
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A SIMULATION ALGORITHM FOR DYNAMIC STRUCTURE DEVS MODELING

Hui Shang
Gabriel Wainer

Dept. of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive Ottawa, ON

K1S 5B6 CANADA

ABSTRACT

Real-Time System (RTS) correctness and timeliness are
critical. Modeling and Simulation techniques have been
widely used for testing particular conditions on these sys-
tems. Recently, the DEVS formalism has been successfully
used as a framework for RTS validation. Nevertheless, we
need to address dynamic adaptation to dynamic changes in
the environment. Dynamic Structure DEVS focuses on the
possibility to change system structure dynamically accord-
ing to the system real requirements, which is useful for
RTS (in which sometimes it is impossible to interfere with
the running of the system, and auto-adaptation is needed).
We present a new algorithm derived from the DSDE and
the dynDEVS formalisms. We use the DSDE formal speci-
fications, and parts of the dynDEVS simulation algorithms.

1 INTRODUCTION

Hard Real-Time Systems (RTS) are highly reactive artifi-
cial systems that deliver data from/to devices interacting
with the surrounding environment (another artifi-
cial/natural system) within deadlines ranging at millisec-
ond scales. As the decisions taken by these applications
can lead to catastrophic consequences for assets or lives,
correctness and timeliness are critical. Modeling and Simu-
lation (M&S) techniques, instead, have proven to be ade-
quate for testing particular conditions, regardless of the ap-
plication’s size. M&S is also an alternative method of
analysis for natural systems, which is convenient to study
the environment the RTS is controlling.

Recently, the DEVS formalism (Zeigler et al. 2000)
has been used as a framework for RTS validation (Cho et
al. 2000; Cho et al. 2001; Hong et al. 1997; Kim et al.
2001). The DEVS simulation provides a good framework
for these purposes, because it is a mathematical paradigm
with well-defined concepts of coupling of components, hi-
erarchical, modular model construction, support for dis-
crete event approximation of continuous systems and an
object-oriented substrate supporting repository reuse. Real-

8151-4244-0501-7/06/$20.00 ©2006 IEEE
Time DEVS (Hong et al. 1997) helps to expand each
model of the system for executing in a real-time environ-
ment. DEVS has also been implemented to execute over
CORBA to address the requirements of scalable and effi-
cient model execution (Cho et al. 2000). Nevertheless, we
need to address the dynamic adaptation to dynamic
changes in the environment.

Dynamic Structure DEVS (Barros 1995; Barros 1997;
Barros 1998; Uhrmacher 2001; Uhrmacher 2004) allows
addressing some of these issues. Dynamic structure sys-
tems focus on the possibility to dynamically change the
system structure according to the system real requirements,
which is useful for real time systems (in which sometimes
it is impossible to interfere with the running of the system
manually, and auto adaptation is needed). In this way, the
system can adapt internal/external environments automati-
cally.

Dynamic structure is one of the measurements to im-
prove the flexibility and reliability of systems. By detect-
ing and revising the current states and the layouts of in-
volved models, a more reasonable structural organization
of the system can be achieved automatically. The Dynamic
structure algorithms based on DEVS support the structural
changes to full extent, ranging from simple
model/connection add/deletion to the exchange of models
between coupled models. The structural changes can be di-
vided into three levels:

1. System level: The structural change happens be-

tween coupled models (i.e., a new link between
coupled models is added);

2. Component level: The structural change happens
within a coupled model but including two or more
atomic models;

3. Sub-component level: The structural change only
happens within a single atomic model.

We will present a new approach based on the previous

dynamic structure algorithms. We will show that, when
compared with the existing algorithms, our approach is

Shang and Wainer

context-oriented and more applicable to real-time simula-
tions.

2 THE DEVS FORMALISM

DEVS is a formal modeling and simulation framework
based on system theory. DEVS has well-defined concepts
for coupling of components and hierarchical, modular
model composition. DEVS defines a complex model as a
composite of basic components (called atomic model),
which can be hierarchically integrated into coupled mod-
els. A DEVS atomic model is defined as M = <X, S, Y, δint,

δext, λ, ta>, where X is a set of input events of the atomic
model; Y is a set of output events of the atomic model; S is
a set of partial states associated with the atomic model; ta
represents the lifetime of each state in S; δext is the external
transition function which is triggered when an input event
in X is received; λ is the output function; and δint is the in-
ternal transition function. If there is no external event
comes, the current state will keep for its lifetime ta. Then,
the output event is determined by λ and produce output
events Y; at the same time, the internal state change will
happen determined by the internal transition function.

A DEVS coupled model is defined as CM = <X, Y, D,
{Mi}, {Ii}, {Zij}>, where Mi (i ∈ D) is a set of basic DEVS
models (atomic or coupled) interacting through their inter-
face (X, Y) ; Ii is the set of influencees of model i; for each
j ∈ Ii, Zij is the i to j translation function to convert the out-
put of Mi to the input of Mj. Due to closure under coupling,
coupled model can be taken equally as atomic model,
which enables model reuse.

The DEVS models are executed by abstract simulators
that are independent from the models themselves. Conse-
quently, separated concerns between models and imple-
mentations of simulation can be achieved and enhance the
verification of each layer independently.

DEVS is a popular method to simulate a variety of
systems. However, the regular DEVS simulation is diffi-
cult to adapt to dynamically changed systems. The Dy-
namic structure algorithm in DEVS simulation is an op-
tional solution for real world simulation. The two most
popular dynamic DEVS structure algorithms are DSDE
(Barros 1997) and dynDEVS (Uhrmacher 2001).
DSDE divides models into two groups: basic and network
models. The basic models are atomic structure units which
cannot be split. The network models are coupled compo-
nents, composed of multiple basic structure models and in-
terconnections that involve structural changes. A Network
Executive is a modified basic model to conduct structural
changes in network models. The Network Executive stores
all possible states of structural changes and their corre-
sponding component sets in each structural state. The two
parts are associated together through an index function in
the Network Executive. A DSDE network is a 4-tuple
DSDENN = (XN, YN, χ, Mχ), where XN is the network input
81
value set; YN is the network output value set; χ is the name
of the dynamic Network Executive; and Mχ is the model of
the Network Executive χ, which is a modified basic model
and is defined by Mχ = (Xχ, s0, χ, Sχ, Yχ, γ, Σ*, δχ, λχ, τχ).
Here, γ: Sχ Σ* is the structure function, and Σ* is the set
of network structures. A structure Σα ∈ Σ* associated with
the executive partial state sα,χ ∈ Sχ is given by Σα = γ(sα,χ)
= (Dα {Mi,α}, {Ii,α}, {Zi,α}), where Dα is the set of compo-
nent names associated with the executive partial state sα,χ;
for all i ∈ Dα, Mi,α is the model of the component i; for all i
∈ Dα ∪ {χ, Ν}, Ζi,α is the set of component influencers of
i; for all i ∈ Dα ∪ {χ}, Zi,α is the input function of the
component i; and ZN,α is the network output function.
Changes of a basic model include structural changes within
the basic model or changes on transition/output functions
of this basic model. A Network Executive should be used
together with the basic model to form a network model
(only the Network Executives can conduct structural
changes). In (Barros 1998), three abstract simulators are
defined:

1. Simulators are able to use the implicit behavior

contained in basic models;
2. Network Simulators can simulate dynamic struc-

ture network models;
3. The Synchronizer manages the simulation time.

The dynDEVS formalism (Uhrmacher 2001) does not

introduce an extra component to conduct dynamic struc-
tural changes. Instead, ρα, a model transition function, is
included. There are two kinds of dynamic DEVS models:
dynDEVS (atomic) and dynNDEVS (coupled). The
dynDEVS models are atomic structural components with
the structure dynDEVS =df <X, Y, minit, M(minit)>, where
X, Y are the structured sets of inputs and outputs; minit ∈
M(minit) is the initial model, where M(minit) is the least
set having the structure{<S, sinit, δext, δint, ρα, λ, ta> }.
dynNDEVS models are coupled structural components
with the structure dynNDEVS = df <X, Y, ninit, N(ninit)>,
where X, Y are the structured sets of inputs and outputs;
ninit ∈ N(ninit) is the start configuration and N(ninit) is the
least set having the structure {<D, ρN, {dynDEVSi}, {I},
{Zi, j}, Select>}. A model’s state space, internal and exter-
nal transition, output, time advance, and model transition
functions are subject to change during simulation. A
dynDEVS can be interpreted as a set of DEVS models with
the same interface plus a transition function that deter-
mines which DEVS model succeeds the previous one.
Agents associated with dynDEVS or dynNDEVS models
hold the worldview knowledge of their corresponding
models and environments. Agents are responsible for
launching structural changes and conducting the changing
process.
6

Shang and Wainer

Both of the above formalisms introduce new structure
transition functions to conduct structural changes. In
DSDE, the structural changes are carried out by χ (the
Network Executive) and the structure function γ (which
maps the network structure state’s set Sχ and the network
structure models’ set Σ*) is applied in the Network Execu-
tive. The centralized Network Executives make sure that
the structure transition is executed sequentially without any
conflicts between structural change functions of the mod-
els. In dynDEVS, agents associated with the models con-
duct structural changes. ρα and ρN are structure transition
functions in dynDEVS and dynNDEVS models respec-
tively which execute structural changes concurrently and
independently. However, executing ρα and ρN of different
models may cause conflicts between models due to differ-
ent worldviews of the models. To avoid conflicts, “om-
nipotent” models are used to conduct structural changes
sequentially and once per simulation step. Constraints in
certain functions are applied to avoid conflicts (i.e., not al-
lowing a model to delete other models, nor adding new
models into other coupled models, etc.). These constraints
make the structural transition functions more complicated.

3 FLEXIBLE DYNDEVS SIMULATOR

In order to integrate the dynamic DEVS simulation into the
regular DEVS simulation algorithm, we inherit the mes-
sage-driven mechanism, which is applied in the regular
DEVS simulation algorithm. Besides the two main mes-
sage types (@, t) and (*, t) used in the regular DEVS simu-
lation algorithm, extra message types are introduced to fa-
cilitate dynamic DEVS simulation, as we explain in this
section.

Our proposal stems from both DSDE and dynDEVS
algorithms. We apply the DSDE formal specifications and
parts of the dynDEVS simulation algorithm. In DSDE, a
Network Executive conducts the dynamic structural
changes. We follow the same idea to provide ground for
user-defined model design and simulation (state transition
functions, structural transition functions and output func-
tions). However, we do not attach a Network Executive to
a network model. A different mechanism is devised to
launch dynamic structural changes, and to link regular state
transitions of models and structural transitions of some
models in simulation processes. First, we introduce mes-
sage types used in the regular DEVS simulation algorithm
and the dynamic algorithm respectively; second, we define
how to launch a dynamic structural change within a regular
state transition message from which the dynamic structural
changes may raise; third, we identify the steps within a
single structural change, and what its associated message
types are (Uhrmacher et al. 2004); and finally, we present
the proposed abstract simulation algorithm.

Message types in the regular DEVS simulation algo-
rithm:
81

1. (@, t): A collecting message for collecting out-

puts of each component and routing the outputs to
their corresponding input ports according to the
links between models;

2. (*, t): An internal message that is routed down to
all atomic components by Coordinators and is
used for synchronizing the three different transi-
tions of the atomic models;

3. (q, t): Input message;
4. (y, t): Output message;
5. (done, t): Finishing message.

The last three are intermediate messages produced

during the delivery of (@, t) and (*, t) messages.
Extra message types in the dynamic algorithm:

6. (sc*, t): A structural change requesting message

sent from Simulator to its supervised Coordinator,
or from a Coordinator to its parent Coordinator to
indicate that the model asks for a structural
change. Any Simulator or Coordinator can issue
this message;

7. (sc, t): A structural change message sent from a
Coordinator to its children, who sent out a request
for structural changes, indicating that the children
can carry out the structural change;

8. (start, t): An initializing message sent by Root
Coordinator after a structural change. After re-
ceiving the (done, t) messages from the models
experiencing structural changes, Root Coordinator
sends the (start, t) message to start a new simula-
tion phase. This message is used to initialize new-
added models, and to get the next imminent event
time for all the new models.

According to Chow et al. (1994), Root Coordinator

executes a message loop while simulation time steps for-
ward as time points when simulation events happen. As
shown in Figure 1, Root Coordinator executes (@, t) and
(*, t) in each message loop. In the regular DEVS simula-
tion, the layouts of the simulation components are static.
However, the layouts cannot stay unchanged if the dy-
namic structure is introduced in the simulation. These
changes might be triggered by the states and the inputs of
the models or by global simulation time. The triggering ef-
fectors might be found in the execution of (*, t) message.
Therefore, we conclude that the (*, t) message is the place
where structural changes might happen. Figure 2 shows the
case that a dynamic structure change happens during a
regular simulation process. Message sequence for struc-
tural change is shown in the dotted-line frame. Figure 2
presents a good expression on how the dynamic DEVS al-
gorithm migrates from the regular DEVS simulation algo-
rithm.
7

Shang and Wainer

Figure 1: Sequence without Structural Change Function

Figure 2: Sequence with Structural Change Function

The dynamic DEVS simulation algorithm is described
in different hierarchical levels: Root Coordinator, Coordi-
nator and Simulator.

Root Coordinator
t := tN of the topmost Coordinator
While t ≠ ∞
 Send (@, t) message to topmost Coordinator
 Wait for (done, t) message
 Send (*, t) message to topmost Coordinator
 if (sc*,tN) received from topmost Coordinator {

Send (sc, t) to topmost Coordinator
Wait for (done, t) message
Send (start, t) to topmost Coordinator
Wait for (done, tN) message }

 else
Wait for (done, tN) message

Coordinator
When (@, t) is received
 // Use Chow et al. (1994) algorithm.
End when

When (*, t) is received {
 if tL <= t <= tN {
 ...//use Chow et al. (1994) procedure for (*,t)

 Wait (done, tN) from all i in synchronize set.
 if (sc*, tN) received and tN=minimum {

 Retrieve model-changing list (modelname1,
 tN1),(modelname2, tN2),... supervised by
 current Coordinator.
 // modelname1 launches the structural
 // change procedure (“initial model”).
 Send (sc*, tN) to its parent Coordinator.}
Wait for (done, tN) messages
tL := t
tN := minimum of components’ tN’s
if current imminent component is the one
 among the model-changing list {
 Send (sc*, tN) to parent Coordinator }

Else {

(@,t)
(*,t)

(@,t)
(*,t)

(@,t)
(*,t)

T

T2 T1 … … Ti Tn

(@,t)
(*,t)

(@, t)
(*, t)

Ti T2 Tn

(@, t)
(*, t)

T1 … …

(@, t)
(*, t)

(@, t)
(*, t)

 (sc, t)
 (done, t)
 (start, t)
 (done, t)

Trigger

T

 (sc, t)
 (done, t)
 (start, t)
 (done, t)

Trigger
818
Clear the synchronize set
Send (done,tN) to parent Coordinator }

} else { raise an error }
} // End when

When receive (sc, t) message from its parent {
 Case: (t=tN and current message type of
 Coordinator is a structural change) {

 Backup current model set & links supervised
 by the Coordinator. }
 Case: (t=tN is for the initial model) {
 route (sc,t) down to initial child who
 sent (sc*,tN) previously.

 wait for (done,t) message from it.
 Case: (t=tN is ! for the initial model)

 send (sc,t) down to corresponding models
 wait for (done,t) message from them }

 Case: (t < tN)
forward this message to its children

 Case: (t<tL or t>tN)
raise error } // End Case

 Wait (done, t) from corresponding children.
 Current Coordinator processes structural
 change at its level.
 Send (done, t) to parent Coordinator
} // End when

When receive (start,t) from parent {
 Send (start, t) message to i
 ... // {i| i∈ D–D’}. D’ is the model set
before structural change, while D is current
model set after structural change.
 Wait (done, tN) from all components i
 Select tN = minimum of components’ tN’s
 Send (done, tN) to parent Coordinator
 if (component whose tN is minimum is in
model-changing list in the Coordinator) {

Coordinator sends (sc*,tN) to parent to
 trigger next step of structural change}

} // End when

Simulator
// Use Chow et al. (1994) algorithm for (@,t)
 and (*,t) messages.

When receive (*, t) message {
 if (current state, elapsed time, input bag or
 global time) reach critical points {

 Calculate tN for the structural change
 Send (sc*, tN) to its parent Coordinator }

 else
 execute regular simulations

} // End when

When receive (sc,t) from parent Coordinator
 if t ≠ tN { raise error }
 else {

S = δst(s, t, e, bag)
// structural transition function calculates
 new structure state.
Send (done,t) message to parent Coordinator }

} // End when

When receive (start, t) message from parent {

initialize the new models and new ports
tL := t
tN := tL + ta
s := s0 (the initial state of the model)
Send (done, tN) to parent Coordinator

} // End when

Shang and Wainer

Root Coordinator, Coordinator and Simulator de-
scribed above contain extended concepts comparing with
those defined in the regular DEVS simulation. Root Coor-
dinator is able to process the structural change requests and
to issue structural change commands. We incorporated the
function of the Network Executive mentioned in DSDE
into the two abstract simulators: Coordinator and Simula-
tor. In this way, the dynamic structure algorithm can be in-
tegrated into the regular simulation processes seamlessly.
Coordinator is liable to know all possible states of struc-
tural changes and migrations between those states. The
structure transition function in Coordinator is applied to
execute those migrations. The structure transition function
in Simulator executes structural changes within the associ-
ated atomic model. Our algorithm presents the launching
mechanism of the structural changes. As we have shown,
there are three steps in the structural change process:

• Requests for structural change: They always rise in an

internal message (*, t). When receiving a (*, t) mes-
sage, Each Simulator evaluates its states or/and its
simulation time. If they are critical, the Simulator will
send a request message (sc*, t) to its parent Coordina-
tor for a structural change. Structural change is a
chain of activities and these activities may span a pe-
riod. Some changes can be initiated by Simulator
while others cannot, such as adding a new atomic
model, deleting a existed model or adding a new link
between two models, etc. For the latter cases, the cor-
responding Coordinator launches structural changes
instead of Simulator. As a conclusion, either Coordi-
nator or Simulator can launch structural changes ac-
cording to different situations.

• Structural change processing: Both Simulator and Co-
ordinator perform structural change processes em-
ploying structural transition functions, which are in-
troduced specially for dynamic structural simulations.
In Simulator, structural transition function δst(s, t, e,
bag) is used to calculate the next structural state of an
atomic model. A new structural state is determined by
the current model state (critical state), elapsed time
since the immediately preceding state, input bag and
global simulation time. In Coordinator, the structural
change message (done, t) from the initial model trig-
gers the structure transition function. When a simula-
tion involves multiple levels, the structural change
should be executed from bottom to top.

• Structural change finishing: At this stage, the simula-
tion returns to the regular DEVS simulation process
without losing any unprocessed information. It is un-
der the control of Root Coordinator. After receiving
all (done, t) messages in response to their correspond-
ing (start, t) messages, Root Coordinator knows the
time for the next imminent event. Then global time is
advanced and simulations are stepped to a new stage.
819
4 CASE STUDY: AN AUTOMATED
MANUFACTURING SYSTEM

In this section, we discuss how to apply the above concept
to the model of an Automated Manufacturing System
(AMS), an extension of the models presented in Wainer et
al. (2005), Glinsky et al. (2004a), and Glinsky et al.
(2004b). The AMS is composed of dedicated stations that
perform tasks on products being assembled and conveyors
that transport the products to/from those workstations.

The proposed AMS is a flow shop of autos. It consists

of five parts:

1. Scheduler: Production cycle organization;
2. Display Controller: AMS status display;
3. Controller Unit: Conveyors control according to

the production cycle provided by Scheduler;
4. Conveyors: Products transportation;
5. Workstations: Taking care of task implementation

and quality control. (ES: Engine Assembly Work-
station; PS: Painting Workstation; BS: Baking
Workstation; QC: Quality Control Center; SS:
Store Workstation).

The Scheduler knows the production cycle and indi-

cates Controller Unit to execute the production cycle on
both conveyors. Autos being manufactured are delivered to
each workstation (in order to be served step by step) by the
conveyors. The ES workstation takes charge of engine
parts assembly; the PS workstation undertakes the painting
task and other special painting tasks; baking is the subse-
quent procedure in the BS workstation after painting; the
QC workstation serves as a quality center to evaluate the
quality of autos; and the Store workstation distributes the
autos to their corresponding warehouses. Figure 4 shows
the layouts of the AMS system.

4.1 Dynamic Components of AMS System

During the system running, the structure of the AMS
would not stay unchanged all the times. Some times, struc-
tural adjustment should be made to adapt to the changes of
external environment. Two kinds of system adjustments
are considered:

1. Workstation duty shifts (the workstations has dif-

ferent working capacity during day and night.);
2. In the PS workstation, two possible tasks are per-

formed: color painting and chrome painting.
Autos need color painting or both color painting
and chrome painting. Painting selection is deter-
mined by the ‘control’ model residing in the PS
workstation.

Shang and Wainer

Figure 4: The Automated Manufacturing System Model

4.2 Case 1: Workstation Duty Shifts

According to the DSDE formal specification, the behav-
iors of the basic model ς are shown in figure 5 and figure
6. ES and ES’, representing engine workstation during
daytime and night respectively, can be considered as two
structural states of the basic model ς. Zes,0 and Zes,1
represent the input functions of ES and ES’; while Zς,0
and Zς,1 represent the output functions of the structural
model ς. χ is the Network Executive described in DSDE.

Figure 5: ES Structure Layout During Daytime

Figure 6: ES’ Structure Layout During Night
820
Assume that the working time is 30mins during day-
time while 40mins during night. Daytime duty is from
8:00am to 5:00pm everyday, the rest is the nighttime duty.
The structural change is implemented as follows:

1. When ES reaches the critical time points (critical

time point tc = {t| t∈[8:00am, 5:00pm], 5:00pm –
t <= 30mins} or {t| t∈[5:00pm, 8:00am], 8:00am
– t <= 40mins}), calculates tN for the coming
structural change, sends (sc*, t) message to Top
Coordinator.

2. If the tN is the minimum one, Top Coordinator
sends (sc*, t) message to Root Coordinator.

3. Root Coordinator forwards the current simula-
tion time to tN and issues (sc, t) message.

4. Top Coordinator receives (sc, t) and sends it to
the basic model ς.

5. Simulator associated with the basic model ς cal-
culates the new structural state using the struc-
tural transition function δst, a (done, t) message is
sent back.

6. Root Coordinator sends (start, t) message to ini-
tialize the new simulation stage. When (done, t)
messages are received, a new regular simulation
stage begins.

Shang and Wainer

4.3 Case 2: Dynamic Components in PS Workstation

The PS workstation is a coupled model including four
atomic models: Controller, Color, Chrome and Painter.
The atomic model ‘Chrome’ is an optional component.
Painting selection is determined by the ‘Controller’. Fig-
ure 7 and 8 show the two structural states of the network
model Θ. Zi,α (i = Controller, Color, Chrome and Painting;
α = 0,1)is the input function of the atomic models while
ZΘ,α is the output function of the network model Θ. Zχ is
the input function of the Network Executive χ.

Figure 7: Painting Mode I in PS Workstation

Figure 8: Painting Mode II in PS Workstation

Generally, the autos on the conveyor are painted with

specific colors. Therefore only the atomic model ‘Color’
is needed in the PS. Assume that the current bulk of autos
on the conveyor need to be painted both color and
chrome. The atomic model ‘Chrome’ should be added
into PS automatically. When the Simulator associated
with the atomic model ‘Controller’ detects this change,
the following structural change happens:

821
1. The Simulator associated with the basic model
‘Controller’ sends (sc*, tN) message (here tN
can be the current time, which means structural
change will happen right away) to its parent Co-
ordinator, which is associated with the network
model Θ.

2. The Coordinator retrieves the model-changing
list according to the message value in (sc*, t)
message from Simulator ‘Controller’. The
model-changing list should be: (Controller, tN1),
(Chrome, tN2), (Painting, tN3). The Coordinator
then sends (sc*, t) message upwards.

3. At time tN1, when the Coordinator receives (sc,
t) message from its parent, it forwards the mes-
sage to its corresponding Simulator (here are the
Simulators associated with the basic models
‘Controller’, ‘Chrome’ and ‘Painter’ because tN1
= tN2 = tN3) under its supervision.

4. When the Simulators receive the (sc, t) message,
corresponding structural changes are imple-
mented and (done, t) messages are sent back to
the Coordinator.

5. When all structural changes in the Simulators
supervised by the Coordinator Θ finish, the Co-
ordinator Θ begins to execute structural changes
on its own level. In this case, new links are cre-
ated between ‘Controller’, ‘Chrome’ and
‘Painter’. A (done, t) message is returned to the
upper level Coordinator.

6. A (start, t) is issued by Root Coordinator once
the structural changes finish. After getting next
imminent tN, global simulation time is stepped
forward to this tN. Root Coordinator issues a (@,
t) message and a new stage of simulation begins.

5 CONCLUSIONS

We presented a more practical simulation algorithm for
Dynamic Structure DEVS modeling and simulation. Our
proposal stems from both DSDE and dynDEVS algo-
rithms. We used the DSDE formal specifications, and
parts of dynDEVS simulation algorithms. We integrated
the functions of Network Executives into the correspond-
ing Simulators and Coordinators by introducing the struc-
ture transition functions in Simulators and Coordinators.
We inherited the message types used in the regular DEVS
algorithm while special message types conducting dy-
namic structural changes are devised. We also have a spe-
cific mechanism to launch dynamic structural changes,
which links the regular state transitions of models and the
structure transitions of some models in simulation proc-
esses. Hence, our proposed dynamic algorithm has been
embedded into the regular DEVS simulation algorithm
seamlessly.

Shang and Wainer

We provided ground for user-defined model design
and simulation (state transition functions, structure transi-
tion functions and output functions). Users can focus on
their application-oriented model design (how to devise the
transition functions mentioned above for their own mod-
els) while some common parts can be reused. Model de-
sign and simulation architecture based on DEVS theory
has been extended by involving the structure transition
functions and our proposed launching mechanism. This
also provides a sound base for the execution of real-time
simulations with dynamic components.

REFERENCES

Barros, F. J. 1995. Dynamic Structure Discrete Event Sys-
tem Specifications: A New Formalism for Dynamic
Structure Modeling and Simulation. Proceedings of
the 1995 Winter Simulation Conference. pp.781-785.
Arlington, USA.

Barros, F. J. 1998. Abstract Simulators for the DSDE
Formalism. Proceedings of the 1998 Winter Simula-
tion Conference. pp.407-412. Washington DC, USA.

Barros, F. J. 1997. Modelling Formalisms for Dynamic
Structure Systems. ACM Transactions on Modeling
and Computer Simulation. Vol. 7, No. 4, pp. 501-
515.

Cho, S., and T. G. Kim. 2001. Real Time Simulation
Framework for RT-DEVS Models. Transactions of
the Society for Computer Simulation International.
Vol. 18, No. 4, pp. 203 – 215.

Cho, Y. K., B. P. Zeigler, H. J. Cho, H. S. Sarjoughian,
and S. Sen. 2000. Design Considerations for Distrib-
uted Real-Time DEVS. AIS 2000. Tucson, USA.

Chow, A.C., and B. P. Zeigler. 1994. Revised DEVS: A
Parallel, Hierarchical, Modular Modeling Formalism.
Proceedings of the SCS Winter Simulation Confer-
ence.

Glinsky, E., and G. Wainer. 2004a. Modeling and Simula-
tion of Systems with Hardware-in-the-loop. Proceed-
ings of the 2004 Winter Simulation Conference.
Washington DC, USA.

Glinsky, E., and G. Wainer. 2004b. Model-Based Devel-
opment of Embedded Systems with RT-CD++. Pro-
ceedings of the WIP session, IEEE Real-Time and
Embedded Technology and Applications Symposium.
Toronto, Canada.

Hong, J., H. Song, T. G. Kim, and K. H. Park. 1997. A
Real-time Discrete Event System Specification For-
malism for Seamless Real-time Software Develop-
ment. Discrete Event Dynamic systems: Theory and
Applications, Vol. 7, No. 4, pp. 355-375.

Kim, T.G., S. M. Cho, and W. B. Lee. 2001. DEVS
Framework for Systems Development. Discrete
Event Modeling & Simulation: Enabling Future
Technologies. Springer-Verlag.
822
Uhrmacher, A. M. 2001. Dynamic Structure in Modeling
and Simulation: A Reflective Approach. ACM Trans-
actions on Modeling and Computer Simulation. Vol.
11, No. 2, pp. 206-232.

Uhrmacher, A. M., and J. Himmeelspach. 2004. Process-
ing dynamic PDEVS models. Proceedings of the
IEEE Computer Society’s 12th Annual International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems
(MASCOTS’04). Volenlam, Netherlands.

Wainer, G., E. Glinsky, and P. Macsween. 2005. Model-
Driven Architecture of Real-Time Systems. Model-
driven Software Development - Volume II of Re-
search and Practice in Software Engineering. S.
Beydeda and V. Gruhn eds., Springer-Verlag.

Zeigler, B. P., T. Kim, and H. Praehofer. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Aca-
demic Press.

AUTHOR BIOGRAPHIES

HUI SHANG is currently pursing her Master of Science
degree at the Department of Systems and Computer Engi-
neering at Carleton University. Her research interests are
focused on DEVS simulation and dynamic structure simu-
lation. Her e-mail address is <shanghui@sce.
carleton.ca>.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D.degrees (1998, with highest honors) of the Universi-
dad de Buenos Aires, Argentina, and Université d’Aix-
arseille III, France. He is Associate Professor in the Dept.
of Systems and Computer Engineering, Carleton Univer-
sity (Ottawa, ON, Canada). He was Assistant Professor at
the Computer Sciences Dept. of the Universidad de Bue-
nos Aires, and a visiting research scholar at the Uni-
versity of Arizona and LSIS, CNRS, France. He is
Associate Editor of the Transactions of the SCS. He
is Associate Director of the Ottawa Center of The
McLeod Institute of Simulation Sciences and a coor-
dinator of an international group on DEVS standardi-
zation. His email and web addresses are
<gwainer@sce.carleton.ca> and <www.sce.
carleton.ca/faculty/wainer>.

mailto:shanghui@sce.carleton.ca
mailto:shanghui@sce.carleton.ca
mailto:<gwainer@sce.carleton.ca>
http://www.sce.carleton.ca/faculty/wainer
http://www.sce.carleton.ca/faculty/wainer

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

