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ABSTRACT 

A federation approach is used to expand the geographic ex-
tent of MANA (Map Aware Non-uniform Automata), a 
cellular-automaton based agent simulation, in order to sup-
port a study of investment strategies for border protection 
along a portion of the southern U.S. border.  The federation 
is implemented using the Department of Defense (DoD) 
High Level Architecture (HLA). Federation performance is 
optimized using HLA Data Distribution Management 
(DDM) services and through a bypass of the normal HLA 
mechanisms for ownership transfer.  Analysis of the run-
ning federation indicates that overhead due to federation 
processing is minimal – less than 6% of the total federation 
runtime (94% of the runtime is due to processing in the 
MANA simulations) .   

1 INTRODUCTION 

Agent-based simulation emerged from the Artificial Intel-
ligence community as a class of discrete event simulation.  
(Some might argue that agent-based simulation is a redis-
covery and repackaging of discrete event simulation, but 
that’s an article for another time).  Official definitions of 
the concept vary throughout the literature, but the primary 
factor that causes a discrete event simulation to be an 
agent-based simulation seems to be the notion that the enti-
ties in the simulation model represent real-world entities 
that possess facilities for cognition and learning (Edmonds 
and Möhring 2005).   

Agent-based simulation has been used in a variety of 
contexts:  modeling individual and group behaviors in fi-
nancial markets, road networks, military combat, epidemi-
ological systems, and so forth.  A good overview of the use 
of agent-based simulations appears in (Sanchez and Lucas 
2002). 

In 2005, U.S. Office of the Border Patrol (OBP) initi-
ated work on a set modeling capabilities to facilitate asset 
and portfolio management within the Douglas Station of 
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the United States.  A prototype capability based on the 
MANA (Map Aware Non-Uniform Automata) simulation 
was developed by the MITRE Corporation that illustrated 
how tradeoffs between investments in technology (e.g., 
sensors), tactical infrastructure (e.g., fences), and personnel 
could be studied and evaluated.  The success of that proto-
type led to a request from OBP to extend the model to sup-
port analysis across a larger expanse of terrain, the Tucson 
Sector.   

In this article we describe the development of the Tuc-
son Sector model.  Section 2 provides a brief overview of 
MANA.  The implementation of terrain in MANA pre-
cluded a direct extension of MANA to encompass a region 
the size the Tucson Sector.  An approach to federate a col-
lection of MANAs using the Department of Defense (DoD) 
High Level Architecture (HLA) was selected to accom-
plish this geographic scaling.  The basic federation design 
is described in Section 3.  Some runtime optimizations 
based on HLA Data Distribution Management, and modifi-
cations to the HLA ownership transfer scheme are de-
scribed in Sections 4 and 5, respectively.  Conclusions and 
areas of future study appear in Section 6. 

2 MANA 

MANA is a cellular automaton based model of military 
conflict developed by the New Zealand Defence Technol-
ogy Agency, and is one of the suite of models supporting 
data farming for the U.S. Marine Corps Project Albert 
(USMC Project Albert 2006).  MANA was designed for 
use as a scenario-exploration model primarily to facilitate 
study in areas where traditional “physics-based” models 
fare poorly, e.g., representing and reasoning about the ef-
fects of enhanced situational awareness and command and 
control.   

MANA explores the interaction of autonomous enti-
ties (agents).  Each agent has “personality traits” that drive 
it toward or away from other agents on the battlefield, and 
these agents may change their personality due to events in 
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the model.  Agent behaviors are governed by four types of 
parameters (Galligan, Anderson, and Lauren 2004): 

 
• Personality weightings determine an agent’s pro-

pensity to move towards friendly or enemy units, 
towards a waypoint, towards easy terrain, and to-
wards a final goal point. 

• Movement constraints modify personality weight-
ings.  The cluster parameter turns off an agent’s 
propensity to move towards friends above some 
maximum cluster size.  The advance parameter 
prevents an agent from moving towards an objec-
tive without a minimum number of friendly units 
accompanying it. The combat parameter deter-
mines the minimum local numerical advantage a 
group of agents require before approaching the 
enemy. 

• A third set of parameters describes the basic ca-
pabilities of the agents, such as weapons and sen-
sors, movement speeds and interactions.   

• A final set of parameters provides options on the 
movement characteristics of the agents, including 
things like whether terrain affects speed, the de-
gree of randomness when moving and if obstacles 
should be avoided. 

 
MANA behaviors are specified for both individual 

agents, and groups of agents known as squads.  A squad is 
a group of agents of any size.  These agents share the same 
properties, and can switch between states either individu-
ally or as a group.  A state is a set of parameter values that 
determine the agent’s current behavior. Apart from behav-
ioral and capability parameters, entities in the same squad 
also share both Situational Awareness (SA) of enemy con-
tacts, and waypoints that may be used to guide the agents 
around the battlefield. 

The default battlefield for MANA is a 200x200 grid of 
cells, each of which can be occupied by a single live entity 
(except where multiple agent occupation of cells is explic-
itly allowed).  Cell types include: (1) billiard table, (2) easy 
going; (3) wall; (4) light bush/dense bush; and (5) hilltop.  
Agents are repelled by the playbox boundaries; Agents 
cannot wander off the battlefield.   

The application of MANA to support a wide variety of 
military analyses is described in numerous articles and 
technical reports, including the annual Maneuver Warfare 
Science compendium, available from the Project Albert 
web site (USMC Project Albert 2006). 

3 MANA FEDERATION DESIGN AND 
IMPLEMENTATION  

To support studies involving the Douglas Station, the 
MITRE Border Patrol simulation project developed a 
MANA simulation configured with a playbox of 1000 x 
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1000 cells (pixels).  Each cell represents an area of 2500 
square meters, so that the entire playbox covers an area of 
50 kilometers by 50 kilometers.   This 50 km resolution 
was sufficient for initial studies involving the Douglas Sta-
tion, however, the Tucson sector covers approximately 420 
kilometers along the U.S.-Mexico border.   

Options for increasing the size of a single instance of 
MANA from 50 km to 420 km include:  (1) increasing the 
number of cells in the playbox, while leaving the cell reso-
lution fixed at 50 meters; or (2) increasing the size of the 
cells, while leaving total the number of cells fixed.  In-
creasing the number of cells beyond 60,000x60,000 is in-
feasible in MANA, because the application depends upon 
the indices being 16 bit numbers.  Increasing the number to 
2000x2000 increases the memory usage for the playbox by 
a factor of four, and increases the processing time simi-
larly.  Using a single 1000x1000 cell MANA instance to 
represent 420 kilometers would require that each cell rep-
resent a space of 420x420 meters.  Since a great deal of 
“interesting activity” could happen within a 420 meter 
space, using a single MANA instance to represent the en-
tire Sector is undesirable.   

A third alternative to achieve geographic scaling is to 
appeal to distributed simulation – partitioning the terrain 
across fourteen instances of 30 km MANA (Figure 1).  
Processing for the additional cells would be in parallel, 
minimizing impact on total running time. 

 
 

 
 

 
Figure 1:  Geographic Overlay for MANA Federation. 

 
 
The DoD High Level Architecture (HLA) provides a 

standard for constructing distributed simulations, which are 
typically called federations in HLA parlance. Successful 
applications of the HLA in the DoD context abound.  One 
of the primary technical challenges faced in the develop-
ment of a MANA-based federation is efficiently overcom-
ing language incompatibilities.   Existing commercial and 
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government HLA Runtime Infrastructures (RTIs) provide 
C++ and Java interfaces. MANA is written in the Borland 
Delphi variant of Object Pascal.  Pascal’s object structure, 
data structure, and variable types do not match correspond-
ing C++ Structures, so a C++ RTI library cannot be di-
rectly linked and utilized by Object Pascal code.  Similar 
incompatibilities are present between Object Pascal and 
Java.   

For this effort, we adopted the Virtual Technology 
Corporation’s RTI NG-Pro which provides a C++ inter-
face.  To overcome this barrier, our approach implements a 
dynamic link library (DLL) which acts as a translator from 
Pascal to C++.   

3.1 MANA to RTI Adapter 

HLA provides an RTI Ambassador object with methods 
that an application calls to send information to the distrib-
uted simulation.  HLA expects the application to provide a 
Federate Ambassador object, implementing the methods 
that are called by the distributed simulation middleware.  
MANA is implemented in Borland’s Delphi Programming 
Language (DPL) as a Windows application.  DPL is an 
evolution of Borland Object Pascal.  It maintains many of 
the Pascal conventions so it is not directly compatible with 
C++.  While it might be possible to determine the name-
mangling necessary for MANA to call services in the RTI 
library, it would be extremely difficult to implement the 
Federation Ambassador callbacks to MANA.  Since DPL 
allows specification of different calling styles, we construct 
a DLL that presents a ‘C’ interface to MANA and imple-
ment the Federation Ambassador and RTI Ambassador in-
terfaces needed by the RTI DLL.   Our DLL, referred to as 
the MANA Adapter, is implemented with Microsoft Visual 
Studio. 

When a DLL is loaded by an application, its initializa-
tion code is executed.  During initialization, Microsoft pre-
vents any other DLL from loading.  This means that the 
MANA Adapter DLL cannot reference objects that are ini-
tialized in the RTI DLL.  In particular, the MANA Adapter 
DLL cannot instantiate a Federation Ambassador nor RTI 
Ambassador object during DLL initialization.  Instead, the 
MANA Adapter must use reference pointers and create the 
ambassadors during a call after initialization. 

MANA declares and implements five functions for the 
MANA Adapter to call: 

 
1. mEntityUpdate() – receives agent status from 

MANA Adapter; 
2. mEntityCreate() – creates a new agent in MANA 

when an agent moves into the play-area; 
3. mEntityDelete() – deletes an agent that moves out 

of the play-area; 
84
4. mSquadActivate() – activates a squad in MANA 
when the first agent in the squad moves into the 
play-area; 

5. mSquadDeactivate() – deactivates a squad when 
the last agent in a squad leaves the play-area. 

 
The MANA Adapter has methods to register the 

MANA callbacks, based on the number and type of pa-
rameters.  For example, mEntityDelete(), mSquadActi-
vate(), and mSquadDeactivate all have a single parameter 
of integer type, so they are registered in the same method 
of the MANA Adapter: 

 
void (__stdcall *mEntityDelete) (long int 
pEntityID); 
void (__stdcall *mSquadActivate) (long int 
pSquadNumber); 
void (__stdcall *mSquadDeactivate) (long int 
pSquadNumber); 
 
void rRegisterSingle( int procNumber, void 
(__stdcall *p) (long int li) ) 
{ 
 if (procNumber == 1)  
  mSquadActivate = p; 
 else if (procNumber == 2) 
  mSquadDeactivate = p; 
 else if (procNumber == 3) 
  mEntityDelete = p; 
} 

 
The function pointer is passed in as a parameter.  It 

was found that the integer parameters to callbacks must be 
declared as long int in the C++ DLL and as Integer in 
MANA in order for the call stack to be properly recog-
nized. 

MANA calls six functions in the MANA adapter: 
 
1. rInit() – creates the Fed Ambassador and RTI 

Ambassador objects; 
2. rJoinFederationExecution() – tells the MANA 

Adapter which federation to join and which feder-
ate this is; 

3. rRegisterObjectInstance() – causes the MANA 
Adapter to register an entity object with the RTI 
and receives an object handle; 

4. rEntityUpdate() – sends updated agent status to 
the MANA Adapter; 

5. rNextEventRequest() – tells the MANA Adapter 
that MANA has finished this time step and is 
ready to process the next time step; 

6. rResignFederationExecution() – tells the MANA 
Adapter to resign from the federation and clean up 
allocated memory. 

 
During simulation initialization, MANA registers each 

agent with the MANA Adapter.  MANA refers to each 
agent by its index number in an agent array.  The MANA 
Adapter registers the agent with the RTI and receives a 
3
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global handle for the agent.  The MANA Adapter keeps a 
table of the MANA index and the RTI handle for each 
agent. 
 

3.2 MANA Federation Protocols 

The Tucson Sector covers approximately 420 kilometers 
along the U.S. – Mexico border.  This requires a geo-
graphic partitioning across a minimum of fourteen 30 km 
MANA instances (see Figure 1).  Recall that within stand-
alone MANA, agents are unable to travel beyond the pe-
rimeter of the MANA playbox.  But, agent migration 
across MANA instances is essential to the representation of 
reasonable behaviors in the MANA federation.  Modifying 
the way MANA handle perimeters, though, requires sig-
nificant changes to MANA.  One of the goals of the 
MANA federation effort is to minimize changes to 
MANA, and provide the majority of the functionality nec-
essary for federation operations within the MANA 
Adapter. 

To ameliorate edge conditions, while minimizing code 
changes to MANA, another thirteen MANA instances are 
added which overlap the fourteen primary MANA in-
stances.  This results in a federation of 27 MANA in-
stances (Figure 2).  Solid purple squares denote primary 
MANAs.  Dashed green squares denote overlapped MA-
NAs that support agent migration. 
 
 

 
 

Figure 2:  Geographic Overlay for MANA Federation 
 

 
Within a given time step, MANA examines each 

agent, one at a time in random order, to determine the 
agent’s action.  Using a set of rules and preferences and 
based upon its situational awareness, each agent will move 
or shoot (remember, MANA was designed to be a combat 
model; for use in a Border Patrol context the weapons 
ranges are small and the act of “shooting” represents alien 
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apprehension).  The action of each agent is determined by 
the conditions within the playbox: nothing external to the 
playbox affects the agent.   Generally, agents in the MANA 
border simulation are influenced by the state of cells at a 
distance between 25 and 100 cells from the agent.  An 
agent near a playbox boundary cannot know about any-
thing outside the playbox – in the adjacent MANA in-
stance.  In order to allow an agent to have situational 
awareness across MANA instances, we overlap MANA in-
stances by 50%, as shown in Figure 2. 

 
 

MANA 1 MANA 2

Agent

MANA 1 MANA 2

Agent

 
Figure 3:  Overlapped MANA Play Areas 

 
Each agent in the overlapped region exists in two 

MANA instances simultaneously.  During its local process-
ing, each MANA instance determines the agent’s action in 
its playbox and reports the action to its local MANA 
Adapter.  But an agent will always be closer to an edge in 
one MANA playbox and closer to the middle of the play-
box in the other MANA instance.  In Figure 3, the agent is 
closer to the edge in MANA 1, and closer to the middle in 
MANA 2.  The MANA with the agent closer to the middle 
is considered the controlling MANA and its action is 
deemed to be the “correct” action.  In this way, an agent in 
the controlling MANA has at least 250 cells between it and 
the perimeter.  In Figure 3, MANA 2 is the controlling 
MANA. 

As each MANA instance determines the action of an 
agent, it updates the agent status and it reports the new 
status to its MANA Adapter using the rEntityUpdate() pro-
cedure.  If the MANA is the controlling MANA, then the 
MANA Adapter will report the agent status to the RTI.  
Note that the MANA instance does not know it is the con-
trolling MANA.  It reports the status of all agents to the 
MANA Adapter.  The MANA Adapter is responsible for 
determining control.  

The RTI sends the agent status to any subscribing fed-
erate.  In the case shown in Figure 3, the MANA Adapter 
for MANA 2 sends the agent status to the RTI and the RTI 
sends the agent status to the MANA Adapter for MANA 1. 
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After a MANA has updated all of its agents, it tells the 

MANA Adapter that the time step is finished by calling the 
rNextEventReuest() procedure and waiting for the return.  
As part of the processing for rNextEventRequest(), the 
MANA Adapter calls the RTI nextEventRequest().  This 
allows the RTI to send to the MANA Adapter all of the 
agent status messages received from other MANA Adapt-
ers.  Status updates for agents in the playbox are sent to 
MANA through the mEntityUpdate() procedure which 
overwrites the agent status determined by the MANA in-
stance.  If the agent is not yet known to the MANA 
Adapter, thus not known in the MANA instance, mEntity-
Create() is called to create the agent in the MANA in-
stance.  If necessary, mSquadActivate() is called first to 
make sure there is squad data for the entity.  If an agent has 
moved out of the play area, the mEntityDelete() procedure 
in MANA is called, and the mSquad Deactivate() proce-
dure will be called if there are no more agents from the 
squad in the play area. 

If the position of the agent is in the central area of the 
MANA instance (horizontal cell 251–750), then the 
MANA Adapter  acquires ownership of the attributes of 
the agent as described in Section 5.  

4 OPTIMIZING DATA DISTRIBUTION 

While production runs used 27 MANA federates running 
for 7,200-10,800 time steps, we used fewer federates and 
fewer time steps during development.  Some production 
runs took nearly four hours, which was too long for our 
development cycle.  Therefore, we executed the federation 
for 1,000 time steps for federations of 5, 7, 11, and 19 fed-
erates.  The federation executed on dual dual-core opteron 
computers.  The five MANA federation executed with 
three MANAs on one computer and two MANAs on an-
other computer.  The HLA RTI Executive and Federation 
Executive ran on its own computer.  For the other federa-
tions, the first three MANAs executed on one computer, 
and the other computers each executed four MANAs.  
Figures 4 and 5 show the average execution time per time 
step for the first 1,000 time steps.  Because the execution 
time per time step increases in MANA, this number cannot 
be used to calculate run time for more or less time steps. 

Execution time for the MANA federation can be di-
vided into three parts: (1) MANA processing time, (2) 
MANA Adapter and RTI processing time, and  (3) mes-
sage transit time (network latency).   

MANAs execute in parallel, but they process each 
time step synchronously.  Since the agents may be distrib-
uted non-uniformly across the terrain, MANA processing 
times are uneven.  MANAs that finish processing for a 
given time step must wait for the MANAs that are still 
processing.   The last MANA to finish executing a time 
step  determines the total processing time.  The HLA pre-
vents other MANAs from processing status update mes-
845
sages until the last MANA finishes its own internal proc-
essing.   

While network latency is not a factor for the MANA 
federation, filtering and processing messages is.  There are 
5500 agents in a typical MANA federation execution. If 
the distribution of agents is more-or-less uniform, then 
each MANA sends approximately 200 status update mes-
sages per time step.  With no optimization, each of the 
messages is sent to all of the other federates via an ex-
ploder mechanism in the RTI.  This results in each MANA 
processing approximately 5300 messages per time step.  
But each MANA is only interested in the messages from 
the MANA that overlaps it on the left and on the right;  
representing only about 400 of the 5300 status messages it 
receives. 

The HLA provides for data distribution management 
(DDM). Using DDM, MANA Adapters can subscribe to 
updates for a region of the state space and they can declare 
which region an agent is in.  By creating point regions, the 
RTI establishes channels between the communicating 
MANA Adapters, and only sends messages to the appro-
priate MANAs.  Thus each MANA Adapter only receives 
approximately 400 messages from its overlapping 
neighbors at the end of each time step. 
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Figure 4:   MANA Step Time Using DDM 

 
 

Figure 4 shows the improvement using DDM.  With-
out DDM, every MANA must send agent data for every 
agent to every other MANA.  The total number of mes-
sages increases as the square of the number of federates.  
Each MANA must process approximately 200 messages 
per distributed federate.  With DDM, messages are only 
sent to the overlapping MANA.  Each MANA receives 
about 200 messages from the left overlapping MANA and 
200 messages from the right overlapping MANA.  As the 
number of federates increases, the benefit for using DDM 



Beeker and Page 

 
increases, so that at nineteen federates, the improvement is 
slightly better than fifty percent. 

5 OPTIMIZING OWNERSHIP TRANSFER 

In addition to the state update messages sent between 
MANA instances each time step – which are minimized 
through the use of DDM – ownership transfer negotiations  
occur as agents cross MANA instance boundaries.  Owner-
ship transfer requires several steps in the RTI: the request-
ing MANA Adapter calls the RTI which, in turn, calls the 
MANA Adapter owning the agent’s attributes.  The own-
ing MANA Adapter must release ownership, call back to 
the RTI, and the RTI will call back to the requesting 
MANA Adapter with notification that it now has owner-
ship.  Ownership transfer happens asynchronously, unlike 
attribute value updates.  In order to synchronize ownership 
transfer, an acquireOwnership interaction is used in addi-
tion to the HLA-provided ownership request.  MANA re-
ceives the interaction before a time step only when all of 
the other MANAs have finished processing the preceding 
time step.  Thus it synchronizes ownership transfer. 

Ownership transfer is required because the RTI en-
forces ownership rules for attribute value updates.  Only 
the federate that owns an entity is allowed to send mes-
sages with values for the entity’s attributes – called reflect 
in HLA.  The spirit of HLA is that the owning federate re-
flects attribute values and that if another federate wants to 
change an attribute value, then that federate must acquire 
ownership.  However, HLA provides another method of 
sending state information, called interactions.  Interactions 
are intended for one-time occurrences.  Because interac-
tions are intended for events other than attribute value 
changes there are no ownership rules for interactions.  By 
creating an updateAgentStatus interaction, we are able to 
substitute interaction parameters for attribute values.  This 
arguably violates the intent of HLA, but allows a signifi-
cant performance improvement.  

This change allows the federation to omit all of the 
HLA ownership procedure calls.  MANA Adapters still 
send the ownership interaction.  However, they can assume 
they have ownership as soon as they send the interaction.  
Because the RTI uses reliable delivery and the interaction 
is time-stamped, it is guaranteed that the owning MANA 
receives the interaction before the next time step.  When a 
MANA Adapter receives an ownership interaction, it 
knows that the sending MANA “owns” the agent and will 
be sending the status update for the next time step. 
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Figure 5:   MANA Step Time Using HLA Interactions 

 
Figure 5 shows the improvement due to using interac-

tions.  With nineteen federates, execution time is less than 
half when using interactions, compared to reflects.  Execu-
tion time is less than twenty percent of the original execu-
tion time. 

Through the combination of DDM and a removal of 
explicit ownership transfer calls, processing time in the 
twenty-seven MANA federation is reduced from 90 min-
utes to 60 minutes for a 1200 time step scenario, and the 
total time spent in the MANA Adapter and RTI is reduced 
from nearly 30 minutes to less than three minutes. 

6 CONCLUSIONS 

Through a relaxation (or reinterpretation) of its intrinsic 
concepts (e.g., shoot = capture) an agent-based simulation 
developed to study military combat may be successfully 
used to study issues relevant to the U.S. Border Patrol.  In-
teroperability technology such as the High Level Architec-
ture (also originating in a military context) provides a con-
venient mechanism to expand the geographic extent of a 
cellular-automata model such as MANA without signifi-
cantly modifying the model itself.  We were able to take a 
50km x 50km Station model and extend it to a 420km x 
30km Sector model in just a few man-months of effort.  
The extensibility of this approach to a national-level 
model, however, is unclear.  For such a geographic extent, 
the number of federates would likely become unwieldy – a 
significant amount of infrastructure was developed to sup-
port launching, running and monitoring scenarios.  For a 
national-level model, we are investigating changes to the 
underlying MANA terrain implementation, or an imple-
mentation in an alternative agent framework. 
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