huang, and Tropper

2003), and a set of partitioning algorithms. This is an idea

we will adopt in developing a partitioning layer for the

simulation system JAMES II.

The paper is structured as follows: first we will shortly

describe JAMES II, then the architecture of the partitioning

layer will follow. The main part of the paper is dedicated to a

new partitioning algorithm, which exploits the hierarchical

structure of DEVS models. The developed partitioning

algorithm will be evaluated based on the imbalance and cut

size indices, and in comparison with other algorithms.

2 BACKGROUND - JAMES II

JAMES II has been developed as a modeling and simulation

framework which supports a variety of modeling formalisms

and even more simulation algorithms. Currently, simple

cellular automata models and several DEVS (Zeigler, Prae-

hofer, and Kim 2000) based modeling formalisms can be

used for modeling. The different simulators implemented

so far (Himmelspach and Uhrmacher 2004a, Himmelspach

and Uhrmacher 2004b) mainly support the DEVS based



Ewald, Himmelspach, and Uhrmacher
formalisms. The focus of these simulators has been on the

parallel distributed simulation of models, e.g., of models of

multi-agent systems.

As stated in (Himmelspach and Uhrmacher 2004a), the

integration of external processes (e.g., needed for testing

software Uhrmacher, Röhl, and Himmelspach 2003) imposes

some constraints on the simulator tree, e.g., if the external

process is only available or accessible on one specific host.

The different simulators in JAMES II have different

advantages and drawbacks which should be considered if

a parallel and distributed execution of a model shall be

done. Due to the variety and the idea to even increase the

number of the available modeling formalisms and simulation

algorithms, a highly flexible and adaptable partitioning layer

is required.

3 THE STRUCTURE OF THE PARTITIONING

LAYER

The support of different modeling formalisms and simulation

algorithms needs to be reflected in the partitioning layer

because of their differing characteristics. For being able to

use different partitioning algorithms, a mechanism must be

provided which allows the selection of an algorithm during

simulation start up - depending on model and hardware

properties and user wishes. The partitioning layer in JAMES

II has been designed by applying the abstract factory pattern

(Gamma et al. 1994).

The instantiation process of a distributed execution can

be split up into two phases: (1) Hand over the model, infras-

tructure information, and user settings to the partitioning

factory. (2) Hand over the partitions to an appropriate

simulator factory. The partitioning process itself has been

split up into three parts: (1) Infrastructure analyzer: what

does the network structure look like? (2) Model structure

analyzer: what does the model look like? (3) Partitioning

algorithm: create partitions according to the results of the

analyzing process.

The infrastructure analyzer computes network latencies

and the availability of resources: information which is re-

quired for being able to create good initial partitions. It

returns a graph whose nodes represent the available pro-

cessors. The nodes are labeled with the computing power

of the corresponding processor, whereas network topology

and communication capacities are represented by labeled

edges between them. In a first implementation, this algo-

rithm is realized as a stub which returns a complete graph

holding the same resource information for all items. The

model structure analyzer maps a given model on a graph

for further processing. The weight of edges reflect the com-

munication costs and additional properties are attributed to

nodes to facilitate further processing, e.g., to take specific

constraints during partitioning into account. Having a hier-

archical model, these properties may either be propagated
849
from father nodes to children nodes or vice versa. An

example for a bottom-up propagation is the usage of one

of EPI (external process interface) DEVS models, which

enforces the use of appropriate simulator components for

all parent models (Himmelspach and Uhrmacher 2004a).

Finally, the partitioning algorithm splits up the model graph

into partitions to be computed on the available resources.

Besides the approach presented in section 4.2, the following

partitioning algorithms have been implemented:

Kernighan-Lin (KL, Kernighan and Lin 1970): This clas-

sical partitioning algorithm creates bisections (i.e., 2-way

partitions), but can be used recursively to generate parti-

tions for more processors. The original version – which

was implemented here – does not consider node costs, but

the number of nodes instead (there are several extensions,

as described in Fjällström 1998).

A geometric approach: Usually, geometric approaches can

only be applied to graphs whose nodes have spatial coor-

dinates. We overcome this problem by generating a node

list using the Cuthill-McKee approach (Cuthill and McKee

1969), i.e., we generate coordinates for a one-dimensional

space. At first, the node with the smallest communication

cost is added to the node list. Its neighbors are added to

a second list, which is sorted by the communication cost

(lower communication costs first). After the first node of

the second list has been moved to the node list, all of its

neighbors which are not in one of the two lists are sorted by

the communication costs as well, in a third list. Then, the

third list is appended to the second list. Again, the first node

of the second list is added to the node list, whereas a sorted

list of its formerly ’unknown’ neighbors is appended to the

second list. This process continues until the second list is

empty, which means that all nodes are sorted in the node

list. Afterward, the node list is partitioned into partitions

of equal size.

The separation into three parts reduces the complex-

ity of the partitioning process and facilitates to experiment

with algorithms that vary only with respect to one or two

parts of the partitioning process. Thus, given an infrastruc-

ture analyzer and a model structure analyzer, the impact

of different partitioning algorithms can be evaluated more

easily. Based on this information, it is possible to select a

suitable partitioning algorithm that takes model, simulation

and hardware characteristics into account.

The selection is done by certain factories, which again

are created by factories (see Abstract Factory Pattern,

Gamma et al. 1994). This allows us to develop different

sets of algorithms in combination with a suitable selection

mechanism for them (e.g., regarding model size, model

formalism, simulation method, graph properties, etc.). Due

to this flexibility, heuristics that take advantage of those

properties may be integrated in all parts of the partitioning

process.



Ewald, Himmelspach, and Uhrmacher
4 A NON-FRAGMENTING PARTITIONING

ALGORITHM

JAMES II supports the modeling formalism DEVS, which

supports a hierarchical modular construction of models. A

hierarchical construction of models is of increasing impor-

tance the more complex the models become. Thereby, the

complexity of models refers to the problem to describe its

overall behavior even if the number and the heterogeneity

of behavior and interaction patterns of sub-models is well

known (Edmonds 1999). A hierarchical model structure

can be interpreted as a first partitioning which a modeler

has created according to semantical differentiations, and for

keeping the complexity in designing a model at bay.

4.1 Related Work on Hierarchical Models

Besides the more general partitioning algorithms, several

special partitioning algorithms for hierarchical models (e.g.,

DEVS models Zeigler, Praehofer, and Kim 2000) have been

proposed as well (Kim et al. 1995, Park and Zeigler 2003).

But these algorithms have several preconditions that do not

necessarily apply for JAMES II: Firstly, models are computed

by using the abstract simulator (a processor is associated

with each model, which implies that each (sub)model can be

freely placed on a different computer and thus the model can

get fragmented). Secondly, models have no dependencies

to non - model resources (e.g., an external program only

installed on one of the available computers).

JAMES II supports, among other modeling formalisms

and simulators, the execution of simple PDEVS models

based on the traditional abstract simulator, i.e., each model

is associated with a simulator in a processor tree. Yet, the

use of this plain abstract simulator is not recommended for

more complex models, because this simulator requires a

thread per model for simulating it. I.e., even if a complete

subtree has to be computed on one computer, each model

requires a separate thread. Therefore, other simulators, e.g.,

a sequential variant, have been implemented. JAMES II also

supports the testing of software. Software is interacting with

the simulation system via external process interface (EPI)

models. To simulate these models, we need the capability

to consider constraints during the partitioning process: e.g.,

a software might only be executed on one of the available

computers – thus, its associated EPI model should not be

placed freely.

Furthermore, existing partitioning algorithms for DEVS

(Kim et al. 1995, Park and Zeigler 2003) concentrate on

partitioning the computation load. However, the communi-

cation costs in distributed simulation are often more crucial

(Nicol 1998). Especially, if wide area networks (WANs)

come into play and communication intensive simulators are

used, like the typical DEVS simulators and its variants. The

processing of DEVS models (Zeigler, Praehofer, and Kim
850
2000) is rather communication expensive, pulsing up and

down the processor tree. Thus, the number of messages

which need to be propagated through the network for com-

puting an imminent model’s (a model with an internal state

transition – triggered by a star message) state is at least

four, for an influenced model (a model with an externally

triggered state transition – triggered by an x message) it is

at least two for PDEVS.

Let’s assume that we have got three coupled models,

each containing 1000 sub models. In each coupled model

there is one imminent model, and 50 models are influenced

by each of them. Hence, inside those three coupled models

we need three star messages, three y messages, 153 x mes-

sages, and 153 done messages (312 messages altogether).

Taking the communication of the three coupled models with

their parent into account, we need 12 more messages. If

the models are randomly placed on hosts, we could end

up with 324 messages to be sent across the network. In

contrast, if all children would be placed on the processor

which hosts their coupled model, we would only end up

with 12 messages to be sent over the network.

4.2 The Basic Algorithm

In the following, we consider an arbitrary planar and upward

representation of the model tree, i.e., a tree representation

without overlapping edges and the root at the top. An

example tree is given in figure 1 (I1). The nodes of each

tree level can be ordered according to the tree representation.

If node A is situated left of node B (A < B), both nodes

either have the same parent, or the parent of node A is

situated left to the parent of B on the level above.

The basic idea of the algorithm is to consider the

distances between the nodes of a level. The distance between

two nodes is the length of the path between them, i.e., the

number of edges. Since both nodes are on the same level,

the distance d between them is an even number. It indicates

the level of the tree in which their first common parent is

situated, d

2
levels above. Thus, a high distance between

two nodes marks a borderline between two branches of the

tree. This correlation can be used to partition a level for p

processors by splitting it at the p largest distances between

its nodes (see figure 1 (I1)). To apply this approach, a

suitable level for partitioning has to be found. Moreover,

the partitioning of nodes which are not situated on the

partitioning level needs to be specified.

The basic algorithm has three phases (as shown in

algorithm 1), which address the following issues: The first

step is finding the level on which the tree of the model

shall be partitioned (level). This is done top-down, as

described in algorithm 2. Afterward, the model tree is

partitioned by using level. The models in the tree below

the level are assigned to the available computing resources

by trying to minimize the number of edges between the



Ewald, Himmelspach, and Uhrmacher
Algorithm 1 Phases of the Basic Algorithm

1 Function Partitions partition (model, resources)

2 levelIndex := findPartitioningLevel (model,

resources)

3 partitions := partitionizeLevel (model, resources,

getLevel(model, levelIndex), null, false)

4 partitions := assignUpperLevels (model, resources,

levelIndex, partitions)

5 return partitions

partitions (see alg. 4). Thereafter, the levels above level

have to be assigned to the available partitions. This is done

in the third step (see alg. 6).

Algorithm 2 findPartitioningLevel

1 Function Level findPartitioningLevel(model,

resources)

2 levels := getLevels(model)

3 for levelIndex := 0 to size(levels)-1 do

4 if criteriaFulfilled(levels, levelIndex,

size(resources)) then

5 return levelIndex

In the first phase, the algorithm computes the level with

which the partitioning process shall start with. This level is

the first level the criteriaFullfilled method returns

true for (see alg. 3).

Algorithm 3 criteriaFullfilled

1 Function Boolean criteriaFullfilled (levels,

levelIndex, numOfPartitions)

2 if size(levels[levelIndex]) > ParamNodeNum *
numOfPartitions then

3 return true

4 if (levelIndex = size(levels)-1) or

(size(levels[levelIndex+1]) <

size(levels[levelIndex])) then

5 return true

6 return false

The criteriaFullfilled function returns true if

the last level is reached, the number of nodes in this level

is greater than the number of nodes in the next level, or

the size of the given level (the number of nodes) exceeds

the number of partitions to be generated, multiplied by the

parameter ParamNodeNum. This parameter denotes the

average node number per partition for the partitioning level,

i.e., it controls the desired graining.

The core of the algorithm is the partionizeLevel

function (see algorithm 4). It takes the previously calculated

parameters and partitions the given model according to them.

At first, the maximum number of partitions is computed as

the minimum of the number of processors and the number of

nodes on the starting level of the partitioning process (line 2).

This ensures that not more partitions are created as processors

are available and it ensures that – even if this means that
851
Algorithm 4 partionizeLevel

1 Function Partitions partitionizeLevel (model,

resources, level, partitions,

assigningUpperLevels)

2 maxPartBlocks := min (size(resources), size(level))

3 splitIndices := getSplitIndicesByDistances (level,

maxPartBlocks - 1)

4 if (assigningUpperLevels) then

5 partitions := partIndirectlyAffectedNodes(level,

partitions, splitIndices,

assigningUpperLevels)

6 partitions := greedyAssignment (model,

resources, level, partitions, splitIndices)

7 return partitions

some processors are not used – some complete subtrees will

exist. Afterward, the split indices are computed by using

a threshold and the aforementioned distances between the

nodes on the given level (l. 3).

The actual partitioning is done by two functions: Firstly,

partIndirectlyAffectedNodes (l. 5) assigns the

level segments by calculating the best processor for each

one and assigning its nodes if possible (see algorithm 5).

Each processor can be used, as long as it has not al-

ready been used during the current execution of the func-

tion. To calculate a suitable processor for a segment , the

voteForProcessor function considers the partitions of

the surrounding nodes, whose votes are weighted by their

distance to the nodes of the segment. Therefore, calling this

method can be omitted when partitionizing the first time

(on the partitioning level). This is done by checking if the

last phase of the algorithm is already reached (l. 4).

Secondly, all remaining segments are assigned by

greedyAssignment in a greedy manner (l. 6). The

segment with the highest cost is assigned to the processor

with the highest capacity. Afterward, the neighbor seg-

ments are assigned to the best suitable processors regarding

communication and calculation capacities, and so on.

Algorithm 5 partIndirectlyAffectedNodes

1 Function Partitions partIndirectlyAffectedNodes

(level, partitions, splitIndices,

assigningUpperLevels)

2 for each segment in splitIndices do

3 results[segment] := voteForProcessor (segment,

level, assigningUpperLevels)

4 sort(results)

5 for each segment in splitIndices do

6 proc := getBestProcessor(results[segment])

7 if isEligible(proc) then

8 procNodes := getNodesInSegment(level, segment)

9 partitions := union (partitions, procNodes)

10 return partitions

If a node on the partitioning level is assigned to a

certain partition, all of its sub-nodes are assigned to the

same partition. After the partitioning of the levels below



Ewald, Himmelspach, and Uhrmacher
the partitioning level, the upper levels need to be assigned

to the partitions created so far (see alg. 6).

Since the algorithm aims at assigning subtrees as big

as possible to one partition, the partition for a node will be

selected based on the partitions its child nodes have been

assigned to (l. 6). Problems arise if the algorithm has to

find a suitable partition for nodes that do not have children,

i.e., for all leaves that are closer to the root node than the

partitioning level. If the algorithm encounters this kind

of nodes on a level, it calls the partitionizeLevel

method again, in order to resolve the problem (l. 10).

ThepartitionizeLevelmethod now callspart-

IndirectlyAffectedNodes (see listing 5), which dis-

tinguishes between two possible cases (see fig. 1 (I2)). On

one hand, there could be very few leaf nodes surrounded

by larger branches of already partitioned nodes (as depicted

in situation a). Hence, the leaf nodes should be assigned

to the processor that hosts the surrounding nodes, so that

additional communication is avoided. On the other hand,

it is also possible that the leaf nodes belong to a larger

subtree (situation b). In this case, it is advantageous to

assign the leaf nodes to another processor whose current

load is too small. The assigningUpperLevels (see

alg. 4, line 4) flag indicates the current phase of the al-

gorithm, so that an advanced voting scheme, which is able

to distinguish between both situations, can be activated.

It is implemented in the voteForProcessor function.

Having the leaves on the actual level assigned to partitions,

assignUpperLevels can proceed toward the root node.

Algorithm 6 assignUpperLevels

1 Function Partitions assignUpperLevels (model,

resources, levelIndex,

2 partitions)

3 levels := getLevels(model)

4 for l := levelIndex-1 downto 0 do

5 //assign nodes with children

6 partitions := union (partitions,childrenVote

(levels[l+1]))

7 //assign nodes without children

8 udNodes := undecided (partitions, levels[l])

9 if size(udNodes) > 0 then

10 partitions := partitionizeLevel (model,

resources, udNodes, partitions, true)

11 end for

12 return partitions

The algorithm described here is able to partition a

given hierarchical model. But, as we already mentioned,

we additionally need to consider constraints.

4.3 Considering Constraints

In contrast to the graph theoretical meaning of a constraint,

we call the need to place a certain model on a particular

host a constraint for partitioning, because the freedom to

assign a model part to any partition is significantly reduced.
852
Especially, if the constraint of a model has influence on its

predecessors or successors (thus making them constrained

as well). For being able to handle those constraints, we

extended the algorithm described in the previous section.

The partition method (see alg. 1) is the same as for

the basic algorithm described above.

To preserve the idea of assigning all sub-nodes according

to the partitioning results on the partitioning level, the top-

down phase has now to ensure that these assignments are

actually possible. Such an assignment is not possible, if two

or more nodes in a subtree need to be assigned to two different

partitions. In this case, there is a conflict that can only be

resolved by choosing a lower partitioning level, therefore

it needs to be checked by the criteriaFullfilled

function (see alg. 7, line 2).

If nodes in the subtree are only constrained to one

partition, their parent node on the partitioning level will

be marked as being constrained to the same partition when

entering the next phase of the algorithm.

Algorithm 7 criteriaFulfilled (with Constraints)

1 Function Boolean criteriaFullfilled (levels,

levelIndex)

2 if conflictsExist(levels, levelIndex) then

3 return false

4 if size(levels[levelIndex]) > ParamNodeNum *
numOfPartitions then

5 return true

6 if (levelIndex = size(levels)-1) or

(size(levels[levelIndex+1]) <

size(levels[levelIndex])) then

7 return true

8 return false

In the partionizeLevel function (see alg. 8), the

constrained nodes have to be considered in a special way.

At first, partConstrNodes (see alg. 9) is called to fill

all partitions to which nodes on the partitioning level are

constrained (l. 3). This is useful, because each processor

should not only get its constrained nodes, but possibly

enough other nodes on the partitioning level to suit its

capacity. However, only nodes within a certain maximal

distance to a node that already belongs to the actual partition

are considered, and the overall cost of all nodes must not

exceed the processor’s share of calculation cost on the

partitioning level.

Additionally, constraints regarding nodes in the upper

levels should be taken into account. This is done by part-

IndirectlyAffectedNodes (see alg. 5), which will

now be called regardless of the phase the algorithm is in.

The function itself is the same as in the basic algorithm,

but voteForProcessor (l. 3) needs to consider the

node constraints in the upper levels. This is necessary to

minimize the communication cost, because the partition of

a segment should be chosen – if possible – in a way that



Ewald, Himmelspach, and Uhrmacher
Algorithm 8 partizionizeLevel (with Constraints)

1 Function Partitions partizionizeLevel (model,

resources, level, partitions,

assigningUpperLevels)

2 if not assigningUpperLevels then

3 partitions := partConstrNodes(level, resources)

4 maxPartBlocks := min (size(resources), size(level))

5 splitIndices := getSplitIndicesByDistances (level,

maxPartBlocks - 1)

6 partitions := partIndirectlyAffectedNodes(level,

partitions, splitIndices,

assigningUpperLevels)

7 partitions := greedyAssignment (model,

resources, level, partitions, splitIndices)

8 return partitions

nodes directly above the segment are constrained to the

same partition.

Algorithm 9 partConstrNodes (with Constraints)

1 Function Partitions partConstrNodes (level,

resources)

2 processors := getProcessorsWithConstr (resources,

level)

3 for each proc in processor do

4 maxCost := getCalcShare(proc)

5 procNodes := getConstrNodesForProc (proc, level)

6 actualCost := getCost(procNodes)

7 while actualCost < maxCost do

8 v := getAdditionalNode(level)

9 if v != null and actualCost + getCost(v) <

maxCost then

10 procNodes := union (procNodes, v)

11 actualCost := getCost(procNodes)

12 else

13 break

14 end if

15 end while

16 partitions := union (partitions, procNodes)

17 end for

18 return partitions

After finishing these first two partitioning worksteps, the

greedy assignment from the basic algorithm is called for the

rest of the segments. The assignment of the upper levels is

similar to the procedure of the basic algorithm, with one ex-

ception: Again, the calculation mechanism to determine the

partition of a (parent) node (childrenAndConstraintsVote,

see alg. 10, line 4) needs to take constraints for upper-level

nodes into account.

5 EVALUATION

So far, only one infrastructure analyzer and one model an-

alyzer have been implemented for the partitioning layer.

Three partitioning algorithms, i.e., the KL algorithm, the

geometric approach and the algorithm presented here, can

be plugged into the system on demand. Those have been

evaluated regarding the cut size and imbalance of the gener-

ated partition results. Figure 1(I3) shows a sample partition

result created by the described partitioning algorithm.
853
Algorithm 10 assignUpperLevels (with Constraints)

1 Function Partitions assignUpperLevels (model,

resources, levelIndex, partitions)

2 levels := getLevels(model)

3 for l := levelIndex-1 downto 0 do

4 partitions := union (partitions,

childrenAndConstraintsVote(levels[l+1]))

5 udNodes := undecided (partitions, levels[l])

6 if size(udNodes) > 0 then

7 partitions := partitionizeLevel (model,

resources, udNodes, partitions, true)

8 end for

9 return partitions

Since the new partitioning algorithm focuses on the

minimization of communication cost, an important perfor-

mance measurement is the number of edges between the

partitions, i.e., the cut size of a partitioning result. On the

other hand, the computational load has to be distributed

equally over all processors.

The performance of the new algorithm was tested by

creating 8-way partitions (i.e., partitions for 8 processors)

for 200 randomly generated and labeled model trees which

consisted of 20 to 500 nodes. Each tree had a branch factor

of 4, which means that the average coupled model had 4

sub-models. This test was repeated three times for the new

partitioning algorithm, under varying circumstances. For the

first test, no random constraints had been declared, whereas

the second and the third test added 4 and 8 constraints to

the model trees, respectively.

In addition, the KL algorithm and the geometric ap-

proach have been tested under the same conditions. The

results regarding processor imbalance and communication

cost are shown in figure 1 (plots E1 and E2).

As can be seen in plot E2, the average load imbalance of

partitions created by the new algorithm is rather high with ≈

40%, i.e., the average difference between optimal and actual

load was 40% of the optimal load. The imbalance is even

worse for smaller graphs, because the partitioning algorithm

makes not necessarily use of all existing processors. In

contrast, both the KL and the geometric approach generate

partitions which are balanced very well.

However, plot E1 illustrates that the communication

costs introduced by the algorithm are rather small. Since at

least 7 edges are needed to connect 8 processors, the results

show that the unconstrained model trees are partitioned very

efficiently regarding communication cost. As constraints

force the algorithm to partition the tree in a differing way,

introducing several random constraints enforces a slightly

larger cut. In this case, both general graph partitioning

approaches perform rather bad, because they do not exploit

the model graph’s tree property.

Additionally, we compared the new partitioning algo-

rithm to the METIS (Karypis and Kumar 1995) package.

METIS has the focus on balancing the load. As can be

seen in plot E4, the load imbalance produced by METIS



Ewald, Himmelspach, and Uhrmacher
is rather low. But due to the fact that perfect load balance

and minimal cut size are most often contradicting, METIS

does not have the same low cut size as our new hierarchical

partitioning algorithm. This is shown in plot E3.

The results show how the performances of the new

partitioning algorithm, regarding imbalance and cut size,

differ. Actually, imbalance and cut size cannot be optimized

simultaneously in many cases: For example, consider a

parent node with three child nodes, two of them being

assigned to partition A and one to partition B. Assigning

the parent to partition A minimizes communication cost

(only one edge between the parent node and the child node

in B), but may increase load imbalance (three nodes in

partition A, only one in partition B). On the other hand,

assigning the parent to partition B optimizes load balance,

but increases communication cost. Because of the amount

of messages which need to be exchanged for processing

DEVS models, the new partitioning algorithm was designed

to minimize communication cost in these cases.

6 SUMMARY

In this paper we described a flexible and extensible partition-

ing layer for JAMES II. The available infrastructure and the

model structure are analyzed, and based on this information

an algorithm will partition the model. Different algorithms

for infrastructure analysis and model structure analysis can

be plugged into the partitioning layer. However, the focus

has been on realizing different partitioning algorithms that

can be exchanged on demand. Three partitioning algorithms

are currently supported, among which a newly developed

partitioning algorithm holds a lot of promise, at least for

hierarchically structured and processed models - the domi-

nant type of model in JAMES II. Unlike other partitioning

algorithms that have been designed for hierarchical struc-

tured models and an hierarchical execution of simulation,

the algorithm takes constraints, e.g., certain models have to

be executed on certain processors, into account. Thereby,

the algorithm aims at reducing the negative effects intro-

duced by the constraints on partitioning. The overall goal

of the algorithm is to decrease the communication costs.

Therefore, model branches are kept as complete as possible.

The pay-off is a possible imbalance of working loads as

has also been illustrated in our experiments with synthetic

models.

First experiments with real models, which varied with

respect to the number and heterogeneity of behavior and

interaction pattern of sub-models, indicated that this imbal-

ance should have little effect on the overall performance in

many cases, and that the performance of the developed algo-

rithm should surpass those that do not take the hierarchical

structure of models and processing into account. However,

this will be subject of further testing and experiments.
854
Although the partitioning algorithm is able to process

larger models, i.e., several 10 thousands nodes, the effi-

ciency of the implementation can still be improved. For the

partitioning layer, further algorithms shall be implemented.

This refers to partitioning algorithms, infrastructure analyz-

ers, and model analyzers.

ACKNOWLEDGMENTS

This research is supported by the DFG (German Research

Foundation).

REFERENCES

Bailey, M. L., J. V. J. Briner, and R. D. Chamberlain. 1994.

Parallel logic simulation of vlsi systems. ACM Comput.

Surv. 26 (3): 255–294.

Boukerche, A., and C. Tropper. 1994. A static partition-

ing and mapping algorithm for conservative parallel

simulations. In PADS ’94: Proc. of the 8th workshop

on Parallel and distributed simulation, 164–172. New

York, NY, USA: ACM Press.

Cuthill, E., and J. McKee. 1969. Reducing the bandwidth

of sparse symmetric matrices. In Proceedings Of The

1969 24th National Conference, 157–172. New York,

NY, USA: ACM Press.

Edmonds, B. 1999. The evolution of complexity, Chapter

What is Complexity? - The philosophy of complexity

per se with application to some examples in evolution.

Dordrecht: Kluwer.

Fjällström, P.-O. 1998. Algorithms for graph partitioning:

A survey. In Linkoping Electronic Atricles in Computer

and Information Science, 3.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994.

Design patterns: elements of reusable object-oriented

software. Addison-Wesley, Reading, MA, USA.

Himmelspach, J., and A. M. Uhrmacher. 2004a. A

component-based simulation layer for JAMES. In Proc.

of the 18th Workshop on Parallel and Distributed Sim-

ulation (PADS), May 16-19, 2004, Kufstein, Austria,

115–122.

Himmelspach, J., and A. M. Uhrmacher. 2004b, October.

Processing dynamic PDEVS models. In Proc. of the

12th IEEE Int’l Symposium on MASCOTS, ed. D. DeG-

root and P. Harrison, 329–336. Volendam, The Nether-

lands: IEEE Computer Society.

Karypis, G., and V. Kumar. 1995. Metis: Unstrctured graph

partitioning and sparse matrix ordering system, version

2.0.

Kernighan, B. W., and S. Lin. 1970. An efficient heuristic

procedure for partitioning graphs. Bell System Tech.

Journal 49.

Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park. 1995.

Distributed optimistic simulation of hierarchical devs



Ewald, Himmelspach, and Uhrmacher
Figure 1: Illustration and Evaluation of the Presented Partitioning Algorithm
models. In Summer Computer Simulation Conference

95, 32–37. Ottawa, Canada.

Lemeire, J., B. Smets, P. Cara, and E. Dirkx. 2004. Ex-

ploiting symmetry for partitioning models in parallel

discrete event simulation. In PADS ’04: Proc. of the

18th workshop on Parallel and distributed simulation,

189–194. New York, NY, USA: ACM Press.

Li, L., H. Huang, and C. Tropper. 2003. Dvs: An object-

oriented framework for distributed verilog simulation. In

17th Workshop on Parallel and Distributed Simulation,

173–180. San Diego: IEEE Computer Society Press.

Nicol, D. M. 1998. Scalability, locality, partitioning and

synchronization pdes. In Proc. of the 12th Workshop on

Parallel and distributed simulation, 5–11: IEEE Com-

puter Society.

Park, S., and B. P. Zeigler. 2003. Distributing simulation

work based on component activity: A new approach to

partitioning hierarchical DEVS models. In 1st Interna-

tional Workshop on Challenges of Large Applications

in Distributed Environments, 124.

Schloegel, K., G. Karypis, and V. Kumar. 2000. Graph

partitioning for high performance scientific simulations.

Uhrmacher, A., M. Röhl, and J. Himmelspach. 2003. Un-

paced and paced simulation for testing agents. In Simula-

tion in Industry, 15th European Simulation Symposium,

71–80. Delft: SCS-European Publishing House.
855
Zeigler, B., H. Praehofer, and T. Kim. 2000. Theory of

modeling and simulation. London: Academic Press.

AUTHOR BIOGRAPHIES

ROLAND EWALD holds an MSc in Computer Science

from the University of Rostock. His research interests are

in parallel and distributed simulation. He is currently a

research scientist at the Modeling and Simulation Group at

the University of Rostock.

JAN HIMMELSPACH holds an MSc in Computer Science

from the University of Koblenz. His research interests are

on designing flexible and efficient simulation systems. He is

currently a research scientist at the Modeling and Simulation

Group at the University of Rostock.

ADELINDE M. UHRMACHER is an Associate Professor

at the Department of Computer Science at the Univer-

sity of Rostock and head of the Modeling and Simulation

Group. Her research interests are in modeling and simu-

lation methodologies, particularly agent-oriented modeling

and simulation and their applications.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



