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ABSTRACT

Motivated by the requirements of molecular biological ap-

plications, we are suggesting an extension of the DEVS

formalism. Starting with DYNDEVS a reflective variant of

DEVS which supports dynamic behavior, composition, and

interaction pattern, we develop ρ-DEVS. Dynamic ports and

multi-couplings are introduced whose combination allows

models to reflect significant state changes to the outside

world and enabling or disabling certain interactions at the

same time. An abstract simulator describes the operational

semantics of the developed formalism, and the Tryptophan

operon model illustrates the developed ideas and concepts.

1 INTRODUCTION

Variable structure models lend structure to the temporal

dimension in describing systems. As the relation of bi-

simulation has been shown to hold between the original

DEVS (Discrete Event Systems Specification) formalism

(Zeigler, Praehofer, and Kim 2000) and its variable struc-

ture variants (Barros 1997, Uhrmacher 2001), the question

arises what benefit to expect from such formalisms and

consequently tools. Mostly, it is less the question whether

a formalism is able to express certain phenomena, but how

easily this can be done (Kuttler and Uhrmacher 2006).

Thus, a bit of a subjective flavor in favoring one or an-

other formalism remains. Variable structures in modeling

and simulation traditionally refer to the change of behavior

pattern, the change of interaction structure, and the change

of composition. Only recently (Hu, Zeigler, and Mittal

2005, Uhrmacher and Priami 2005), the change of inter-

faces has been discussed in the context of system theoretical

approaches toward modeling and simulation. This is not

surprising, as in systems theory the distinction between

system and environment, and maintaining this distinction,

is traditionally emphasized. Thus, a system seems more
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likely to change its composition, its interaction structure

and its behavior pattern, than its interface to its environ-

ment, although it might change its communication partners

(Uhrmacher 2001). However, some systems are character-

ized just by that: a plasticity of their interface. Thereby, they

signalize significant changes to the external world. These

phenomena can particularly be found in the molecular bio-

logical domain, where enzymes and proteins change their

interface and thereby restrict the type of possible interaction

partners.

We will follow this line of thought in introducing vari-

able ports into DYNDEVS (Uhrmacher 2001) and combining

them with special types of couplings. To introduce this new

formalism, i.e., ρ-DEVS, we will move bottom up the model

and the simulator hierarchy. The first part will be dedicated

to atomic models and their simulators, the second part

to coupled models and their coordinators. A Tryptophan

operon model will illuminate the specific features of the in-

troduced formalism. Related work will be discussed before

concluding the paper.

2 ρ-DEVS – AN EXTENSION OF DYNDEVS

Starting point for our discussion is DYNDEVS (Uhrmacher

2001). Based on DEVS (Zeigler, Praehofer, and Kim 2000),

the DYNDEVS formalism has been developed for describing

models whose description entails the possibility to change

their own state and behavior pattern. Therefore, model

and network transitions, which map the current state of a

model into a set of models the model belongs to, have been

introduced. Thereby, sequences of models are produced.

The idea of DYNDEVS is that models are interpreted as a

set of models that are successively generating themselves

by model transitions.

Each element of the set represents an incarnation of

the model and describes a phase of the evolving modeled

dynamic system. Unlike other approaches that emphasize
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the distinction between controlling and controlled unit, e.g.,

(Barros 1997), the formalism supports models which adapt

their own interaction structure and their own behavior. How-

ever, DYNDEVS assumes a static set of ports. To introduce

variable ports into DYNDEVS, two different strategies can be

followed: one is to support an entirely unconstrained change

of ports, so nothing is known about the interface, and the

set of models are clued into one unity by the hidden internal

continuity of processing. Another possibility would be to

specify the set of possible ports in advance, and dynami-

cally determine the set of currently activated ports. We will

pursue the first line of thought. Another difference is that

whereas DYNDEVS is based on sequential DEVS, ρ-DEVS

will be based on PDEVS, which supports time-triggered

and situation-triggered events that occur at the same sim-

ulation time to be processed concurrently. Furthermore, a

port type is introduced which contains the information to

realize variable structures at coupled model levels via the

network transition function ρn, more about this in section

5. The newly introduced function λρ is feeding this port.

Definition 1 (ρ-DEVS) An atomic ρ-DEVS model

is the structure 〈minit,M,Xsc, Ysc〉 with minit ∈ M the

initial model, Xsc, Ysc ports to communicate structural

changes, M the least set with the following structure:

〈X,Y, S, s0, δint, δext, δcon, ρα, λρ, λ, ta〉, where

X,Y structured sets of inputs and outputs

S structured set of states

s0 ∈ S initial state

δint : S → S: internal transition function

δext : Q × Xb → S: external trans. function, with

Q = {(s, e) : s ∈ S, 0 ≤ e < ta(s)} state set including

elapsed time

δcon : S × Xb → S: the confluent transition function

λ : S → Y : the output function

ta : S → R≥0 ∪ {∞}: the time advance function

ρλ : S → Ysc: implied structural network changes

ρα : S × Xsc → M: model transition

and M is the least set for which the following reachability

property holds ∀n ∈ M:

n = minit∨∃m0 = minit, . . . ,mi = n∧ρα(smk) = smk+1

with i > 0, k = 0, . . . , i− 1, smk ∈ Smk , smk+1 ∈ Smk+1 ,

m0, . . . ,mi ∈ M.

ρ-DEVS defines inputs, outputs, and states, i.e., X,Y, S,

as structured sets, which are structured according to a set

of variable names, which, in the case of input and output,

denote the ports by which inputs are received and outputs

are launched. As in DYNDEVS, the model transition ρα does

not interfere with other transitions, it preserves the values of

variables which are common to the states of two successive

model incarnations and assigns “default initial” values to
833
the “new” variables (see Uhrmacher 2001). Xb denotes a

bag of inputs, as several inputs might arrive concurrently,

n and mk etc. denote incarnations of the model set M.

In comparison to DYNDEVS, input and output ports in ρ-

DEVS are becoming part of the incarnations and thus can

be changed via the model transition. In addition, a special

type of port has been introduced. The role of ρλ is to

fill the port for structural changes, Ysc, that shall occur

at the level of the network model. This information will

be accessed by the network transition function ρn of the

parent coupled model (see section 5). As other models might

induce structural changes that have an effect on the model

incarnation, also an input port Xsc has been introduced for

these types of requests. This input is considered in applying

ρα and determining the new model incarnation.

3 SIMULATOR FOR ρ-DEVS ATOMIC MODELS

Following the tradition of DEVS, a simulator is associ-

ated with each atomic model. The simulation proceeds by

propagating pulses top-down and bottom-up the hierarchy.

First, the processes that have an internal or confluent event

are activated by a ∗ message, the outputs are generated

and propagated bottom-up the hierarchy. Afterward, an xy

message is propagated top-down, triggering the execution

of events. After the state transitions have been executed, a

structure change message sc is generated and propagated

bottom-up. A top-down sent sc message will trigger the

execution of the model transition ρα, which might or might

not lead to a new model incarnation. In case no structural

changes are implied, the model transition will return the

old model incarnation (Uhrmacher 2001).

Algorithm 1 Pseudo Code of ρ-DEVS Simulator

1 when receive *, xy or sc message

2 if message is * or xy message

3 if message is * message

4 xy := m.λ(s)
5 send xy message to parent

6 wait for receive xy message

7 if isEmpty (xy message)

8 m.s := m.δint(m.s)
9 else

10 m.s := m.δcon(m.s, xy, t − tole)
11 fi

12 else

13 m.s := m.δext(m.s, xy, t − tole)
14 fi

15 yr := m.ρλ(m.s)
16 send sc(yr) message

17 fi

18 wait for sc message

19 m := m.ρα(m.s, sc)
20 tonie := t + ta(m.s)

21 tole := t

22 send done (XYports(m), tonie) message

23 end when
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Each simulator has a link to the current incarnation of

the model m (4). In addition it keeps track of the time

by storing the time of last event tole and time of next

event tonie (21,20). After executing internal, external, and

confluent event of the current incarnation of the model, it is

checked whether a structural request concerning the network

structure has to be launched by invoking m.ρλ (15). The

structural output is sent to the parent (16). After having

received structural input, the model transition function ρα

is invoked to generate the new incarnation (if necessary),

which will include also new input and output ports (19).

The later is an information which is also of interest for the

network, same as the time of next event. The done message

includes the time of next event and the set of ports of the

current incarnation. Before introducing the coupled model

of ρ-DEVS, let us first see how a concrete model would look

like. Therefore, we will introduce a biological example.

4 THE EXAMPLE - THE TRYPTOPHAN OPERON

The Tryptophan (Trp) operon is one of the most extensively

studied systems for the examination of the prokaryotic gene

regulation including the spatio-temporally progressing phe-

nomena of gene repression, transcriptional attenuation, and

post translational enzyme feedback inhibition. In the fol-

lowing, we will focus on the gene repression (Figure 1). The

Trp operon comprises a promoter and an operator region

and genes responsible for coding of the 5 enzymes that are

needed to synthesize Trp. The promoter region has a bind-

ing site where the RNA polymerase can bind. This is the

enzyme responsible for the transcription of genes. As long

as the repressor is inactive, it cannot bind to the operator

of the Trp operon. However, if the corepressor Trp binds

to the inactive repressor protein, the allosteric repressor

protein will change its shape and become activated. In this

state, the repressor protein can bind to the operator region

of the operon. With the active repressor protein bound to

the operator region, RNA polymerase is unable to bind to

the promoter region of the operon. Thus, the transcription

of the five genes into mRNA will be disabled.

4.1 Repressor Model in Devs

In the following, we will describe the repressor model in

classic DEVS. Its input and output ports allow it to receive

Trp molecules and to dock to the operon (Figure 2, line

2,3). It is statically coupled to an operon model and to

a cytoplasm model. The latter contains and updates the

Trp molecules. An repressor’s state reflects the basic states,

being activated and not being activated (free), trying to dock,

and repressing (6). A time period is associated with each

phase. For example, the repressor remains in the state free

until an external event occurs. With the phase repressing,

i.e., repr, a time span is associated which is calculated
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Figure 1: Transcriptional Repression

as an exponential distribution of the mesoscopic constants,

i.e., expRand(reprT), according to Gillespie (Gillespie

1976) (36). In the phase active, i.e., act, backward and

forward reaction are competing with each other (11,17,19).

If the backward reaction wins, the Trp is released into the

cytoplasm, if the forward reaction wins it turns in the state

trying to dock (20) and sends a docking request to the

operon via the lambda function (44).

In the biological system, no Trp molecule will bind

to the repressor unless the repressor is able to accept it.

However, this information, e.g., about being free, repressed,

or activated, is stored as part of the internal state of the

repressor model and is not visible from outside. Produced

outputs are broadcasted in DEVS, i.e., if several input ports

are coupled to one output port, the produced output, i.e.,

Trp, is cloned and will reach all input ports. Thus, the Trp

is handled in DEVS as a non-consumable information. To

ensure a correct processing, the cytoplasm model has to

keep track of the repressors and their states. The cytoplasm

will select randomly one from the group of repressors being

in phase free to which the Trp will be directed. So even

though the Trp messages is sent to all repressors, only one

will be the correct addressee. This information is included

in the Trp event (29). The same applies to the docking

request (36).

Thus, each Trp sent and each docking accepted leads

to n− 1 unnecessary transitions if n repressors exist. This

decreases the performance of the simulation significantly. In

addition, the cytoplasm model has to maintain an internal

model about its environment. It has to store a list of

repressors with their names and the information whether a

repressor is currently free and able to accept Trp. This puts

an additional and unintuitive burden on the modeling. In

the new formalism, this additional effort in modeling and

simulation can be avoided.
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1 Repressor :=

2 X := {(trpIn, opIn) | . . . }

3 Y := { (trpOut, opOut) | . . . }

4 S := { (σ, forwT, backT) |

5 σ ∈
6 {free, act, tryToDock, repr}

7 forwT, backT ∈ R }

8 s_0 := (free, ∞, ∞)

9

10 ta (σ, forwT, backT) :=

11 if σ = act then min(forwT, backT)

12 else forwT

13

14 δint (σ, forwT, backT) :=

15 case σ of

16 act:

17 if backT < forwT then

18 (free, ∞, ∞)

19 else

20 (tryToDock, ǫ, ∞)

21 tryToDock:

22 (act, expRand(FT), expRand(BT))

23 repr:

24 (act, expRand(FT), expRand(BT))

25 end case

26

27 δext ((σ, forwT, backT), elapT, X) :=

28 if X = (trp, nil) then

29 if σ = free ∧ trp.name = myName then

30 (act, expRand(FT), expRand(BT))

31 else

32 (σ, forwT-elapT, backT-elapT)

33 else

34 if X = (nil , dockAccepted) then

35 if σ = tryToDock ∧
36 dockAccepted.name = myName then

37 (repr, expRand(reprT), ∞)

38 else

39 (σ, forwT-elapT, backT-elapT)

40

41 λ (σ, forwT, backT) :=

42 case σ of

43 act:

44 if backT < forwT then (Trp, nil)

45 else (nil, dock?)

46 repr: (nil, undock!)

47 end case

Figure 2: Repressor Model in Classic DEVS

4.2 Repressor Model in ρ-DEVS

Based on the different phases of the model, we can distin-

guish between the following incarnations:

freeInc in which the repressor does not produce any

outputs but waits for the arrival of Trp molecules,

actInc in which the repressor cannot receive any Trp

(because they are already bound), and in which

it can release Trp to the cytoplasm and is able to

communicate with the operon
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tryDockInc the short phase of waiting for an acceptance

from the operon, if accepted, the repressor will start

repressing, if not it falls back to the state of being

activated

reprInc where the repressor is docked to the operon

In this case, we have four distinguished phases, and

the repressor is defined by

repressor :=

〈freeInc, {freeInc, actInc, tryDockInc, reprInc},
Xsc, Ysc〉

with Xsc :=∅, Ysc := ∅ and freeInc, actInc, tryDockInc,

and reprInc being structures:

〈 X, Y, S, s0, δint, δext, δcon, ρα, ρλ, λ, ta〉.
Please note that the output function ρλ is not needed,

nor are the input and output ports for variable structure

messages (Xsc, Ysc). Functions that are not needed do not

appear in the example and are assumed to be undefined,

ρα(s, nil) is abbreviated by ρα(s). δcon is defined by a

successive execution of the internal and external transition

function, i.e., δext(δint(s), xy) by default.

1 freeInc := 〈
2 X := { (trpIn) | trpIn ∈ {trp, nil} }

3 Y := ∅
4 S := { (σ) | σ ∈ {free, act} }

5 so := (free)

6 ta(σ) := ∞
7 δext(σ, elapT, trp) := act

8 ρα(σ) := if σ = act then actInc

9 〉

Figure 3: Repressor Model in ρ-DEVS - Incarnation

“freeInc”

In the first phase (Figure 3) only input ports are available

in order to let Tryptophan dock to the repressor.

In the activated phase (Figure 4), no Tryptophan can

dock to the repressor, however, the repressor can release

Trp to the cytoplasm and can announce its docking request

to the operon. In the first case, it will reach the phase free

again. In the latter, it will change its phase to tryToDock

and switch to incarnation tryDockInc, respectively.

The phase tryToDock is a phase only introduced for

synchronization (Figure 5). Although the readiness of the

repressor to dock is signalized by generating the input port,

i.e., opIn, the dynamics of docking is part of the repressor

and thus initiated by it, so it sends via its output ports a

docking request (Figure 4, line 20), which might or might

not reach the operon. The latter is the case if the operon’s

input port, repIn, is not available since another repressor

is already bound to the operon. If the operon is accepting

the docking request, the repressor will move into the phase

repressing and switch to incarnation reprInc (Figure 6). The
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1 actInc := 〈
2 X := ∅
3 Y := { (trpOut, opOut) |

4 trpOut ∈ { trp, nil },

5 opOut ∈ { dockRequest, nil }}

6 S := { (σ, forwT, freeT) |

7 σ ∈ { act, tryToDoc, free }

8 forwT, freeT ∈ R

9 so := (act, expRand(FT), expRand(BT))

10 ta (σ, forwT, freeT) :=

11 if σ = act then min(forwT, freeT)

12 δint (σ, forwT, freeT) :=

13 if freeT < forwT then (free, ∞, ∞)

14 else (tryTodock, ∞, ∞)

15 ρα (σ, forwT, freeT) :=

16 if σ = free then freeInc else tryDockInc

17 λ (σ, forwT, freeT) :=

18 if σ = act ∧
19 freeT < forwT then (trp, nil)

20 else (nil, dockRequest)

21 〉

Figure 4: Repressor Model in ρ-DEVS - Incarnation “actInc”

1 tryDockInc := 〈
2 X := { (opIn) | opIn ∈{dockAccepted, nil }}

3 S := { (σ) |

4 σ ∈{tryToDock, repr, act }}

5 so := (tryToDock)

6 ta (σ) := ǫ

7 δint (σ) := (act)

8 δext ((σ), elapT, dockAccepted) := (repr)

9 ρα (σ) :=

10 if σ = repr then repInc

11 if σ = act then actInc

12 〉

Figure 5: Repressor Model in ρ-DEVS - Incarnation “try-

DockInc”

docking could be modeled more intuitively if the formalism

would support a synchronous communication, as e.g., is the

case in the stochastic π-CALCULUS. However, interactions

between models described in the DEVS formalism and its

variants are traditionally asynchronous.

The model could be easily visualized as a composite

state automaton, which emphasizes the structuring aspect of

the temporal plane. However, the set of model incarnations

is not necessarily finite and can not always be as easily

predefined as in the above case. This becomes apparent at

the level of the coupled model of the Tryptophan model

(see section 7).
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1 reprInc := 〈
2 X := ∅
3 Y := { (opOut) | opOut ∈ {undock, nil} }

4 S := { (σ) | σ ∈ { repr, free } }

5 so := (repr)

6 ta (σ) := expRand(reprT)

7 δint (σ) := (act)

8 λ (σ) := (undock!)

9 ρα (σ) := if σ = act then actInc

10 〉

Figure 6: Repressor Model in ρ-DEVS - Incarnation

“reprInc”

5 ρ-DEVS NETWORKS

To support the hierarchical and modular modeling, we in-

troduce a network structure in ρ-DEVS. A structural change

means a change of interaction and composition structure

as in DYNDEVS. In addition, ports can change and multi-

couplings are introduced.
Definition 2 (ρ-Devs Networks) A reflective,

higher order network, a ρ-NDEVS, is the structure

〈ninit,N ,Xsc, Ysc〉 with ninit ∈ N the start con-

figuration, Xsc, Ysc ports to communicate structural

changes, and N the least set with the following structure

{〈X,Y,C,MC, ρN , ρλ〉 where

X set of structured inputs

Y set of structured outputs

C set of components which are of type ρ-DEVS

MCset of multi-couplings

ρN : Sn × Xsc → N network transition

ρλ : Sn → Ysc structural output function

with S
n = ×d∈C ⊕d∈C Y d

sc and N is the least set for which

the following reachability property holds ∀n ∈ N :

n = ninit ∨ ∃n0 = ninit, . . . , ni = n ∧ ρα(snk) = snk+1

with i > 0, k = 0, . . . , i − 1, snk ∈ Snk , snk+1 ∈ Snk+1 ,

n0, . . . , ni ∈ N .

In addition, similar to the definition in DYNDEVS,

the ρ-NDEVS has to satisfy the following constraint: The

application of ρN preserves the state and structure of models

which belong to the composition of the “old” network and

the “new” one. C is the set of components. Components

which are newly created are initialized. The initial state of a

component is given by the model ninit being in its initial state

sinit (Uhrmacher 2001). The outputs Y d
sc of the components

in C form the quasi-state the structural output function ρλ

and the network transition ρN are based upon. The structural

output function defines, given the component’s structural

outputs, what shall be made available to the coupled model
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further up, and the network transition takes this information

as well as structural input information Xsc into account to

determine the next network incarnation.

Another difference to DYNDEVS is the introduction

of multi-couplings. The idea behind multi-couplings is to

make use of the information of the components’ available

ports and allow a dynamic coupling between models. In this

definition, the names of ports become central. Couplings

are defined as 1:n, n:1, or n:m relationships between sets

of components. Taking part in these couplings is based on

the availability of ports.

Definition 3 (Couplings) A multicoupling mc ∈
MC is defined as a tuple

mc = 〈 {(Csrc.port)|Csrc ∈ C},
{(Ctar.port)|Ctar ∈ C},

select 〉
with select : 2C → 2C .

As couplings are directed we distinguish between the

components that form the source or the target of events, i.e.,

Cscr, Ctar. The existence of ports, i.e., port, implies the

existence of couplings. The function select determines how

the values are distributed. If more than one input port are

linked to an output port in regular DEVS, each output will be

cloned and sent to all connected input ports. This standard

strategy is meaningful if information shall be broadcasted,

however, it is not a good strategy for consumable resources

like molecules. For the latter, a random selection strategy can

now be utilized. For example, we combine the output port of

the cytoplasm model responsible for delivering Tryptophan,

i.e., cyt.trpOut, with all repressors that are currently able

to bind Tryptophan, which is reflected by having an input

port to accept Tryptophan, i.e., r.TrpIn, and assign a random

strategy:

mc = 〈 { cyt.trpOut }, { r.trpIn } |
r ∈ {rep1, . . . , repn}}, ranSelOne 〉.

In the moment a Trp is launched via the output port

cyt.trpOut, one of the repressors currently connected via

the input port trpIn will be chosen randomly as its ad-

dressee. Which of the repressors are currently connected is

determined by the existence of the input port trpIn.

6 COORDINATOR FOR ρ-DEVS

With each coordinator an incarnation of the current network

is associated, i.e., n. Unlike in DYNDEVS, port information

has to be updated and the network transition is based on

the information provided by the output ports ysc1, ...yscn

of its components. Also structural change requests can

propagate through top down and bottom up the hierarchy

(see also Himmelspach and Uhrmacher 2004). Requests
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Algorithm 2 ρ-DEVS Coordinator

1 when receive *, x or sc message

2 if message is * or x message

3 if message is * message

4 send * to d ∈ IMM = {c ∈ n.C|tonie(c)=t}

5 wait for xyd messages from all children

6 send xytoParent message according to

MC

7 wait for xyfromParent message from parent

8 fi

9 forward xy messages to

10 ∪xyd\xytoParent∪xyfromParent to

11 d ∈ IMM ∪ INF according to MC

12 wait for scd message from all children

13 yr := n.ρλ(ysc1, ...yscm)
14 send sc(yr) to parent

15 fi

16 receive sc message from parent

17 send sc message to children

18 wait for done messages from any activated

children

19 n := n.ρN(ysc1, ...yscm,sc)

20 tonie := t + minimum (tonien)

21 tole := t

22 send done(XYports(n), tonie) message

23 end when

that are not directed to the network itself are sent to the

coordinator’s parent, so it can be processed by the next

higher level. The role of the function ρN is to take the

different requests from the components, which are available

via their structure change ports Ysc, and the input that has

reached the coordinator via Xsc, and to invoke, based on

this information, the network transition, producing a new

network incarnation. Afterward, the time of next event and

the set of ports associated with the network incarnation is

sent to the parent via the done message.

7 THE TRP OPERON MODEL

The coupling between cytoplasm, the individual repressor

models, and mRNA models are realized by a special type of

coupling: multi-couplings which randomly select an input

port each time an output is generated by the cytoplasm.

Cytoplasm, Enzyme, Operon, and mRNA are all coupled

models, so the model is hierarchically structured. In contrast

to earlier versions of the model (Degenring, Röhl, and

Uhrmacher 2004), we do not use a micro model to describe

the individual enzymes, but describe the pool of Tryptophan

enzymes at macro level, by one model that contains all

enzymes. The number of repressor models is constant,

however, the number of mRNA models variates over time.

The model of the Trytophan can be described at the

level of the network as a sequence of network incarna-

tions: 〈n1, {n1, n2, n3 . . .},Xsc, Ysc〉 with Xsc:=∅, Ysc:=∅
and ni structured by 〈X,Y,C,MC, ρN , ρλ〉. Due to

the introduction of multi-couplings the network structure
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1 nx := 〈 X:= nil, Y:= nil

2 C:= { rep1, . . . repn, mRNA1, . . . mRNAx, enz,

op, cyt }

3 MC:=

4 {〈 {cyt.rnapOut},{op.rnapIn},default〉,
5 〈{cyt.IGPOut},{enz.IGPIn},default〉,
6 〈{op.rnapOut},{cyt.rnapIn}, default〉,
7 〈{mrna.trpOut |

8 mrna ∈ {mRNA1 . . . mRNAx}},

9 {cyt.trpIn}, default〉),
10 . . .

11 〈{r.trpOut |

12 r ∈ {rep1 . . . repn}},{cyt.trpIn},default〉,
13 〈{cyt.trpOut}, {r.trpIn} |

14 r ∈ {rep1, . . . , repn}},

ranSelOne}〉,
15 〈{r.opOut | r ∈ {rep1 . . . repn}},

16 {op.repIn}, default),

17 〈{op.repOut,
18 {r.opIn | r ∈ {rep1, . . . , repn}}, ranSelOne}〉
19 ρn :=

20 if 〈 add, C, ?mRNA 〉 then nx++

21 if 〈 remove, C, ?mRNA 〉 then nx−−

Figure 7: Network Incarnation nx

only changes with the amount of mRNA available (Figure 7).

Because of the multi-coupling, we can now distinguish

between information being broadcasted and consumable

resources being exchanged between models. Maintaining

endomorphic models, i.e., models about models, is no longer

needed as internal states are signalized by ports being avail-

able to the environment. At the level of simulation, events

are no longer processed unnecessarily. However, an over-

head is induced due to propagating the variable structure

requests top-down and bottom-up the processor hierarchy

and updating the internal lists of couplings and compo-

nents. Thus, depending on the model, the efficiency gain

in simulation might be lost or even inverted. However,

these cases are difficult to predict, as they depend not only

on model structure and dynamics, but also on the actual

implementation and composition of the simulation engine

(Himmelspach and Uhrmacher 2006). In the worst case,

the benefit of the proposed approach will be restricted to

facilitate modeling.

8 DISCUSSION AND RELATED WORK

Traditional DEVS does not support variable interaction,

composition, and behavior pattern, although DEVS was

probably one of the first modeling formalisms for simula-

tion in which the need to support variable structures was

emphasized (Zeigler 1986). Meanwhile, a variety of exten-

sions of the formalisms exist, e.g., (Pawletta et al. 1996,

Barros 1997, Uhrmacher 2001), which support the change
838
of structure as specific events, and likely even more imple-

mentations support variable structures. Prominent in DEVS

is the clear distinction between system and environment by

encapsulating the attributes and methods of a model. The

interaction of a model with its surrounding models is based

on static ports, even in DEVS variants that support variable

structures.

However, recently the introduction of variable ports

has been suggested (Uhrmacher and Priami 2005, Hu, Zei-

gler, and Mittal 2005). In (Hu, Zeigler, and Mittal 2005),

to facilitate a selective 1:1 communication between work-

flow model components, Zeigler and his colleagues showed

an example implementation of variable interfaces in DE-

VSJAVA. To help maintaining a consistent modeling and

simulation in DEVSJAVA, operational boundaries have been

defined as discussed in (Uhrmacher 2001). Zeigler and his

colleagues allow a model component to change interfaces

of any model that resides in the same coupled model. In our

approach this is not necessary. A comfortable modeling of

changing interactions due to changing interfaces has been

ensured by introducing multi-couplings.

The traditional couplings as they are supported in DEVS

are suitable if a structures like the Tryptophan Synthase

enzyme shall be modeled. The alpha and beta subunit

of the Tryptophan Synthase form a covalent structure and

interact directly via a 1:1 coupling. Whereas the beta unit

signalizes the availability of serine to alpha, the alpha subunit

tunnels the produced Indole via the tunnel to beta. Not only

this static channeling but also dynamic channeling, e.g.,

observed in the glycolysis, require a direct communication

which is nicely reflected by the standard coupling in DEVS

(Degenring, Röhl, and Uhrmacher 2004). However, if more

than one model is connected to the output of a model the

output will be cloned and reach all. This is similar to the idea

of broadcasting events in STATECHARTS (Harel and Naamad

1996). If information is communicated, this makes perfect

sense, however, less so when consumable resources like

Tryptophan molecules are communicated along couplings.

The question is whether DEVS provides us with any means to

solve this problem. In (Zeigler, Praehofer, and Kim 2000),

Zeigler introduces the Z function which translates the output

values of an output port into values for an input port. The set

of couplings to which a specific Z is applied is extensionally

defined, which hampers an efficient use in combination with

dynamic ports. In addition, the intention of introducing Z

is type conversion between output and inputs rather than

different interaction semantics. The latter is the purpose of

the introduced multi-couplings in combination with variable

ports.

For some formalisms, variable ports do not come as

an extension but are natural, e.g., in π-CALCULUS (Pri-

ami 1995). It is based on names and uses a small set

of operators to create terms which are referred to as pro-

cesses. Two concurrent processes interact using a name
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they share the knowledge of. Interactions occur using a

name, over which one process acts as a sender, while the

other receives. The message being transmitted is again a

name, which the receiver henceforth knows and may use

in further interactions. Such message-passing allows to de-

scribe networks with evolving connectivity in an elegant

manner. Our introduction of multi-couplings and variable

ports in ρ-DEVS was largely inspired by the concepts of

π-CALCULUS and the comparison of the two formalisms

(Uhrmacher and Priami 2005). Even more importance to

interfaces is given in current extensions of the stochastic

π-CALCULUS, like BETA-BINDERS (Priami and Quaglia

2005). BETA-BINDERS is a formal language that merges the

basic features of classical process calculi with the intuition

that, in order to better model biological entities, simple con-

current processes can be wrapped by borders with explicit

interaction sites. The enclosing borders mimic biological

membranes and are equipped with typed sites that resemble

the motifs of molecules. Here, the possibility to interact

does not depend on the announced names of the sites but

on the compatibility of the site types.

9 CONCLUSION

Prominent in DEVS is the clear distinction between system

and environment by encapsulating the attributes and methods

of a model and constraining the interaction between system

and environment to typically static ports, even in DEVS

variants that support variable structures. The knowledge

of a system ends at its ports, it does not even know with

whom it is interacting. Only the superior coupled model is

privy to that information. From outside nothing is known

about the internal state, if the model has not communicated

it before. To hide this information causes an undesirable

overhead in modeling and simulating certain phenomena of

dynamic systems.

The combination of variable ports together with multi-

couplings provides one solution to this problem. Via variable

ports, internal state changes can be signalized to the outside

world. Due to the use of multi-couplings, this signalizing is

directly reflected at the interaction level, as multi-couplings

are no longer defined extensionally but intensionally based

on the existence of ports. Rooted in the formalism DYN-

DEVS, the formalism ρ-DEVS has been defined, which is

reflective in nature and takes dynamic interfaces into ac-

count. An abstract simulator has been developed. The Trp

operon model has been used to illustrate the basic ideas of the

introduced concepts and their value in providing additional

structure for modeling and reducing artificial overhead in

modeling and simulation likewise. With multi-couplings,

we are heading into the direction of putting more emphasis

on the interaction between models. With this, we reflect

current trends as they appear in areas like process algebras

as well. Requirements of application areas like cell biology
839
will motivate further explorations into interaction patterns,

e.g., to support a synchronous interaction.
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