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ABSTRACT

We use jackknife-based estimators to reduce bias when

estimating the optimal value of a stochastic program. Our

discussion focuses on an asset allocation model with a power

utility function. As we will describe, estimating the optimal

value of such a problem plays a key role in establishing the

quality of a candidate solution, and reducing bias improves

our ability to do so efficiently. We develop a jackknife

estimator that is adaptive in that it does not assume the

order of the bias is known a priori.

1 INTRODUCTION

Monte Carlo simulation is used in assessing whether a

candidate solution to a stochastic program is near opti-

mal, when we cannot solve the stochastic program exactly.

Optimizing a sample-mean estimator yields an optimistic

bound, in expectation, on the original problem’s optimal

value, say, z∗. Restated, maximizing a sample mean yields

a positively-biased estimate of z∗. Such bounds are anal-

ogous to optimistic bounds that arise, e.g., via Lagrangian

or integrality relaxations in deterministic integer and non-

linear programming. A weak relaxation bound yields a

weak statement regarding the quality of a candidate solu-

tion. Similarly, when our estimate of the optimal value

has large bias, it can significantly degrade our ability to

establish that a candidate solution is near optimal. So, in

this paper we seek to tighten an optimized sample-mean

bound, reducing its bias using jackknife-based estimators.

Unlike existing jackknife estimators, we do not assume the

order of the bias is known when forming the estimator. Our

approach is illustrated on an asset allocation model with a

power utility function.

An overview of stochastic programming, and other ap-

proaches to problems that arise in finance, including pricing

single instruments, time-static asset allocation, and time-

dynamic asset-liability management is given in Ziemba and

Mulvey (1998). Monte Carlo methods have seen extensive
7831-4244-0501-7/06/$20.00 ©2006 IEEE
application to pricing financial securities; see, e.g., Ander-

sen and Broadie (2004), Fu et al. (2001), and Glasserman

(2003). Asymptotic justification of replacing population

means with sample-mean estimators in portfolio optimiza-

tion is discussed in Jensen and King (1992). The type

of simulation-based solution-quality assessments we make

here have also been done in the context of portfolio opti-

mization in Morton et al. (2003, 2006), but those papers do

not include bias-reducing estimators.

We consider a portfolio allocation problem with m as-

sets. These assets have random returns ξ = (ξ1, . . . , ξm) ≥
0. The allocation problem selects the proportion, x =
(x1, . . . , xm), to invest in each asset to maximize ex-

pected utility. The random return of allocation x is

ξx ≡∑m
j=1

ξjxj . We assume that ξ’s distribution is known,

has finite second moments, does not depend on x, and that we

can generate independent and identically distributed (i.i.d.)

observations of ξ. If ξ1 takes value 1.5 and ξ2 takes value

0.75 then we have a 50% return on the first asset and a loss

of 25% on the second asset. The asset allocation problem

is

z∗ = max
x∈X

Eu(x, ξ), (1)

where X = {x :
∑m

j=1
xj = 1, xj ≥ 0, j = 1, . . . ,m}

and u(x, ξ) = (ξx)γ −c‖x−xt‖2
2. The constraint set X re-

quires all proportions sum to one and disallows shortselling.

Eu(x, ξ) is the expected utility obtained by allocation x.

Our primary objective is to maximize the expected

value of the power utility function of return, up(·) = (·)γ ,

where γ ∈ (0, 1) captures the decision maker’s aversion to

risk. This is augmented by a secondary penalty term with

0 ≤ c ≪ 1. This discourages deviation from the investor’s

existing target portfolio, xt ∈ X , unless the power utility

provides a reason to do so. If xt is unknown or the secondary

objective is not desired we set c = 0. The approach we

describe applies to a wide variety of utility functions, but

in this paper we restrict ourselves to this variant of the

power utility. The power utility function exhibits increasing
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absolute risk aversion (defined as RA(z) = −u′′

p(z)/u′

p(z))
and constant relative risk aversion (defined as RR(z) =
RA(z)z). Under a utility function with constant relative

risk aversion, the fraction of initial wealth that one invests

in risky assets does not change as initial wealth is increased.

Eu(x, ξ) is well defined for all x ∈ X since ξ is

integrable. The feasible region of (1) is compact, and

uo(x) = Eu(x, ξ) is continuous on X . Hence, a finite

optimal solution of (1) is achieved for some x∗ ∈ X .

2 QUALITY-ASSESSMENT PROCEDURE

In this section, we discuss using Monte Carlo simulation

to approximately solve (1) and review a simulation-based

multiple replication procedure (MRP) used to assess the

quality of a candidate solution. It is this MRP that our

jackknife estimators of Section 3 aim to improve.

2.1 Monte Carlo Simulation Approach

Our ability to solve (1) rests, in part, on our ability to evaluate

Eu(x, ξ). Unless the distribution of ξ is particularly simple,

it is usually impossible to evaluate Eu(x, ξ) exactly, even for

a fixed allocation vector x ∈ X . When exact computation is

not viable, it is natural to replace Eu(x, ξ) with a sampling-

based estimator, which lends itself to computation. This

paper considers estimators rooted in the sample mean of

i.i.d. observations. With ξi, i = 1, . . . , n, i.i.d. as ξ, we can

approximately solve (1) by solving

z∗n = max
x∈X

[

ūn(x) ≡ 1

n

n
∑

i=1

u(x, ξi)

]

. (2)

Let x∗

n solve (2). Our utility function satisfies

u(x, ξ) ≤ (ξ1 + · · · + ξm)γ , ∀x ∈ X. (3)

Thus, u(x, ξ) is uniformly (in x ∈ X) bounded by the

right-hand side of (3), which is integrable since concavity

of (·)γ implies E(ξ1 + · · ·+ ξm)γ ≤ (Eξ1 + · · ·+ Eξm)γ .

This, coupled with the fact that uo(x) = Eu(x, ξ) is con-

tinuous and X is compact, is sufficient (Attouch and Wets

1990, Theorem 4.3) to ensure that i.i.d. sampling yields:

(i) limn→∞ x∗

n = x∗, w.p.1, and (ii) limn→∞ z∗n = z∗,

w.p.1. Result (i) is often stated in the weaker form “all

accumulation points of {x∗

n} solve (1), w.p.1.” However,

the objective functions of (1) and (2) are strictly concave

and X is compact, so x∗ is unique and x∗

n is unique,

given ξ1, . . . , ξn. For more on such convergence results,

as well as results concerning rates of convergence, see the

survey of Shapiro (2003) or Dupačová and Wets (1988)

and King and Rockafellar (1993). The following results

are from Mak et al. (1999) and Norkin et al. (1998): (iii)
784
Ez∗n ≥ z∗, and (iv) Ez∗n ≥ Ez∗n+1. Result (iii) holds pro-

vided Eūn(x) = Eu(x, ξ) and (iv) provided the sampling is

i.i.d. These show that the optimal value of (2) has positive

bias and that this bias shrinks as n grows.

2.2 Assessing Solution Quality

Given a feasible candidate solution to (1), x̂ ∈ X , it is

natural to wish to assess x̂’s quality. The candidate solution

x̂ can be obtained by solving (2) or by any other means.

Here, we measure quality via the optimality gap, µx̂ =
z∗ − Eu(x̂, ξ). We view µx̂ as an unknown parameter

and we seek point and interval estimators for µx̂. We can

estimate Eu(x̂, ξ) by ūn(x̂) and z∗ by solving (2) for z∗n.

The former estimator is unbiased but that latter has positive

bias. As a result, we obtain a positively-biased estimator of

µx̂ by Gn(x̂) = z∗n − ūn(x̂), i.e., EGn(x̂) ≥ µx̂ ≥ 0. So,

if we can infer EGn(x̂) is small then we can infer the same

for µx̂, i.e., that x̂ is a high-quality solution. This leads us to

seek an approximate one-sided α-level confidence interval

(CI) of the form

P (EGn(x̂) ≤ ǫ) ≈ α. (4)

Here, ǫ is a random CI width and we choose, e.g., α =
0.95. If (4) holds with equality then P (µx̂ ≤ ǫ) ≥ α.

The following procedure from Mak et al. (1998) forms

i.i.d. replicates of Gn(x̂). (We note that even though Gn(x̂),
in general, can be non-normal, in Bayraksan and Morton

2006 we develop an asymptotically-valid single-replication

procedure.)

Multiple Replication Procedure (MRPo)

Input: Value α ∈ (0, 1), sample size n, replication size r,

and candidate solution x̂ ∈ X .

Output: Approximate α-level CI on µx̂.

1. For k = 1, . . . , r,

• Generate ξk1, . . . , ξkn i.i.d. as ξ.

• Let ūn(x) = 1

n

∑n
i=1

u(x, ξki).

• Let Gk
n(x̂) = maxx∈X ūn(x) − ūn(x̂).

2. Calculate gap estimate and sample variance by

Ḡo
rn(x̂) =

1

r

r
∑

k=1

Gk
n(x̂), and

s2
o(x̂) =

1

r − 1

r
∑

k=1

(Gk
n(x̂) − Ḡo

rn(x̂))2.

3. Form CI for µx̂ as,

[

0, Ḡo
rn(x̂) +

tr−1,αso(x̂)√
r

]

.
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Here, tr−1,α is the α quantile of a t random variable with

r − 1 degrees of freedom. Validity of the MRPo’s CI on

µx̂ = z∗ − Eu(x̂, ξ) is due to the CLT

√
r
[

Ḡo
rn(x̂) − EGn(x̂)

]

⇒ N(0, σ2
o(x̂)) as r → ∞,

the fact that s2
o(x̂) is a consistent estimator of σ2

o(x̂) =
var Gn(x̂) and EGn(x̂) ≥ µx̂. In terms of (4), ǫ = Ḡo

rn(x̂)+
tr−1,αso(x̂)/

√
r. Three factors, which we express in their

population forms, contribute to this CI width: (i) z∗ −
Eu(x̂, ξ), i.e., the true optimality gap, (ii) the sampling

error tr−1,ασo(x̂)/
√

r, and (iii) the bias which arises due

to replacing z∗ by z∗n, i.e., b(z∗n) = Ez∗n − z∗. It is our

experience that bias often dominates the other factors, and

in the remainder of this paper we propose estimators to

reduce this bias.

3 JACKKNIFE ESTIMATORS

As indicated above, the bias of estimator z∗n can significantly

degrade our ability to assess the quality of a candidate asset

allocation decision. Of course, one way to reduce this bias is

to increase the sample size n, but this can be computationally

expensive since the effort to solve the approximation problem

(2) typically grows faster than linear with n. Furthermore,

unless overly restrictive assumptions are made, it appears

unlikely that an analytical expression for the asymptotic

form of the bias can be derived. So, in this section we

attempt to reduce bias using jackknife estimators.

3.1 Generalized Jackknife Estimator

The jackknife estimator developed by Quenouille (1949) has

become an important tool in simulation and data analysis for

reducing bias. The standard jackknife estimator is used to

eliminate O(n−1) bias and we briefly review its derivation

as it motivates our adaptive estimator. Suppose gn is an

estimator of gµ based on n i.i.d. observations and assume

b(gn) = O(n−1). More specifically, consider

Egn = gµ + a1/n + a2/n2 + · · · (5a)

Egm = gµ + a1/m + a2/m2 + · · · , (5b)

where m < n. We multiply (5a) by n, (5b) by

m and subtract the latter from the former to obtain

E [(ngn − mgm)/(n − m)] = gµ + O((nm)−1). For rea-

sons that become clear in Section 3.2, we assume n is even

and use m = n
2

. We view this derivation as solving the

two equations in (5) for two unknowns, namely gµ and a1,

and this suggests estimating gµ by Jn = (2ngn −ngn

2
)/n,

which has lower-order bias than gn.

In Bayraksan et al. (2006), we show that the approx-

imating problem (2) can have b(z∗n) = O(n−p) for any
785
p ∈ [1/2,∞). This motivates assuming

b(z∗n) = Ez∗n − z∗ = a1/np + o(n−p). (6)

Mimicking the above derivation of the standard jackknife

estimator leads to the generalized jackknife estimator as

developed by Gray and Schucany (1972)

Jp
n =

(2n)pz∗n − npz∗n
2

(2n)p − np
, (7)

where z∗n is the optimal value to (2) and z∗n
2

is the optimal

value of (2) with half the observations deleted, i.e.,

z∗n
2

= max
x∈X

2

n

n

2
∑

i=1

u(x, ξi).

Of course, ξ1, . . . , ξn are i.i.d. and so z∗n
2

could be formed

with any subset of the observations of size n
2

. In the

procedure below we replace z∗n
2

in (7) by the average of

two observations based on ξ1, . . . , ξ
n

2 and ξ
n

2
+1, . . . , ξn.

Unfortunately, we are unlikely to know the true order of

the bias, p. We will form the generalized jackknife estimator

using parameter q and reserve notation p to denote the true

(and unknown) order of the bias. The following simple

but useful result rests only on the monotonicity property

Ez∗n ≤ Ez∗n
2

, and helps guide our choice of q.

Theorem 1 Let 0 < q1 < q2. Then EJq1

n ≤
EJq2

n ≤ Ez∗n and limq→∞ EJq
n = Ez∗n.

As q → ∞ for fixed n, Jq
n → z∗n, w.p.1, i.e., large

values of q effectively correspond to our original upper

bound estimator and smaller values of q are more aggres-

sive with respect to removing bias, with the risk that the

corresponding “upper bound” estimator is smaller than z∗.

The following multiple replication procedure with general-

ized jackknife estimators uses the above ideas except that the

jackknife estimator is expressed in terms of the underlying

gap estimator instead of z∗n.

Generalized Jackknife MRP (MRPq)

Input: Value α ∈ (0, 1), sample size n, replication size r,

jackknife parameter q, and candidate solution x̂ ∈ X .

Output: Approximate α-level CI on µx̂.

1. For k = 1, . . . , r,

• Generate ξ̃k1, . . . , ξ̃kn i.i.d. as ξ.



Partani, Morton, and Popova
• Let

Gk
n(x̂) = max

x∈X

1

n

n
∑

i=1

u(x, ξki) −

1

n

n
∑

i=1

u(x̂, ξki),

Gk,1
n

2

(x̂) = max
x∈X

2

n

n

2
∑

i=1

u(x, ξki) −

2

n

n

2
∑

i=1

u(x̂, ξki),

Gk,2
n

2

(x̂) = max
x∈X

2

n

n
∑

i= n

2
+1

u(x, ξki) −

2

n

n
∑

i= n

2
+1

u(x̂, ξki),

Ḡk
n

2

(x̂) =
1

2

[

Gk,1
n

2

(x̂) + Gk,2
n

2

(x̂)
]

.

• Form

Jqk
n =

(2n)qGk
n(x̂) − nqḠk

n

2

(x̂)

(2n)q − nq
.

2. Calculate gap estimate and sample variance by

Ḡq
rn(x̂) =

1

r

r
∑

k=1

Jqk
n , and

s2
q(x̂) =

1

r − 1

r
∑

k=1

(Jqk
n − Ḡq

rn(x̂))2.

3. Form CI for µx̂ as,

[

0, Ḡq
rn(x̂) +

tr−1,αsq(x̂)√
r

]

.

The following quantity, ρ, compares the asymptotic

decrease in the bias of the generalized jackknife estimator

relative to the bias of the original estimator in the MRPo

of Section 2.2:

ρ =

∣

∣

∣

∣

lim
n→∞

lim
r→∞

Ḡq
rn(x̂) − µx̂

Ḡo
rn(x̂) − µx̂

∣

∣

∣

∣

.

The following result is adapted to our setting from Gray

and Schucany (1972, Theorem 3.4).

Theorem 2 Consider the gap estimator of the

MRPq . Assume b(z∗n) = a1n
−p1 +a2n

−p2 +o(n−p2) where

p2 > p1 and a1 6= 0. Then,
78
(i) if q = p1 then ρ = 0;

(ii) if q > p1

2
and q 6= p1 then 0 < ρ < 1;

(iii) if q = p1

2
then ρ = 1; and,

(iv) if 0 < q < p1

2
then 1 < ρ < ∞.

Typically, when attempting to reduce bias via the gen-

eralized jackknife, one derives or postulates an asymptotic

bias expansion (e.g., (5) or (6) or otherwise), and then

employs the order-p jackknife if the expansion is O(n−p).
However, we seek a one-sided CI on µx̂ and in reducing

bias in z∗n we prefer to be conservative and err on the

“high” side. Theorem 1 provides guidance in this regard.

If b(z∗n) = O(n−p) we prefer to use MRPq with q > p.

Theorem 2 ensures we will achieve (asymptotic) bias reduc-

tion by using these conservative values of q. This approach

is complicated by the fact that p is unknown, and so we

address this issue next.

3.2 Adaptive Jackknife Estimator

The adaptive jackknife estimator is derived as follows. We

assume b(z∗n) satisfies (6). We let n be an integral multiple

of 4 and form

Ez∗n = z∗ + a1/n−p + o(n−p)

Ez∗n
2

= z∗ + a1/(n/2)−p + o(n−p)

Ez∗n
4

= z∗ + a1/(n/4)−p + o(n−p).

We view these as three equations in three unknowns, z∗,

a1 and p. Solving for p and dropping the o(·) terms, yields

p = log2

(

Ez∗n
4

− Ez∗n
2

Ez∗n
2

− Ez∗n

)

. (8)

Our estimate of p replaces the expectations on the right-hand

sides of (8) with sample means. We do this in the following

manner: Given a sample ξ1, . . . , ξn, we partition the sample

into two subsamples of size n/2 and, in turn, partition those

subsamples into four subsamples of size n/4. We then form

a single observation of z∗n, average two i.i.d. estimates of

z∗n
2

, and average four i.i.d. estimates of z∗n
4

. Repeating this

with r i.i.d. replications we form estimators we denote z̄∗rn,

z̄∗r n

2

, and z̄∗r n

4

. These sample-mean estimators replace their

population counterparts in (8) to yield

pa
rn = log2

(

z̄∗r n

4

− z̄∗r n

2

z̄∗r n

2

− z̄∗rn

)

,

which is a nonlinear function, pa
rn = f(Zrn), of three

sample means Zrn = (z̄∗r n

4

, z̄∗r n

2

, z̄∗rn). Let Σ̂ denote the

standard sample covariance estimator of Zrn. Using a first-

order Taylor series expansion, we can estimate the variance
6
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of pa
rn as

s2
p = ∇T f(Zrn) Σ̂∇f(Zrn).

We could correct for bias in pa
rn using a second-order

Taylor series, but we do not do so because when we tested

this for problem instances described in the next section,

the associated bias corrections for p were of negligible

magnitude.

We could form an adaptive jackknife procedure by

simply using q = pa
rn in MRPq . We do not do so for the

reasons described at the end of Section 3.1, i.e., we seek a

conservative procedure. We instead let

q = max{pa
rn,

1

2
} + tr−1,βsp. (9)

We know from Theorem 1 that our bias reduction is less

aggressive for larger values of q and so as β grows toward

one, and the corresponding t quantile grows, our procedure

becomes more conservative. With β at our disposal we

examine the performance of a family of adaptive jackknife

estimators in the next section. Of course, the freedom

to choose a parameter such as β can be disconcerting to

some. In this case, we recommend choosing β = 1

2
+ α

2
.

This choice inflates the value of β relative to α, takes

the correct value as α approaches one and only allows

choosing q ≥ pa
rn. Under relatively mild conditions (see,

e.g., Shapiro 2003), we know b(z∗n) = O(n−p) for p ≥ 1/2,

and hence we include the max operator in (9). We also note

that sp already includes the “r−1/2” since Σ̂ is the sample

covariance of a vector of sample means. For more details

on adaptive jackknife estimators, see Partani (2006).

4 NUMERICAL RESULTS

In this section we compare the behavior of our estimators on

the asset allocation model (1) with γ = 0.2 and c = 0.002.

We construct a portfolio out of 14 Exchange-Traded Funds

(ETFs). These funds are designed to track certain market

indices. Table 1 indicates the selected funds, the indices

they track, the annualized means and standard deviations

of return, and the corresponding information ratios (annual

mean return divided by annual standard deviation) for the

five years of monthly data we used from 1999 to 2004.

We modeled the 14-dimensional monthly return vector

using a multivariate normal distribution. This assumption

allows us to solve model (1) exactly, and therefore simu-

lation is not needed. Our primary purpose for making this

assumption is so we can better assess the performance of our

estimators. That said, normal distributions appeared rep-

resentative of our monthly return data. We performed 14

Kolmogorov–Smirnov goodness-of-fit tests (one for each

marginal), and 13 of the 14 failed to reject the normal

hypothesis at a 0.05-level of significance. The normal hy-
787
Table 1: 14 Exchange-Traded Funds (ETFs) with the ETF

Ticker Symbol, the Index Being Tracked, Annualized Mean

(M) and Standard Deviation (SD) of Return, and the Infor-

mation Ratio (IR)

Ticker Tracked Index M(%) SD(%) IR

QQQ NASDAQ -7.9 40.4 -0.20

SPX S&P 500 -4.3 16.1 -0.27

OEX S&P 100 -5.1 17.5 -0.29

MDY Midcap 6.3 17.9 0.35

RTY Russell 3000 5.4 21.8 0.25

MSH Morgan Stanley High Tech -1.1 40.9 -0.03

TXX CBOE Technology 0.9 41.2 0.02

IIX AMEX Internet -11.7 51.7 -0.23

BTK AMEX Biotechnology 19.3 52.1 0.37

GOX CBOE Gold 5.5 39.2 0.14

XAU Gold & Silver 0.8 36.0 0.02

OSX Oil 3.0 34.6 0.09

BKX Bank Sector -0.8 23.4 -0.04

DRG Pharmaceutical -4.1 17.5 -0.23

pothesis is more plausible for index-type funds than for

stocks because the funds track indices that average many

underlying stocks. As a result, heavy tails that can arise

for individual stocks are less pronounced in such funds.

Table 2 contains the correlation coefficients of the monthly

returns. We note that normally-distributed returns are in-

consistent with our earlier assumption that ξ ≥ 0, i.e., with

the normal distribution we can lose more money than we

invest. However, the mean returns are large enough relative

to the standard deviations that this probability is negligible

(particularly for the funds selected during the course of the

optimization algorithm).

Our underlying uniform random variates were generated

by the combined multiple recursive generator of L’Ecuyer

(1999). We generated scalar normal variates using the polar

method and formed the vector normal variates using the

standard approach with the Cholesky factor of the estimated

covariance matrix. We solved instances of (2) calling the

Ipopt nonlinear programming solver (Wächter and Biegler

2006). The computations were carried out on a 2.8 GHz

Dell Xeon dual-processor computer with 1 GB of memory,

although we only use one of the processors.

Table 3 shows x∗ and the results of solving N
i.i.d. replications of (2) with samples sizes ranging from

n = 25 to n = 800. (We used N = 8000 for n = 25,

N = 4000 for n = 50 and N = 2000 for n = 100, . . . , 800,

and for Table 3 only we used c = 0.) The solution x̄∗

n is

the average of the optimal solutions x∗

n across the N repli-

cations. MSE indicates the empirical mean-square error of

x∗

n, i.e., ‖x∗

n −x∗‖2
2 averaged over the N replications. The

highest allocation in x∗ is in the AMEX Biotech index,

which had the best risk/return performance based on the

historical returns. In particular, its information ratio (IR) is

0.37, as shown in Table 1. For comparison, the S&P 500

index lost money over our 5-year period. The next fund
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Figure 1: CI Width Versus Sample Size for the MRPo

with positive allocation is the CBOE Gold index, with an

IR of 0.14. The final positive weight is the Midcap index

with an IR of 0.35. The solution x∗ makes sense from a

diversification perspective since the correlation between the

Biotech and Gold indices is almost zero and the correlation

between the Biotech and the Midcap indices is positive.

The highest allocation goes to the top funds, in terms of

reward for the risk taken, but the allocation to the Gold

index reduces the total risk of the portfolio. Assets QQQ,

SPX and OEX always had zero allocation and are not listed

in the table. The values of x̄∗

n for small n might suggest

the associated solutions x∗

n are more diverse than those for

larger n and x∗. This is not the case, as shown by the

average number of nonzero (with a zero tolerance of 10−4)

allocations in x∗

n, listed as NZ. As the sample size n grows,

the solutions appear to be converging to x∗. The optimal

solution x∗ of (1) is unique, but Table 3 suggests that the

set of near-optimal solutions is of significant size. Such

solutions are obtained when we optimize the sample mean

in place of the population mean. This is precisely the type

of situation that leads to z∗n having significant bias.

Figure 1 shows the confidence interval on µx̂ generated

by MRPo using r = 40, α = 0.95, and varying n from

25 to 50 to 100. We obtained x̂ by solving an instance of

(2) with n = 400, and we obtained the existing investor’s

portfolio, xt, by solving a separate instance with n = 400.

The figure is based on averaging the output of MRPo over

N = 2000 runs. The CI width is partitioned into the three

factors discussed in Section 2.2, namely the optimality gap,

the sampling error and the bias. Here, the bias estimate is

formed by subtracting the known optimality gap from the

average of the N = 2000 point estimates Ḡo
rn. We note that

z∗ = 1.0015. So, the x̂ we are using is suboptimal by about

0.02%, and with n = 100 we are forming a 0.95-level CI on

that optimality gap whose width is roughly 0.1% of z∗. We
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can clearly see from the figure that bias dominates the CI

width. This motivates use of the bias reduction techniques

we have proposed.

We assess the performance of three optimality-gap point

and interval estimators, denoted as follows: (i) Do, the

point estimate Ḡo
rn and interval estimate of the MRPo in

Section 2.2 in which we do not attempt to reduce bias; (ii)

J1, the standard jackknife estimator, i.e., Ḡq
rn and MRPq

of Section 3.1 with q = 1; and, (iii) Dβ , the adaptive

generalized jackknife estimator in which we choose q via

(9) and use this in Ḡq
rn and MRPq . For Dβ we consider β

ranging from 0.70 up to 0.99. Throughout we use n = 100
and r = 40.

We begin by forming an empirical estimate of the

mean-square error (MSE) of each estimator. We did so

using N = 2000 i.i.d. runs of each procedure (i)-(iii) above.

The estimated MSE of Do and J1 were 4.5 × 10−7, and

3.5 × 10−8, respectively. Figure 2(a) shows the MSE of

Dβ for various values of β, and also includes those of Do

and J1 for reference. Figures 2(b)-(d) show the negative

and positive part of MSE and the probability the gap point

estimate is below µx̂. Because of the nature of our point and

interval estimators, we prefer estimators in which MSE− and

this probability are small. Restated, in choosing between

two estimators, we may prefer an estimator with slightly

larger MSE if these other two measures are smaller. The first

observation is that all our jackknife estimators significantly

reduce MSE. The standard jackknife estimator performs very

well with respect to MSE. This is not surprising considering

the estimates of p we obtained via pa
rn over the N = 2000

replications were 0.80 with a standard error of 0.30. So,

q = 1 is arguably a reasonably conservative choice. That

said, Figures 2(b)-(d) suggest that as β grows the MSE− and

probability of having an invalid upper bound point estimate

improve significantly while the relative increase in MSE+

is modest.

Figure 3 shows the empirical coverage function of the

interval estimators produced by our procedures (Schruben

1980). The original procedure, i.e., without bias reduction,

produces an interval estimator with 100% coverage regard-

less of the value of α. (Of course, as α shrinks to zero this

no longer holds but the smallest α in the plot is 0.05.) Using

β = 0.80 yields an adaptive jackknife estimator that has

undercoverage for large values of α. The interval estimator

of the standard jackknife and those associated with larger

values of β = 0.90, 0.95 and Dα (which is based on the

β = 1

2
+ α

2
formula discussed at the end of Section 3.2) all

appear to perform well with respect to coverage.

5 CONCLUSIONS

We have applied jackknife estimators to assess the quality

of a candidate solution, measured by its optimality gap, for

a static asset allocation model. And, we have developed a
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Table 2: Correlation Coefficients for the Monthly ETF Returns

QQQ SPX OEX MDY RTY MSH TXX IIX BTK GOX XAU OSX BKX DRG

QQQ 1.00

SPX 0.82 1.00

OEX 0.84 0.99 1.00

MDY 0.77 0.85 0.80 1.00

RTY 0.80 0.68 0.63 0.85 1.00

MSH 0.97 0.83 0.84 0.79 0.82 1.00

TXX 0.97 0.82 0.83 0.75 0.80 0.98 1.00

IIX 0.97 0.79 0.81 0.72 0.77 0.95 0.95 1.00

BTK 0.69 0.37 0.38 0.55 0.74 0.65 0.64 0.64 1.00

GOX 0.15 0.15 0.13 0.25 0.21 0.15 0.17 0.20 0.02 1.00

XAU 0.09 0.13 0.10 0.24 0.19 0.10 0.12 0.13 0.03 0.96 1.00

OSX 0.45 0.55 0.51 0.66 0.53 0.45 0.43 0.39 0.42 0.08 0.14 1.00

BKX 0.19 0.61 0.57 0.50 0.15 0.24 0.19 0.18 -0.22 0.05 0.04 0.36 1.00

DRG 0.05 0.41 0.43 0.19 -0.10 0.04 0.00 0.05 -0.14 -0.05 0.01 0.20 0.47 1.00
Table 3: Solutions x∗

n to (2) Averaged Over Multiple Replications

n Average allocation x̄
∗

n
MSE NZ

MDY RTY MSH TXX IIX BTK GOX XAU OSX BKX DRG

25 0.024 0.024 0.018 0.044 0.017 0.362 0.191 0.043 0.107 0.106 0.062 0.822 1.43

50 0.041 0.024 0.011 0.041 0.004 0.419 0.198 0.026 0.095 0.095 0.046 0.742 1.59

100 0.065 0.023 0.004 0.025 0.001 0.484 0.199 0.013 0.077 0.082 0.027 0.643 1.80

200 0.026 0.003 0.000 0.002 0.000 0.136 0.050 0.001 0.012 0.015 0.004 0.544 1.95

400 0.066 0.002 0.000 0.001 0.000 0.306 0.091 0.000 0.015 0.015 0.004 0.436 2.09

800 0.161 0.001 0.000 0.000 0.000 0.645 0.168 0.000 0.010 0.014 0.001 0.361 2.21

x
∗ 0.079 0 0 0 0 0.732 0.189 0 0 0 0 0 3
family of adaptive jackknife estimators, parameterized by

β, that can be used to estimate the order of the bias when it

is unknown. We considered a simple asset allocation model

under normally-distributed returns so that we could solve

it exactly and compute the true optimality gap to better

assess the performance of our estimators. In our simplest

procedure, we do not attempt to reduce bias, and in this case

the bias dominates the width of our confidence intervals.

All of the jackknife estimators we consider significantly

decrease mean-square error by reducing bias. When one

seeks a conservative point estimate for use in a one-sided

confidence interval our adaptive jackknife with β = 0.90-

0.95 provides significant improvement over neglecting bias

entirely and may provide an attractive alternative to the

standard jackknife.
789
ACKNOWLEDGMENTS

This research was partially supported by the National Science

Foundation under Grant DMI-0217927.

REFERENCES

Andersen, L., and M. Broadie. 2004. A primal-dual simula-

tion algorithm for pricing multi-dimensional American

options. Management Science 50:1222–1234.

Attouch, H., and R.-B. Wets. 1990. Epigraphical processes:

Laws of large numbers for random lsc functions. In
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Wächter, A., and L. Biegler. 2006. On the implementation of

a primal-dual interior point filter line search algorithm

for large-scale nonlinear programming. Mathematical

Programming 106:25–57.

Ziemba, W., and J. Mulvey. (Eds.) 1998. Worldwide asset

and liability modeling. Cambridge University Press,

Cambridge, United Kingdom.



Partani, Morton, and Popova
AUTHOR BIOGRAPHIES

AMIT PARTANI is a PhD student in the Graduate Pro-

gram in Operations Research in the Mechanical Engineering

Department at The University of Texas at Austin. His re-

search interests include simulation-based approximations in

stochastic programming and mixed integer optimization.

His email address is <partani@mail.utexas.edu>.

DAVID P. MORTON is an Associate Professor in the Grad-

uate Program in Operations Research in the Mechanical En-

gineering Department at The University of Texas at Austin.

His research interests include computational stochastic pro-

gramming, including simulation-based approximations in

stochastic programming. His email address is <morton@

mail.utexas.edu>, and his web page is <http:

//www.me.utexas.edu/˜orie/Morton.html>.

IVILINA POPOVA is an Assistant Professor of Finance

at Seattle University. She taught at Purdue University for

5 years prior to joining Albers School of Business and

Economics. Before that she worked for Deutsche As-

set Management and Koch Capital Markets. She is a

member of INFORMS, ASA, AFA, SFA and WFA. Her

email address is <popovai@seattleu.edu>, and her

web page is <http://fac-staff.seattleu.edu/

popovai/web/>.
791


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



