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ABSTRACT 

Real-Time System (RTS) correctness and timeliness are 
critical. Modeling and Simulation techniques have been 
widely used for testing particular conditions on these sys-
tems. Recently, the DEVS formalism has been successfully 
used as a framework for RTS validation. Nevertheless, we 
need to address dynamic adaptation to dynamic changes in 
the environment. Dynamic Structure DEVS focuses on the 
possibility to change system structure dynamically accord-
ing to the system real requirements, which is useful for 
RTS (in which sometimes it is impossible to interfere with 
the running of the system, and auto-adaptation is needed). 
We present a new algorithm derived from the DSDE and 
the dynDEVS formalisms. We use the DSDE formal speci-
fications, and parts of the dynDEVS simulation algorithms.   

1 INTRODUCTION 

Hard Real-Time Systems (RTS) are highly reactive artifi-
cial systems that deliver data from/to devices interacting 
with the surrounding environment (another artifi-
cial/natural system) within deadlines ranging at millisec-
ond scales. As the decisions taken by these applications 
can lead to catastrophic consequences for assets or lives, 
correctness and timeliness are critical. Modeling and Simu-
lation (M&S) techniques, instead, have proven to be ade-
quate for testing particular conditions, regardless of the ap-
plication’s size. M&S is also an alternative method of 
analysis for natural systems, which is convenient to study 
the environment the RTS is controlling. 

Recently, the DEVS formalism (Zeigler et al. 2000) 
has been used as a framework for RTS validation (Cho et 
al. 2000; Cho et al. 2001; Hong et al. 1997; Kim et al. 
2001). The DEVS simulation provides a good framework 
for these purposes, because it is a mathematical paradigm 
with well-defined concepts of coupling of components, hi-
erarchical, modular model construction, support for dis-
crete event approximation of continuous systems and an 
object-oriented substrate supporting repository reuse. Real-
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Time DEVS (Hong et al. 1997) helps to expand each 
model of the system for executing in a real-time environ-
ment. DEVS has also been implemented to execute over 
CORBA to address the requirements of scalable and effi-
cient model execution (Cho et al. 2000). Nevertheless, we 
need to address the dynamic adaptation to dynamic 
changes in the environment. 

Dynamic Structure DEVS (Barros 1995; Barros 1997; 
Barros 1998; Uhrmacher 2001; Uhrmacher 2004) allows 
addressing some of these issues. Dynamic structure sys-
tems focus on the possibility to dynamically change the 
system structure according to the system real requirements, 
which is useful for real time systems (in which sometimes 
it is impossible to interfere with the running of the system 
manually, and auto adaptation is needed). In this way, the 
system can adapt internal/external environments automati-
cally. 

Dynamic structure is one of the measurements to im-
prove the flexibility and reliability of systems. By detect-
ing and revising the current states and the layouts of in-
volved models, a more reasonable structural organization 
of the system can be achieved automatically. The Dynamic 
structure algorithms based on DEVS support the structural 
changes to full extent, ranging from simple 
model/connection add/deletion to the exchange of models 
between coupled models. The structural changes can be di-
vided into three levels: 

 
1. System level: The structural change happens be-

tween coupled models (i.e., a new link between 
coupled models is added); 

2. Component level: The structural change happens 
within a coupled model but including two or more 
atomic models; 

3. Sub-component level: The structural change only 
happens within a single atomic model. 

 
We will present a new approach based on the previous 

dynamic structure algorithms. We will show that, when 
compared with the existing algorithms, our approach is 
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context-oriented and more applicable to real-time simula-
tions. 

2 THE DEVS FORMALISM 

DEVS is a formal modeling and simulation framework 
based on system theory. DEVS has well-defined concepts 
for coupling of components and hierarchical, modular 
model composition. DEVS defines a complex model as a 
composite of basic components (called atomic model), 
which can be hierarchically integrated into coupled mod-
els. A DEVS atomic model is defined as M = <X, S, Y, δint, 

δext, λ, ta>, where X is a set of input events of the atomic 
model; Y is a set of output events of the atomic model; S is 
a set of partial states associated with the atomic model; ta 
represents the lifetime of each state in S; δext is the external 
transition function which is triggered when an input event 
in X is received; λ is the output function; and δint is the in-
ternal transition function. If there is no external event 
comes, the current state will keep for its lifetime ta. Then, 
the output event is determined by λ and produce output 
events Y; at the same time, the internal state change will 
happen determined by the internal transition function. 

A DEVS coupled model is defined as CM = <X, Y, D, 
{Mi}, {Ii}, {Zij}>, where Mi (i ∈ D) is a set of basic DEVS 
models (atomic or coupled) interacting through their inter-
face (X, Y) ; Ii is the set of influencees of model i; for each 
j ∈ Ii, Zij is the i to j translation function to convert the out-
put of Mi to the input of Mj. Due to closure under coupling, 
coupled model can be taken equally as atomic model, 
which enables model reuse. 

The DEVS models are executed by abstract simulators 
that are independent from the models themselves. Conse-
quently, separated concerns between models and imple-
mentations of simulation can be achieved and enhance the 
verification of each layer independently. 

DEVS is a popular method to simulate a variety of 
systems. However, the regular DEVS simulation is diffi-
cult to adapt to dynamically changed systems. The Dy-
namic structure algorithm in DEVS simulation is an op-
tional solution for real world simulation. The two most 
popular dynamic DEVS structure algorithms are DSDE 
(Barros 1997) and dynDEVS (Uhrmacher 2001). 
DSDE divides models into two groups: basic and network 
models. The basic models are atomic structure units which 
cannot be split. The network models are coupled compo-
nents, composed of multiple basic structure models and in-
terconnections that involve structural changes. A Network 
Executive is a modified basic model to conduct structural 
changes in network models. The Network Executive stores 
all possible states of structural changes and their corre-
sponding component sets in each structural state. The two 
parts are associated together through an index function in 
the Network Executive. A DSDE network is a 4-tuple 
DSDENN = (XN, YN, χ, Mχ), where XN is the network input 
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value set; YN is the network output value set; χ is the name 
of the dynamic Network Executive; and Mχ is the model of 
the Network Executive χ, which is a modified basic model 
and is defined by Mχ = (Xχ, s0, χ, Sχ, Yχ, γ, Σ*, δχ, λχ, τχ). 
Here, γ: Sχ  Σ* is the structure function, and Σ* is the set 
of network structures. A structure Σα ∈ Σ* associated with 
the executive partial state sα,χ ∈ Sχ is given by Σα = γ(sα,χ) 
= (Dα {Mi,α}, {Ii,α}, {Zi,α}), where Dα is the set of compo-
nent names associated with the executive partial state sα,χ; 
for all i ∈ Dα, Mi,α is the model of the component i; for all i 
∈ Dα ∪ {χ, Ν}, Ζi,α is the set of component influencers of 
i; for all i ∈ Dα ∪ {χ}, Zi,α is the input function of the 
component i; and ZN,α is the network output function. 
Changes of a basic model include structural changes within 
the basic model or changes on transition/output functions 
of this basic model. A Network Executive should be used 
together with the basic model to form a network model 
(only the Network Executives can conduct structural 
changes). In (Barros 1998), three abstract simulators are 
defined: 

 
1. Simulators are able to use the implicit behavior 

contained in basic models; 
2. Network Simulators can simulate dynamic struc-

ture network models; 
3. The Synchronizer manages the simulation time. 
 
The dynDEVS formalism (Uhrmacher 2001) does not 

introduce an extra component to conduct dynamic struc-
tural changes. Instead, ρα, a model transition function, is 
included. There are two kinds of dynamic DEVS models: 
dynDEVS (atomic) and dynNDEVS (coupled). The 
dynDEVS models are atomic structural components with 
the structure dynDEVS =df <X, Y, minit, M(minit)>, where 
X, Y are the structured sets of inputs and outputs; minit ∈ 
M(minit) is the initial model, where M(minit) is the least 
set having the structure{<S, sinit, δext, δint, ρα, λ, ta> }. 
dynNDEVS models are coupled structural components 
with the structure dynNDEVS = df <X, Y, ninit, N(ninit)>, 
where X, Y are the structured sets of inputs and outputs; 
ninit ∈ N(ninit) is the start configuration and N(ninit) is the 
least set having the structure {<D, ρN, {dynDEVSi}, {I}, 
{Zi, j}, Select>}. A model’s state space, internal and exter-
nal transition, output, time advance, and model transition 
functions are subject to change during simulation. A 
dynDEVS can be interpreted as a set of DEVS models with 
the same interface plus a transition function that deter-
mines which DEVS model succeeds the previous one. 
Agents associated with dynDEVS or dynNDEVS models 
hold the worldview knowledge of their corresponding 
models and environments. Agents are responsible for 
launching structural changes and conducting the changing 
process. 
6
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Both of the above formalisms introduce new structure 
transition functions to conduct structural changes. In 
DSDE, the structural changes are carried out by χ (the 
Network Executive) and the structure function γ (which 
maps the network structure state’s set Sχ and the network 
structure models’ set Σ*) is applied in the Network Execu-
tive. The centralized Network Executives make sure that 
the structure transition is executed sequentially without any 
conflicts between structural change functions of the mod-
els. In dynDEVS, agents associated with the models con-
duct structural changes. ρα and ρN  are structure transition 
functions in dynDEVS and dynNDEVS models respec-
tively which execute structural changes concurrently and 
independently. However, executing ρα and ρN of different 
models may cause conflicts between models due to differ-
ent worldviews of the models. To avoid conflicts,  “om-
nipotent” models are used to conduct structural changes 
sequentially and once per simulation step. Constraints in 
certain functions are applied to avoid conflicts (i.e., not al-
lowing a model to delete other models, nor adding new 
models into other coupled models, etc.). These constraints 
make the structural transition functions more complicated. 

3 FLEXIBLE DYNDEVS SIMULATOR  

In order to integrate the dynamic DEVS simulation into the 
regular DEVS simulation algorithm, we inherit the mes-
sage-driven mechanism, which is applied in the regular 
DEVS simulation algorithm. Besides the two main mes-
sage types (@, t) and (*, t) used in the regular DEVS simu-
lation algorithm, extra message types are introduced to fa-
cilitate dynamic DEVS simulation, as we explain in this 
section.  

Our proposal stems from both DSDE and dynDEVS 
algorithms. We apply the DSDE formal specifications and 
parts of the dynDEVS simulation algorithm. In DSDE, a 
Network Executive conducts the dynamic structural 
changes. We follow the same idea to provide ground for 
user-defined model design and simulation (state transition 
functions, structural transition functions and output func-
tions). However, we do not attach a Network Executive to 
a network model.  A different mechanism is devised to 
launch dynamic structural changes, and to link regular state 
transitions of models and structural transitions of some 
models in simulation processes. First, we introduce mes-
sage types used in the regular DEVS simulation algorithm 
and the dynamic algorithm respectively; second, we define 
how to launch a dynamic structural change within a regular 
state transition message from which the dynamic structural 
changes may raise; third, we identify the steps within a 
single structural change, and what its associated message 
types are (Uhrmacher et al. 2004); and finally, we present 
the proposed abstract simulation algorithm. 

Message types in the regular DEVS simulation algo-
rithm: 
81
 
1. (@, t): A collecting message for collecting out-

puts of each component and routing the outputs to 
their corresponding input ports according to the 
links between models; 

2. (*, t): An internal message that is routed down to 
all atomic components by Coordinators and is 
used for synchronizing the three different transi-
tions of the atomic models; 

3. (q, t): Input message; 
4. (y, t): Output message; 
5. (done, t):  Finishing message. 
 
The last three are intermediate messages produced 

during the delivery of (@, t) and (*, t) messages. 
Extra message types in the dynamic algorithm:  
 
6. (sc*, t): A structural change requesting message 

sent from Simulator to its supervised Coordinator, 
or from a Coordinator to its parent Coordinator to 
indicate that the model asks for a structural 
change. Any Simulator or Coordinator can issue 
this message; 

7. (sc, t): A structural change message sent from a 
Coordinator to its children, who sent out a request 
for structural changes, indicating that the children 
can carry out the structural change;  

8. (start, t): An initializing message sent by Root 
Coordinator after a structural change. After re-
ceiving the (done, t) messages from the models 
experiencing structural changes, Root Coordinator 
sends the (start, t) message to start a new simula-
tion phase. This message is used to initialize new-
added models, and to get the next imminent event 
time for all the new models.  

 
According to Chow et al. (1994), Root Coordinator 

executes a message loop while simulation time steps for-
ward as time points when simulation events happen. As 
shown in Figure 1, Root Coordinator executes (@, t) and 
(*, t) in each message loop. In the regular DEVS simula-
tion, the layouts of the simulation components are static. 
However, the layouts cannot stay unchanged if the dy-
namic structure is introduced in the simulation. These 
changes might be triggered by the states and the inputs of 
the models or by global simulation time. The triggering ef-
fectors might be found in the execution of (*, t) message. 
Therefore, we conclude that the (*, t) message is the place 
where structural changes might happen. Figure 2 shows the 
case that a dynamic structure change happens during a 
regular simulation process. Message sequence for struc-
tural change is shown in the dotted-line frame. Figure 2 
presents a good expression on how the dynamic DEVS al-
gorithm migrates from the regular DEVS simulation algo-
rithm. 
7
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Figure 1: Sequence without Structural Change Function 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2: Sequence with Structural Change Function 
 

The dynamic DEVS simulation algorithm is described 
in different hierarchical levels: Root Coordinator, Coordi-
nator and Simulator. 

 
Root Coordinator  
t := tN of the topmost Coordinator 
While t ≠ ∞  
  Send (@, t) message to topmost Coordinator 
  Wait for (done, t) message  
  Send (*, t) message to topmost Coordinator 
  if (sc*,tN) received from topmost Coordinator { 

Send (sc, t) to topmost Coordinator 
Wait for (done, t) message  
Send (start, t) to topmost Coordinator 
Wait for (done, tN) message      } 

  else 
Wait for  (done, tN) message 

 

Coordinator  
When  (@, t) is received 
    // Use Chow et al. (1994) algorithm. 
End when 
 
When (*, t) is received  { 
  if tL <= t <=  tN    {  
  ...//use Chow et al. (1994) procedure for (*,t)  
 
  Wait (done, tN) from all i in synchronize set. 
   if (sc*, tN) received and tN=minimum  { 

   Retrieve model-changing list (modelname1,  
     tN1),(modelname2, tN2),... supervised by  
       current Coordinator.  
    // modelname1 launches the structural  
    // change procedure (“initial model”). 
   Send (sc*, tN) to its parent Coordinator.} 
Wait for (done, tN) messages  
tL := t 
tN := minimum of components’ tN’s 
if current imminent component is the one  
      among the model-changing list { 
     Send (sc*, tN) to parent Coordinator } 

Else { 

(@,t) 
(*,t) 

(@,t) 
(*,t) 

(@,t) 
(*,t) 

T 

T2 T1 … … Ti Tn 

(@,t) 
(*,t) 

(@, t) 
(*, t) 

Ti T2 Tn 

(@, t) 
(*, t) 

T1 … … 

(@, t) 
(*, t) 

(@, t) 
(*, t) 

 (sc, t) 
 (done, t) 
 (start, t) 
 (done, t) 

Trigger 

T 

 (sc, t) 
 (done, t) 
 (start, t) 
 (done, t) 

Trigger 
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Clear the synchronize set 
Send (done,tN) to parent Coordinator } 

} else  { raise an error } 
} // End when  
 
When receive (sc, t) message from its parent  { 
  Case: (t=tN and current message type of  
 Coordinator is a structural change) { 

  Backup current model set & links supervised  
  by the Coordinator.  } 
  Case: (t=tN is for the initial model) {  
     route (sc,t) down to initial child who  
            sent (sc*,tN) previously.  

  wait for (done,t) message from it. 
  Case: (t=tN is ! for the initial model)  

 send (sc,t) down to corresponding models 
 wait for (done,t) message from them } 

  Case: (t < tN) 
forward this message to its children 

  Case: (t<tL or t>tN) 
raise error     }  // End Case 

  Wait (done, t) from corresponding children. 
  Current Coordinator processes structural  
      change at its level.  
  Send (done, t) to parent Coordinator 
} // End when 
 
When receive (start,t) from parent { 
   Send (start, t) message to i  
   ...  // {i| i∈ D–D’}. D’ is the model set 
before structural change, while D is current 
model set after structural change. 
   Wait (done, tN) from all components i 
   Select tN = minimum of components’ tN’s  
   Send (done, tN) to parent Coordinator 
   if (component whose tN is minimum is in 
model-changing list in the Coordinator) { 

Coordinator sends (sc*,tN) to parent to 
   trigger next step of structural change} 

} // End when 
 

Simulator 
// Use Chow et al. (1994) algorithm for (@,t)  
  and (*,t) messages. 
 
When receive (*, t) message { 
 if (current state, elapsed time, input bag or  
  global time) reach critical points {  

 Calculate tN for the structural change 
 Send (sc*, tN) to its parent Coordinator  } 

 else 
 execute regular simulations  

} // End when 
 
When receive (sc,t) from parent Coordinator 
 if t ≠ tN { raise error } 
  else  { 

S = δst(s, t, e, bag)  
// structural transition function calculates  
 new structure state.  
Send (done,t) message to parent Coordinator } 

} // End when 
 
When receive (start, t) message from parent { 

initialize the new models and new ports 
tL := t 
tN := tL + ta 
s := s0 (the initial state of the model) 
Send (done, tN) to parent Coordinator 

} // End when 
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Root Coordinator, Coordinator and Simulator de-
scribed above contain extended concepts comparing with 
those defined in the regular DEVS simulation. Root Coor-
dinator is able to process the structural change requests and 
to issue structural change commands. We incorporated the 
function of the Network Executive mentioned in DSDE 
into the two abstract simulators: Coordinator and Simula-
tor. In this way, the dynamic structure algorithm can be in-
tegrated into the regular simulation processes seamlessly. 
Coordinator is liable to know all possible states of struc-
tural changes and migrations between those states. The 
structure transition function in Coordinator is applied to 
execute those migrations. The structure transition function 
in Simulator executes structural changes within the associ-
ated atomic model. Our algorithm presents the launching 
mechanism of the structural changes. As we have shown, 
there are three steps in the structural change process:  

 
• Requests for structural change: They always rise in an 

internal message (*, t). When receiving a (*, t) mes-
sage, Each Simulator evaluates its states or/and its 
simulation time. If they are critical, the Simulator will 
send a request message (sc*, t) to its parent Coordina-
tor for a structural change. Structural change is a 
chain of activities and these activities may span a pe-
riod. Some changes can be initiated by Simulator 
while others cannot, such as adding a new atomic 
model, deleting a existed model or adding a new link 
between two models, etc. For the latter cases, the cor-
responding Coordinator launches structural changes 
instead of Simulator. As a conclusion, either Coordi-
nator or Simulator can launch structural changes ac-
cording to different situations. 

• Structural change processing: Both Simulator and Co-
ordinator perform structural change processes em-
ploying structural transition functions, which are in-
troduced specially for dynamic structural simulations. 
In Simulator, structural transition function δst(s, t, e, 
bag) is used to calculate the next structural state of an 
atomic model. A new structural state is determined by 
the current model state (critical state), elapsed time 
since the immediately preceding state, input bag and 
global simulation time. In Coordinator, the structural 
change message (done, t) from the initial model trig-
gers the structure transition function. When a simula-
tion involves multiple levels, the structural change 
should be executed from bottom to top. 

• Structural change finishing: At this stage, the simula-
tion returns to the regular DEVS simulation process 
without losing any unprocessed information. It is un-
der the control of Root Coordinator. After receiving 
all (done, t) messages in response to their correspond-
ing (start, t) messages, Root Coordinator knows the 
time for the next imminent event. Then global time is 
advanced and simulations are stepped to a new stage. 
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4 CASE STUDY: AN AUTOMATED 
MANUFACTURING SYSTEM  

In this section, we discuss how to apply the above concept 
to the model of an Automated Manufacturing System 
(AMS), an extension of the models presented in Wainer et 
al. (2005), Glinsky et al. (2004a), and Glinsky et al. 
(2004b). The AMS is composed of dedicated stations that 
perform tasks on products being assembled and conveyors 
that transport the products to/from those workstations. 

 
The proposed AMS is a flow shop of autos. It consists 

of five parts: 
 
1. Scheduler: Production cycle organization; 
2. Display Controller: AMS status display; 
3. Controller Unit: Conveyors control according to 

the production cycle provided by Scheduler; 
4. Conveyors: Products transportation; 
5. Workstations: Taking care of task implementation 

and quality control. (ES: Engine Assembly Work-
station; PS: Painting Workstation; BS: Baking 
Workstation; QC: Quality Control Center; SS: 
Store Workstation). 

 
The Scheduler knows the production cycle and indi-

cates Controller Unit to execute the production cycle on 
both conveyors. Autos being manufactured are delivered to 
each workstation (in order to be served step by step) by the 
conveyors. The ES workstation takes charge of engine 
parts assembly; the PS workstation undertakes the painting 
task and other special painting tasks; baking is the subse-
quent procedure in the BS workstation after painting; the 
QC workstation serves as a quality center to evaluate the 
quality of autos; and the Store workstation distributes the 
autos to their corresponding warehouses. Figure 4 shows 
the layouts of the AMS system. 

4.1 Dynamic Components of AMS System  

During the system running, the structure of the AMS 
would not stay unchanged all the times. Some times, struc-
tural adjustment should be made to adapt to the changes of 
external environment. Two kinds of system adjustments 
are considered: 

 
1. Workstation duty shifts (the workstations has dif-

ferent working capacity during day and night.); 
2. In the PS workstation, two possible tasks are per-

formed: color painting and chrome painting. 
Autos need color painting or both color painting 
and chrome painting. Painting selection is deter-
mined by the ‘control’ model residing in the PS 
workstation. 
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Figure 4: The Automated Manufacturing System Model 
 

4.2 Case 1: Workstation Duty Shifts 

According to the DSDE formal specification, the behav-
iors of the basic model ς are shown in figure 5 and figure 
6. ES and ES’, representing engine workstation during 
daytime and night respectively, can be considered as two 
structural states of the basic model ς. Zes,0 and Zes,1  
represent the input functions of ES and ES’; while Zς,0 
and Zς,1 represent the output functions of  the structural 
model ς. χ is the Network Executive described in DSDE. 

 
 

 
Figure 5: ES Structure Layout During Daytime 

 
 

 
Figure 6: ES’ Structure Layout During Night 
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Assume that the working time is 30mins during day-
time while 40mins during night. Daytime duty is from 
8:00am to 5:00pm everyday, the rest is the nighttime duty. 
The structural change is implemented as follows:  

 
1. When ES reaches the critical time points (critical 

time point tc = {t| t∈[8:00am, 5:00pm], 5:00pm – 
t <= 30mins} or {t| t∈[5:00pm, 8:00am], 8:00am 
– t <= 40mins}), calculates tN for the coming 
structural change, sends (sc*, t) message to Top 
Coordinator. 

2. If the tN is the minimum one, Top Coordinator 
sends (sc*, t) message to Root Coordinator. 

3. Root Coordinator forwards the current simula-
tion time to tN and issues (sc, t) message. 

4. Top Coordinator receives (sc, t) and sends it to 
the basic model ς. 

5. Simulator associated with the basic model ς cal-
culates the new structural state using the struc-
tural transition function δst, a (done, t) message is 
sent back. 

6. Root Coordinator sends (start, t) message to ini-
tialize the new simulation stage. When (done, t) 
messages are received, a new regular simulation 
stage begins. 
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4.3 Case 2: Dynamic Components in PS Workstation 

The PS workstation is a coupled model including four 
atomic models: Controller, Color, Chrome and Painter. 
The atomic model ‘Chrome’ is an optional component. 
Painting selection is determined by the ‘Controller’. Fig-
ure 7 and 8 show the two structural states of the network 
model Θ. Zi,α (i = Controller, Color, Chrome and Painting; 
α = 0,1)is the input function of the atomic models while 
ZΘ,α is the output function of the network model Θ. Zχ is 
the input function of the Network Executive χ. 
 

 
Figure 7: Painting Mode I  in PS Workstation 

 

 
Figure 8: Painting Mode II  in PS Workstation 

 
Generally, the autos on the conveyor are painted with 

specific colors. Therefore only the atomic model ‘Color’ 
is needed in the PS.  Assume that the current bulk of autos 
on the conveyor need to be painted both color and 
chrome. The atomic model ‘Chrome’ should be added 
into PS automatically. When the Simulator associated 
with the atomic model ‘Controller’ detects this change, 
the following structural change happens: 
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1. The Simulator associated with the basic model 
‘Controller’ sends (sc*, tN) message (here tN 
can be the current time, which means structural 
change will happen right away) to its parent Co-
ordinator, which is associated with the network 
model Θ. 

2. The Coordinator retrieves the model-changing 
list according to the message value in (sc*, t) 
message from Simulator ‘Controller’. The 
model-changing list should be: (Controller, tN1), 
(Chrome, tN2), (Painting, tN3). The Coordinator 
then sends (sc*, t) message upwards. 

3. At time tN1, when the Coordinator receives (sc, 
t) message from its parent, it forwards the  mes-
sage to its corresponding Simulator (here are the 
Simulators associated with the basic models 
‘Controller’, ‘Chrome’ and ‘Painter’ because tN1 
= tN2 = tN3) under its supervision.  

4. When the Simulators receive the (sc, t) message, 
corresponding structural changes are imple-
mented and (done, t) messages are sent back to 
the Coordinator. 

5. When all structural changes in the Simulators 
supervised by the Coordinator Θ finish, the Co-
ordinator Θ begins to execute structural changes 
on its own level. In this case, new links are cre-
ated between ‘Controller’, ‘Chrome’ and 
‘Painter’. A (done, t) message is returned to the 
upper level Coordinator. 

6. A (start, t) is issued by Root Coordinator once 
the structural changes finish. After getting next 
imminent tN, global simulation time is stepped 
forward to this tN. Root Coordinator issues a (@, 
t) message and a new stage of simulation begins. 

5 CONCLUSIONS 

We presented a more practical simulation algorithm for 
Dynamic Structure DEVS modeling and simulation. Our 
proposal stems from both DSDE and dynDEVS algo-
rithms. We used the DSDE formal specifications, and 
parts of dynDEVS simulation algorithms. We integrated 
the functions of Network Executives into the correspond-
ing Simulators and Coordinators by introducing the struc-
ture transition functions in Simulators and Coordinators. 
We inherited the message types used in the regular DEVS 
algorithm while special message types conducting dy-
namic structural changes are devised. We also have a spe-
cific mechanism to launch dynamic structural changes, 
which links the regular state transitions of models and the 
structure transitions of some models in simulation proc-
esses. Hence, our proposed dynamic algorithm has been 
embedded into the regular DEVS simulation algorithm 
seamlessly.  
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We provided ground for user-defined model design 
and simulation (state transition functions, structure transi-
tion functions and output functions). Users can focus on 
their application-oriented model design (how to devise the 
transition functions mentioned above for their own mod-
els) while some common parts can be reused. Model de-
sign and simulation architecture based on DEVS theory 
has been extended by involving the structure transition 
functions and our proposed launching mechanism. This 
also provides a sound base for the execution of real-time 
simulations with dynamic components. 
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