
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A CASE STUDY OF THE DEVELOPMENT AND USE OF A MANA-BASED
FEDERATION FOR STUDYING U.S. BORDER OPERATIONS

Emmet R. Beeker III
Ernest H. Page

The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102, U.S.A

ABSTRACT

A federation approach is used to expand the geographic ex-
tent of MANA (Map Aware Non-uniform Automata), a
cellular-automaton based agent simulation, in order to sup-
port a study of investment strategies for border protection
along a portion of the southern U.S. border. The federation
is implemented using the Department of Defense (DoD)
High Level Architecture (HLA). Federation performance is
optimized using HLA Data Distribution Management
(DDM) services and through a bypass of the normal HLA
mechanisms for ownership transfer. Analysis of the run-
ning federation indicates that overhead due to federation
processing is minimal – less than 6% of the total federation
runtime (94% of the runtime is due to processing in the
MANA simulations) .

1 INTRODUCTION

Agent-based simulation emerged from the Artificial Intel-
ligence community as a class of discrete event simulation.
(Some might argue that agent-based simulation is a redis-
covery and repackaging of discrete event simulation, but
that’s an article for another time). Official definitions of
the concept vary throughout the literature, but the primary
factor that causes a discrete event simulation to be an
agent-based simulation seems to be the notion that the enti-
ties in the simulation model represent real-world entities
that possess facilities for cognition and learning (Edmonds
and Möhring 2005).

Agent-based simulation has been used in a variety of
contexts: modeling individual and group behaviors in fi-
nancial markets, road networks, military combat, epidemi-
ological systems, and so forth. A good overview of the use
of agent-based simulations appears in (Sanchez and Lucas
2002).

In 2005, U.S. Office of the Border Patrol (OBP) initi-
ated work on a set modeling capabilities to facilitate asset
and portfolio management within the Douglas Station of

8411-4244-0501-7/06/$20.00 ©2006 IEEE
the United States. A prototype capability based on the
MANA (Map Aware Non-Uniform Automata) simulation
was developed by the MITRE Corporation that illustrated
how tradeoffs between investments in technology (e.g.,
sensors), tactical infrastructure (e.g., fences), and personnel
could be studied and evaluated. The success of that proto-
type led to a request from OBP to extend the model to sup-
port analysis across a larger expanse of terrain, the Tucson
Sector.

In this article we describe the development of the Tuc-
son Sector model. Section 2 provides a brief overview of
MANA. The implementation of terrain in MANA pre-
cluded a direct extension of MANA to encompass a region
the size the Tucson Sector. An approach to federate a col-
lection of MANAs using the Department of Defense (DoD)
High Level Architecture (HLA) was selected to accom-
plish this geographic scaling. The basic federation design
is described in Section 3. Some runtime optimizations
based on HLA Data Distribution Management, and modifi-
cations to the HLA ownership transfer scheme are de-
scribed in Sections 4 and 5, respectively. Conclusions and
areas of future study appear in Section 6.

2 MANA

MANA is a cellular automaton based model of military
conflict developed by the New Zealand Defence Technol-
ogy Agency, and is one of the suite of models supporting
data farming for the U.S. Marine Corps Project Albert
(USMC Project Albert 2006). MANA was designed for
use as a scenario-exploration model primarily to facilitate
study in areas where traditional “physics-based” models
fare poorly, e.g., representing and reasoning about the ef-
fects of enhanced situational awareness and command and
control.

MANA explores the interaction of autonomous enti-
ties (agents). Each agent has “personality traits” that drive
it toward or away from other agents on the battlefield, and
these agents may change their personality due to events in

Beeker and Page

the model. Agent behaviors are governed by four types of
parameters (Galligan, Anderson, and Lauren 2004):

• Personality weightings determine an agent’s pro-

pensity to move towards friendly or enemy units,
towards a waypoint, towards easy terrain, and to-
wards a final goal point.

• Movement constraints modify personality weight-
ings. The cluster parameter turns off an agent’s
propensity to move towards friends above some
maximum cluster size. The advance parameter
prevents an agent from moving towards an objec-
tive without a minimum number of friendly units
accompanying it. The combat parameter deter-
mines the minimum local numerical advantage a
group of agents require before approaching the
enemy.

• A third set of parameters describes the basic ca-
pabilities of the agents, such as weapons and sen-
sors, movement speeds and interactions.

• A final set of parameters provides options on the
movement characteristics of the agents, including
things like whether terrain affects speed, the de-
gree of randomness when moving and if obstacles
should be avoided.

MANA behaviors are specified for both individual

agents, and groups of agents known as squads. A squad is
a group of agents of any size. These agents share the same
properties, and can switch between states either individu-
ally or as a group. A state is a set of parameter values that
determine the agent’s current behavior. Apart from behav-
ioral and capability parameters, entities in the same squad
also share both Situational Awareness (SA) of enemy con-
tacts, and waypoints that may be used to guide the agents
around the battlefield.

The default battlefield for MANA is a 200x200 grid of
cells, each of which can be occupied by a single live entity
(except where multiple agent occupation of cells is explic-
itly allowed). Cell types include: (1) billiard table, (2) easy
going; (3) wall; (4) light bush/dense bush; and (5) hilltop.
Agents are repelled by the playbox boundaries; Agents
cannot wander off the battlefield.

The application of MANA to support a wide variety of
military analyses is described in numerous articles and
technical reports, including the annual Maneuver Warfare
Science compendium, available from the Project Albert
web site (USMC Project Albert 2006).

3 MANA FEDERATION DESIGN AND
IMPLEMENTATION

To support studies involving the Douglas Station, the
MITRE Border Patrol simulation project developed a
MANA simulation configured with a playbox of 1000 x
842
1000 cells (pixels). Each cell represents an area of 2500
square meters, so that the entire playbox covers an area of
50 kilometers by 50 kilometers. This 50 km resolution
was sufficient for initial studies involving the Douglas Sta-
tion, however, the Tucson sector covers approximately 420
kilometers along the U.S.-Mexico border.

Options for increasing the size of a single instance of
MANA from 50 km to 420 km include: (1) increasing the
number of cells in the playbox, while leaving the cell reso-
lution fixed at 50 meters; or (2) increasing the size of the
cells, while leaving total the number of cells fixed. In-
creasing the number of cells beyond 60,000x60,000 is in-
feasible in MANA, because the application depends upon
the indices being 16 bit numbers. Increasing the number to
2000x2000 increases the memory usage for the playbox by
a factor of four, and increases the processing time simi-
larly. Using a single 1000x1000 cell MANA instance to
represent 420 kilometers would require that each cell rep-
resent a space of 420x420 meters. Since a great deal of
“interesting activity” could happen within a 420 meter
space, using a single MANA instance to represent the en-
tire Sector is undesirable.

A third alternative to achieve geographic scaling is to
appeal to distributed simulation – partitioning the terrain
across fourteen instances of 30 km MANA (Figure 1).
Processing for the additional cells would be in parallel,
minimizing impact on total running time.

Figure 1: Geographic Overlay for MANA Federation.

The DoD High Level Architecture (HLA) provides a

standard for constructing distributed simulations, which are
typically called federations in HLA parlance. Successful
applications of the HLA in the DoD context abound. One
of the primary technical challenges faced in the develop-
ment of a MANA-based federation is efficiently overcom-
ing language incompatibilities. Existing commercial and

Beeker and Page

government HLA Runtime Infrastructures (RTIs) provide
C++ and Java interfaces. MANA is written in the Borland
Delphi variant of Object Pascal. Pascal’s object structure,
data structure, and variable types do not match correspond-
ing C++ Structures, so a C++ RTI library cannot be di-
rectly linked and utilized by Object Pascal code. Similar
incompatibilities are present between Object Pascal and
Java.

For this effort, we adopted the Virtual Technology
Corporation’s RTI NG-Pro which provides a C++ inter-
face. To overcome this barrier, our approach implements a
dynamic link library (DLL) which acts as a translator from
Pascal to C++.

3.1 MANA to RTI Adapter

HLA provides an RTI Ambassador object with methods
that an application calls to send information to the distrib-
uted simulation. HLA expects the application to provide a
Federate Ambassador object, implementing the methods
that are called by the distributed simulation middleware.
MANA is implemented in Borland’s Delphi Programming
Language (DPL) as a Windows application. DPL is an
evolution of Borland Object Pascal. It maintains many of
the Pascal conventions so it is not directly compatible with
C++. While it might be possible to determine the name-
mangling necessary for MANA to call services in the RTI
library, it would be extremely difficult to implement the
Federation Ambassador callbacks to MANA. Since DPL
allows specification of different calling styles, we construct
a DLL that presents a ‘C’ interface to MANA and imple-
ment the Federation Ambassador and RTI Ambassador in-
terfaces needed by the RTI DLL. Our DLL, referred to as
the MANA Adapter, is implemented with Microsoft Visual
Studio.

When a DLL is loaded by an application, its initializa-
tion code is executed. During initialization, Microsoft pre-
vents any other DLL from loading. This means that the
MANA Adapter DLL cannot reference objects that are ini-
tialized in the RTI DLL. In particular, the MANA Adapter
DLL cannot instantiate a Federation Ambassador nor RTI
Ambassador object during DLL initialization. Instead, the
MANA Adapter must use reference pointers and create the
ambassadors during a call after initialization.

MANA declares and implements five functions for the
MANA Adapter to call:

1. mEntityUpdate() – receives agent status from

MANA Adapter;
2. mEntityCreate() – creates a new agent in MANA

when an agent moves into the play-area;
3. mEntityDelete() – deletes an agent that moves out

of the play-area;
84
4. mSquadActivate() – activates a squad in MANA
when the first agent in the squad moves into the
play-area;

5. mSquadDeactivate() – deactivates a squad when
the last agent in a squad leaves the play-area.

The MANA Adapter has methods to register the

MANA callbacks, based on the number and type of pa-
rameters. For example, mEntityDelete(), mSquadActi-
vate(), and mSquadDeactivate all have a single parameter
of integer type, so they are registered in the same method
of the MANA Adapter:

void (__stdcall *mEntityDelete) (long int
pEntityID);
void (__stdcall *mSquadActivate) (long int
pSquadNumber);
void (__stdcall *mSquadDeactivate) (long int
pSquadNumber);

void rRegisterSingle(int procNumber, void
(__stdcall *p) (long int li))
{
 if (procNumber == 1)
 mSquadActivate = p;
 else if (procNumber == 2)
 mSquadDeactivate = p;
 else if (procNumber == 3)
 mEntityDelete = p;
}

The function pointer is passed in as a parameter. It

was found that the integer parameters to callbacks must be
declared as long int in the C++ DLL and as Integer in
MANA in order for the call stack to be properly recog-
nized.

MANA calls six functions in the MANA adapter:

1. rInit() – creates the Fed Ambassador and RTI

Ambassador objects;
2. rJoinFederationExecution() – tells the MANA

Adapter which federation to join and which feder-
ate this is;

3. rRegisterObjectInstance() – causes the MANA
Adapter to register an entity object with the RTI
and receives an object handle;

4. rEntityUpdate() – sends updated agent status to
the MANA Adapter;

5. rNextEventRequest() – tells the MANA Adapter
that MANA has finished this time step and is
ready to process the next time step;

6. rResignFederationExecution() – tells the MANA
Adapter to resign from the federation and clean up
allocated memory.

During simulation initialization, MANA registers each

agent with the MANA Adapter. MANA refers to each
agent by its index number in an agent array. The MANA
Adapter registers the agent with the RTI and receives a
3

Beeker and Page

global handle for the agent. The MANA Adapter keeps a
table of the MANA index and the RTI handle for each
agent.

3.2 MANA Federation Protocols

The Tucson Sector covers approximately 420 kilometers
along the U.S. – Mexico border. This requires a geo-
graphic partitioning across a minimum of fourteen 30 km
MANA instances (see Figure 1). Recall that within stand-
alone MANA, agents are unable to travel beyond the pe-
rimeter of the MANA playbox. But, agent migration
across MANA instances is essential to the representation of
reasonable behaviors in the MANA federation. Modifying
the way MANA handle perimeters, though, requires sig-
nificant changes to MANA. One of the goals of the
MANA federation effort is to minimize changes to
MANA, and provide the majority of the functionality nec-
essary for federation operations within the MANA
Adapter.

To ameliorate edge conditions, while minimizing code
changes to MANA, another thirteen MANA instances are
added which overlap the fourteen primary MANA in-
stances. This results in a federation of 27 MANA in-
stances (Figure 2). Solid purple squares denote primary
MANAs. Dashed green squares denote overlapped MA-
NAs that support agent migration.

Figure 2: Geographic Overlay for MANA Federation

Within a given time step, MANA examines each

agent, one at a time in random order, to determine the
agent’s action. Using a set of rules and preferences and
based upon its situational awareness, each agent will move
or shoot (remember, MANA was designed to be a combat
model; for use in a Border Patrol context the weapons
ranges are small and the act of “shooting” represents alien
844
apprehension). The action of each agent is determined by
the conditions within the playbox: nothing external to the
playbox affects the agent. Generally, agents in the MANA
border simulation are influenced by the state of cells at a
distance between 25 and 100 cells from the agent. An
agent near a playbox boundary cannot know about any-
thing outside the playbox – in the adjacent MANA in-
stance. In order to allow an agent to have situational
awareness across MANA instances, we overlap MANA in-
stances by 50%, as shown in Figure 2.

MANA 1 MANA 2

Agent

MANA 1 MANA 2

Agent

Figure 3: Overlapped MANA Play Areas

Each agent in the overlapped region exists in two

MANA instances simultaneously. During its local process-
ing, each MANA instance determines the agent’s action in
its playbox and reports the action to its local MANA
Adapter. But an agent will always be closer to an edge in
one MANA playbox and closer to the middle of the play-
box in the other MANA instance. In Figure 3, the agent is
closer to the edge in MANA 1, and closer to the middle in
MANA 2. The MANA with the agent closer to the middle
is considered the controlling MANA and its action is
deemed to be the “correct” action. In this way, an agent in
the controlling MANA has at least 250 cells between it and
the perimeter. In Figure 3, MANA 2 is the controlling
MANA.

As each MANA instance determines the action of an
agent, it updates the agent status and it reports the new
status to its MANA Adapter using the rEntityUpdate() pro-
cedure. If the MANA is the controlling MANA, then the
MANA Adapter will report the agent status to the RTI.
Note that the MANA instance does not know it is the con-
trolling MANA. It reports the status of all agents to the
MANA Adapter. The MANA Adapter is responsible for
determining control.

The RTI sends the agent status to any subscribing fed-
erate. In the case shown in Figure 3, the MANA Adapter
for MANA 2 sends the agent status to the RTI and the RTI
sends the agent status to the MANA Adapter for MANA 1.

Beeker and Page

After a MANA has updated all of its agents, it tells the

MANA Adapter that the time step is finished by calling the
rNextEventReuest() procedure and waiting for the return.
As part of the processing for rNextEventRequest(), the
MANA Adapter calls the RTI nextEventRequest(). This
allows the RTI to send to the MANA Adapter all of the
agent status messages received from other MANA Adapt-
ers. Status updates for agents in the playbox are sent to
MANA through the mEntityUpdate() procedure which
overwrites the agent status determined by the MANA in-
stance. If the agent is not yet known to the MANA
Adapter, thus not known in the MANA instance, mEntity-
Create() is called to create the agent in the MANA in-
stance. If necessary, mSquadActivate() is called first to
make sure there is squad data for the entity. If an agent has
moved out of the play area, the mEntityDelete() procedure
in MANA is called, and the mSquad Deactivate() proce-
dure will be called if there are no more agents from the
squad in the play area.

If the position of the agent is in the central area of the
MANA instance (horizontal cell 251–750), then the
MANA Adapter acquires ownership of the attributes of
the agent as described in Section 5.

4 OPTIMIZING DATA DISTRIBUTION

While production runs used 27 MANA federates running
for 7,200-10,800 time steps, we used fewer federates and
fewer time steps during development. Some production
runs took nearly four hours, which was too long for our
development cycle. Therefore, we executed the federation
for 1,000 time steps for federations of 5, 7, 11, and 19 fed-
erates. The federation executed on dual dual-core opteron
computers. The five MANA federation executed with
three MANAs on one computer and two MANAs on an-
other computer. The HLA RTI Executive and Federation
Executive ran on its own computer. For the other federa-
tions, the first three MANAs executed on one computer,
and the other computers each executed four MANAs.
Figures 4 and 5 show the average execution time per time
step for the first 1,000 time steps. Because the execution
time per time step increases in MANA, this number cannot
be used to calculate run time for more or less time steps.

Execution time for the MANA federation can be di-
vided into three parts: (1) MANA processing time, (2)
MANA Adapter and RTI processing time, and (3) mes-
sage transit time (network latency).

MANAs execute in parallel, but they process each
time step synchronously. Since the agents may be distrib-
uted non-uniformly across the terrain, MANA processing
times are uneven. MANAs that finish processing for a
given time step must wait for the MANAs that are still
processing. The last MANA to finish executing a time
step determines the total processing time. The HLA pre-
vents other MANAs from processing status update mes-
845
sages until the last MANA finishes its own internal proc-
essing.

While network latency is not a factor for the MANA
federation, filtering and processing messages is. There are
5500 agents in a typical MANA federation execution. If
the distribution of agents is more-or-less uniform, then
each MANA sends approximately 200 status update mes-
sages per time step. With no optimization, each of the
messages is sent to all of the other federates via an ex-
ploder mechanism in the RTI. This results in each MANA
processing approximately 5300 messages per time step.
But each MANA is only interested in the messages from
the MANA that overlaps it on the left and on the right;
representing only about 400 of the 5300 status messages it
receives.

The HLA provides for data distribution management
(DDM). Using DDM, MANA Adapters can subscribe to
updates for a region of the state space and they can declare
which region an agent is in. By creating point regions, the
RTI establishes channels between the communicating
MANA Adapters, and only sends messages to the appro-
priate MANAs. Thus each MANA Adapter only receives
approximately 400 messages from its overlapping
neighbors at the end of each time step.

Average Step Processing Time

0.0

500.0

1000.0

1500.0

2000.0

2500.0

5 7 11 19

Number of Federates

m
ill

is
ec

on
ds

Without DDM With DDM

Figure 4: MANA Step Time Using DDM

Figure 4 shows the improvement using DDM. With-
out DDM, every MANA must send agent data for every
agent to every other MANA. The total number of mes-
sages increases as the square of the number of federates.
Each MANA must process approximately 200 messages
per distributed federate. With DDM, messages are only
sent to the overlapping MANA. Each MANA receives
about 200 messages from the left overlapping MANA and
200 messages from the right overlapping MANA. As the
number of federates increases, the benefit for using DDM

Beeker and Page

increases, so that at nineteen federates, the improvement is
slightly better than fifty percent.

5 OPTIMIZING OWNERSHIP TRANSFER

In addition to the state update messages sent between
MANA instances each time step – which are minimized
through the use of DDM – ownership transfer negotiations
occur as agents cross MANA instance boundaries. Owner-
ship transfer requires several steps in the RTI: the request-
ing MANA Adapter calls the RTI which, in turn, calls the
MANA Adapter owning the agent’s attributes. The own-
ing MANA Adapter must release ownership, call back to
the RTI, and the RTI will call back to the requesting
MANA Adapter with notification that it now has owner-
ship. Ownership transfer happens asynchronously, unlike
attribute value updates. In order to synchronize ownership
transfer, an acquireOwnership interaction is used in addi-
tion to the HLA-provided ownership request. MANA re-
ceives the interaction before a time step only when all of
the other MANAs have finished processing the preceding
time step. Thus it synchronizes ownership transfer.

Ownership transfer is required because the RTI en-
forces ownership rules for attribute value updates. Only
the federate that owns an entity is allowed to send mes-
sages with values for the entity’s attributes – called reflect
in HLA. The spirit of HLA is that the owning federate re-
flects attribute values and that if another federate wants to
change an attribute value, then that federate must acquire
ownership. However, HLA provides another method of
sending state information, called interactions. Interactions
are intended for one-time occurrences. Because interac-
tions are intended for events other than attribute value
changes there are no ownership rules for interactions. By
creating an updateAgentStatus interaction, we are able to
substitute interaction parameters for attribute values. This
arguably violates the intent of HLA, but allows a signifi-
cant performance improvement.

This change allows the federation to omit all of the
HLA ownership procedure calls. MANA Adapters still
send the ownership interaction. However, they can assume
they have ownership as soon as they send the interaction.
Because the RTI uses reliable delivery and the interaction
is time-stamped, it is guaranteed that the owning MANA
receives the interaction before the next time step. When a
MANA Adapter receives an ownership interaction, it
knows that the sending MANA “owns” the agent and will
be sending the status update for the next time step.

846
Step Time for Interaction vs Reflection

0

200

400

600

800

1000

1200

5 7 11 19

Number of Federates

m
ill

is
ec

on
ds

Reflection Interactions

Figure 5: MANA Step Time Using HLA Interactions

Figure 5 shows the improvement due to using interac-

tions. With nineteen federates, execution time is less than
half when using interactions, compared to reflects. Execu-
tion time is less than twenty percent of the original execu-
tion time.

Through the combination of DDM and a removal of
explicit ownership transfer calls, processing time in the
twenty-seven MANA federation is reduced from 90 min-
utes to 60 minutes for a 1200 time step scenario, and the
total time spent in the MANA Adapter and RTI is reduced
from nearly 30 minutes to less than three minutes.

6 CONCLUSIONS

Through a relaxation (or reinterpretation) of its intrinsic
concepts (e.g., shoot = capture) an agent-based simulation
developed to study military combat may be successfully
used to study issues relevant to the U.S. Border Patrol. In-
teroperability technology such as the High Level Architec-
ture (also originating in a military context) provides a con-
venient mechanism to expand the geographic extent of a
cellular-automata model such as MANA without signifi-
cantly modifying the model itself. We were able to take a
50km x 50km Station model and extend it to a 420km x
30km Sector model in just a few man-months of effort.
The extensibility of this approach to a national-level
model, however, is unclear. For such a geographic extent,
the number of federates would likely become unwieldy – a
significant amount of infrastructure was developed to sup-
port launching, running and monitoring scenarios. For a
national-level model, we are investigating changes to the
underlying MANA terrain implementation, or an imple-
mentation in an alternative agent framework.

Beeker and Page

ACKNOWLEDGMENTS

The work described here was conducted as part of The
MITRE Corporation support to the U.S. Border Patrol.
The opinions expressed are those of the authors and do not
reflect official positions of The MITRE Corporation or the
U.S. Border Patrol.

The MANA federation benefited greatly from the ef-
forts of Brian Pridemore and Woan Sun Chang. We are
also grateful for the project leadership of David Brooks
and Paul Wehner. A very special thanks to Annette Wil-
son, of Virtual Technology Corporation. Her assistance—
especially for navigating RID settings, DDM, and other
RTI minutiae—was invaluable.

REFERENCES

Edmonds, B. and M. Möhring. 2005. Agent-based simula-
tion modeling in social and organizational domains.
Simulation, 81(3):173-174, March.

Sanchez, S.M. and T.W. Lucas. 2002. Exploring the world
of agent-based simulations: simple models, complex
analyses, In: Proceedings of the 2002 Winter Simula-
tion Conference, 116-126.

Galligan, D.P., M.A. Anderson, and M.K. Lauren. 2004.
Map Aware Non-uniform Automata, Users Manual,
Ver. 3.0, July.

USMC Project Albert. <www.projectalbert.org>
[accessed February 11, 2006].

AUTHOR BIOGRAPHIES

EMMET R. BEEKER III is the Senior Technical Advi-
sor for the Modeling and Simulation Group, Center for
Acquisition and System’s Analysis at The MITRE Corpo-
ration. He holds a B.A. in Mathematics and M.Sc. in
Computer Science from Indiana University. His research
interests include simulation-based analysis and parallel dis-
crete-event simulation. He is a member of the IEEE Com-
puter Society and of the ACM. His e-mail address is
<ebeeker@mitre.org> .

ERNEST H. PAGE is a member of the technical staff for
The MITRE Corporation. He received the Ph.D. in Com-
puter Science from Virginia Tech in 1994. He serves on
the editorial boards of ACM Transactions on Modeling
and Computer Simulation, SCS Simulation, SCS Journal
of Defense Modeling and Simulation, and the Journal of
Simulation, and is the ACM SIGSIM representative to the
WSC Board of Directors. His e-mail address is
<epage@mitre.org> .

847

http://www.projectalbert.org/
mailto:ebeeker@mitre.org
mailto:epage@mitre.org

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

