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ABSTRACT

In this paper we discuss the issue of solving stochastic

optimization problems using sampling methods. Numerical

results have shown that using variance reduction techniques

from statistics can result in significant improvements over

Monte Carlo sampling in terms of the number of sam-

ples needed for convergence of the optimal objective value

and optimal solution to a stochastic optimization problem.

Among these techniques are stratified sampling and Quasi-

Monte Carlo sampling. However, for problems in high

dimension, it may be computationally inefficient to calcu-

late Quasi-Monte Carlo point sets in the full dimension.

Rather, we wish to identify which dimensions are most im-

portant to the convergence and implement a Quasi-Monte

Carlo sampling scheme with padding, where the important

dimensions are sampled via Quasi-Monte Carlo sampling

and the remaining dimensions with Monte Carlo sampling.

We then incorporate this sampling scheme into an external

sampling algorithm (ES-QMCP) to solve stochastic opti-

mization problems.

1 INTRODUCTION

In this paper, we consider two-stage stochastic programs

with fixed recourse of the form:

min
x∈X
{g(x) := cTx+ E[Q(x, ξ)]} (1)

where X is a subset of R
n, ξ is a random vector in R

s, and

the second stage stochastic program Q(x, ξ) is defined as

Q(x, ξ) := inf{qT y : Wy ≥ h(ξ)− T (ξ)x, y ≥ 0}. (2)

Thus the random vector ξ is made up of components of

vector h and matrix T . We also assume that all of the

components of ξ are independent of each other and that this

problem has a finite solution. We shall refer to (1) as the

true optimization problem.
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Often though, E[Q(x, ξ)] cannot be written in closed

form or it cannot be easily calculated due to a large sam-

ple space for ξ. In these cases, we can approximate the

expectation with a sample average:

Q̂N (x) :=
1

N

n
∑

j=1

Q(x, ξj), (3)

where the ξj are random samples from the distribution of

ξ.

From our family of estimators {Q̂N (·)}, we can con-

struct another stochastic program

min
x∈X
{ĝN (x) := cTx+ Q̂N (x)} (4)

which we shall refer to as the sampled optimization problem.

Such an algorithm is referred to as an external sampling

algorithm. These methods are also known as Sample Aver-

age Approximation (SAA) or Sample Path Optimization as

ĝ(xN ) is obtained by average the results of N sample paths

ξ1, . . . , ξN . If we let v̂N denote the optimal objective value

to the sampled optimization problem and x̂N an optimal

solution, then v̂N and x̂N are approximations to the true

optimal objective value v∗ and some true optimal solution

x∗.

When the samples ξ1, . . . , ξN are independent and iden-

tically distributed (i.i.d.), ĝN (x) is referred to as a Monte

Carlo estimator of g(x) and the approach of solving the sam-

pled optimization problem is usually referred to as the sample

average approximation method or sample path optimization.

The external sampling approach using Monte Carlo methods

has been well-studied in the context of stochastic optimiza-

tion (see Shapiro 2003 for a compilation of results). If

x∗ is the unique optimal solution to the true optimization

problem, then x̂N → x∗ and v̂N → v∗ under some general

conditions. Also, the sequence of optimal objective values
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{v̂N} satisfies a central limit theorem. Namely,

√
N(v̂N − v∗)⇒ Normal(0, σ∗)

where ”⇒ ” denotes convergence in distribution and σ∗ :=
V ar[G(x∗)]. Thus the convergence of optimal objective

values is of order N−1/2.

Often though, either the sample size N required to

guarantee a small error is extremely large or it is com-

putationally expensive to evaluate the function Q(x, ξ) at

too many fixed values of ξ. A natural next step is to

consider variance reduction techniques from the simulation

and statistics literature and apply them to the stochastic

optimization problem. Among the variance reduction tech-

niques that have been used in the context of stochastic

optimization are antithetic variates, control variates, and

importance sampling.

In this paper we focus on Quasi-Monte Carlo (QMC)

techniques. In QMC, we deterministically choose a point

set to sample. The goal is for the point set to closely

replicate a random sample from a uniform distribution.

Some of these methods have been shown to have errors on

the order of
(logN)s

N when computing the sample average.

QMC sampling does have its drawbacks though. For one,

it can be computationally expensive to generate QMC point

sets for high dimensions. Also, while the
(logN)s

N rate

of convergence is asymptotically superior to the Monte

Carlo rate of 1√
N

, it is dependent on the dimension and

often does not become superior to Monte Carlo until N
is extremely large. This is impractical for a sampling

algorithm. However, QMC often outperforms its theoretical

rate of convergence. This suggests that the sample spaces of

these problems are really in some lower dimension– i.e., that

some random variables are considerably more important to

the problem than others. We could then construct a Quasi-

Monte Carlo sampling scheme with padding where the

most important variables are sampled using Quasi-Monte

Carlo and the remaining variables are sampled using a

computationally less expensive scheme such as Monte Carlo

or Latin Hypercube.

A few papers have looked specifically at the use of QMC

methods for external sampling schemes. Kalagnanam and

Diwekar (1997) show empirical results using Hammersley

sequences. Koivu (2005) shows that, under mild assump-

tions, when Quasi-Monte Carlo methods are used to solve

(1) the estimator function ĝN epiconverges to the true func-

tion g, which guarantees that the optimal values and optimal

solutions converge with probability one. Homem-de-Mello

(2006) shows that, under proper conditions, the optimal

value {v̂N} of (4) converges to the optimal value v∗ of (1)

at the same rate as that at which ĝN (x) converges to g(x)
for a fixed x. This ensures that rates of convergence for

pointwise estimators under QMC carry over to the optimiza-

tion case. None of those papers, however, addresses the
775
question of how to select a subset of the random variables

on which QMC sampling will be applied.

In section 2 of this paper, we describe QMC sampling in

detail. In section 3, we discuss a strategy for determining

the important subset of random variables for two-stage

stochastic programs with fixed recourse and we propose

two heuristics for estimating importance. In section 4,

we develop an external sampling algorithm using Quasi-

Monte Carlo sampling with padding (ES-QMCP) to solve

two-stage stochastic programs. In section 5, we test our

algorithm against a comparable algorithm which uses Monte-

Carlo sampling on four small two-stage stochastic programs.

Finally, in section 6, we present our conclusions.

2 QUASI-MONTE CARLO SAMPLING

Suppose that X is a random variable in R
s with all of its ar-

guments mutually independent, g : R
s 7→ R is a measurable

function, and we wish to estimate I = E[g(X)]. One way

to do this is via numerical integration. We choose a point

set {ξ1, . . . , ξN} from the sample space and then calculate

the sample average Î = 1
N

∑N
j=1 g(ξ

j) from that point set.

When the elements of the point set are independent and

identically distributed (i.e., each point is sampled randomly

from the entire sample space), the numerical integration

method is called a Monte Carlo method. It is well-known

from statistics that if the function g(X) has a finite second

moment then the error of the sample average approximation

ÎMC is of order 1√
N

.

In Quasi-Monte Carlo sampling, we wish to select

points ξ1, . . . , ξN that are approximately uniformly spaced

avoiding large gaps or clusters. The difference between the

empirical distribution of the QMC point set and the uniform

distribution is quantified by the discrepancy. As a result,

most of the research on QMC methods has focused on

finding low-discrepancy point sets. Comprehensive reviews

of QMC methods can be found in (Niederreiter 1992) and

(L’Ecuyer and Lemieux 2002).

One type of QMC point set that yields low discrepancy

is the so-called (t,m, s)-net. For completeness, we include

a definition below.

Definition 1 An elementary interval of base b in

dimension s is a subinterval E of the form

E =

s
∏

j=1

[

aj
bdj

,
aj + 1

bdj

)

for nonnegative integers {aj} and {dj} with aj < bdj for

all j. E then has volume b−
P

j dj .

Let m be a nonnegative integer. A finite sequence of

N = bm points is called a (t,m, s)-net in base b if every

elementary interval in base b of volume 1
bm−t contains exactly

bt points of the sequence. Note, that any (t,m, s)-net is also a
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(u,m, s)-net for any integer u ∈ [t,m]. Thus smaller values

of t are more desirable. The discrepancy (and integration

error) of a (t,m, s)-net in base b is O
(

(log(N))s−1

N

)

.

However, as a QMC point set is entirely deterministic,

the estimator Î = 1
N

∑N
j=1 g(ξ

j) has zero variance. This

makes it difficult to calculate the integration error |ÎQMC−I|.
In fact, all we have is an upper bound for the integration

error from the Koksma-Hlawka inequality, which states that

the integration error of a function using a QMC point set is

bounded above by the product of the total variation of the

function and the discrepancy of the point set. One way to

rectify this problem is by using randomized QMC methods.

In a randomized QMC method, each individual sample point

is now uniformly distributed over the sample space, but

the point set as a whole still preserves the low-discrepancy

property. Randomized QMC methods are discussed in detail

in (Fox 2000) and (Owen 2000).

We focus on scrambled (t,m, s)-nets proposed by Owen

(1995). In this method, the digits of the base b expansion

of each element of the net are randomly scrambled in

a particular way. The resulting scrambled (t,m, s)-net

is still a (t,m, s)-net with probability one. Thus all of

the properties of (t,m, s)-nets can also be applied to the

scrambled nets. Another important property is that the point

set from a scrambled net is uniformly distributed over the

unit hypercube. This is a consequence of the scrambling and

is independent of whether or not the pre-scrambled point

set was a (t,m, s)-net. As a result, the integration error can

be calculated by taking multiple independent replications

of the scrambled net (from the same original net).

2.1 Effective Dimension

While (t,m, s)-nets and scrambled (t,m, s)-nets compare

favorably to Monte Carlo sampling methods, there is still

one major disadvantage. Although the Quasi-Monte Carlo

integration error of
(log(N))s−1

N is asymptotically superior to

the Monte Carlo error bound of 1√
N

, it is not advantageous

until N is very large, unless the dimension s is small.

Even for s = 5, we must have N ≥ 2.1 × 1012 for QMC

to be theoretically advantageous. Yet for many problems,

numerical results show that QMC methods have a much

lower integration error, even for reasonable sample sizes.

This suggests that either the upper bound from the Koksma-

Hlawka inequality is not tight or that the problem is actually

in some lower dimension. That in turn has led to the notion of

effective dimension (Caflisch, Morokoff, and Owen 1997),

which we describe below.

If the function g(·) is square-integrable, then g(·) can

be written

g(ξ) =
∑

A∈{1,...,s}
gA(ξ) (5)
776
where gA(ξ) depends only on the components ξj with j ∈ A.

Also, gA(ξ) satisfies the properties:

1.
∫ 1

0
gA(ξ)dξj =

{

0, if j ∈ A
gA(ξ), if j /∈ A.

2.
∫

[0,1)s gu(ξ)gv(ξ)dξ = 0, if u 6= v.

gA(ξ) is calculated by looking at the portion of g that is

not determined by subsets of A and then averaging over all

of the components not in A, i.e.,

gA(x) =

∫

[0,1)Ac

(

g(ξ)−
∑

v⊂A
gv(ξ)

)

dξA
c

. (6)

The goal of any sampling method is to estimate ḡ :=
∫

[0,1)s g(ξ)dξ (equivalent to letting A be the empty set in

(6)). From the above properties, the variance of g, defined

as σ2 :=
∫

(g(ξ)− ḡ)dξ, satisfies

σ2 =
∑

A∈{1,...,s}
σ2
A (7)

where σ2
A :=

∫

gA(ξ)2dξ. Hence, this is called the ANOVA

(analysis of variance) decomposition of g. One can then

define the effective dimension of the problem based on the

terms of the ANOVA decomposition that contribute most

toward the overall variance.

The effective dimension of g in the truncation sense is

the smallest integer sT such that

∑

A⊂{1,2,...,sT }
σ2
A ≥ (1− ε)σ2. (8)

Typically, ε is chosen to be 0.01. Note that the value of sT
is dependent on the order in which the input variables are

indexed. This definition implies that only a small number

of the input variables are important to the problem, thus

there is little need for variance reduction techniques on the

remaining variables. This leads to the concept of padding,

where the important variables are integrated using a QMC or

randomized QMC point set and the remaining variables are

integrated using something computationally less expensive

such as the midpoint of the interval, a Monte Carlo sample

(Spanier 1995), or a Latin Hypercube sample (Owen 1998).

3 DETERMINING THE IMPORTANT SUBSET OF

RANDOM VARIABLES

We now apply the concept of QMC sampling with padding

to the two-stage stochastic program. By calculating the

effective dimension of the function in the truncation sense,

we can identify which random variables have the largest

contribution of variance to the function. We then can con-
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struct a smaller QMC point set on just these components

and pad the sample using some other method such as Monte

Carlo sampling on the remaining components. However,

the ANOVA decomposition of an s-dimensional function

requires computing 2s integrals. This can be quite costly at

each stage of an optimization algorithm. We instead look

to a different method to estimate the importance of each

random variable.

Since Quasi-Monte Carlo sampling is a variance reduc-

tion tool, it seems natural to label the important variables as

the ones that contribute the most to the overall variance of

the function. Let Vk be the contribution of random variable

k to the overall variance of the function. Our goal is to

estimate the Vk via heuristic methods.

For the two-stage stochastic program, the function of

interest is the second stage optimal value Q(x, ξ). Since

the random variables are elements of the right-hand side

h− Tx of the second stage problem, which are not in the

objective of the primal problem, it is often more convenient

to look at the dual of the second stage stochastic program:

sup{πT (h(ξ)− T (ξ)x) : πTW ≤ qT , π ≥ 0} (9)

Thus the total variance of the optimal value is

Var





∑

k

π∗
k(hk −

∑

j

Tkjxj)



 . (10)

where π∗
k is the optimal dual multiplier for constraint k. By

expanding the sums, we can rewrite the optimal value as
∑

i Zi where eachZi is the product of some constraint’s (call

it constraint k) optimal dual multiplier π∗
k and a term that (a)

involves hk and/or elements from the kth row of T and (b)

contains at most one random component of ξ. (In the case

where each constraint in the primal problem contains exactly

one random variable, then Zi = π∗
i (hi − Tix). Otherwise,

we split out the hi and the elements of row Ti accordingly).

While we assume that the random variables themselves are

mutually independent, the terms in the objective function

are usually dependent due to the interactions of the dual

multipliers. The variance of the optimal value is now

Var(
∑

i

Zi) =
∑

i

∑

j

Cov(Zi, Zj). (11)

By definition, the variance of the optimal value can also

be written as
∑s
k=1 Vk. Our goal then is to estimate the

individual covariance terms in (11) and assign each to one

of the Vk.

The Zi can be partitioned into two sets

1. A := the set of all Zi containing exactly one

random component of ξ (contains s elements).
777
2. B := the set of all Zi containing zero random

components of ξ (contains m− s elements).

and reordered so that Z1, . . . , Zs correspond to the same

random variables as V1, . . . , Vs. We now propose two

heuristics to estimate the Vk.

Our first heuristic is to estimate Vk by

Heuristic 1 :

V̂k = |∑j∈A Cov(Zk, Zj) + 2
∑

j∈B Cov(Zj , Zk)|, k =
1, . . . s. 2

Here the contribution of each random variable to the

overall variance includes the variance of its own Z term

plus the covariance with the Z terms of the other random

components of ξ plus both covariance terms with the Z
terms that do not have a random component of ξ (as the

second covariance term would otherwise be unassigned).

We ignore the terms Cov(Zi, Zj) where i, j ∈ B as they

should theoretically be small since there are no random

components present. We take the absolute value to account

for terms that greatly affect the variance in either direction.

This method involves estimating at most s(m−s) terms

in the covariance matrix (due to the symmetry of the matrix)

though this number can be reduced by ignoring Z terms

that are identically zero. While this is most likely less than

the 2s terms of the ANOVA decomposition, since m is at

least as large as the number of constraints in the primal

problem, these estimates can still be quite cumbersome for

very large problems.

Our second heuristic is to estimate Vk by

Heuristic 2 :

V̂k = Var(Zk), k = 1, . . . s. 2

This is a very crude approximation which completely

ignores any dependence between the dual multipliers. How-

ever, since it only involves estimating at most s terms of

the covariance matrix rather than the s(m− s) terms of the

first heuristic, it may be preferable for large problems.

Once we have calculated the V̂k via one of the heuristics,

we are now ready to select the important subset. We propose

the following algorithm:

Algorithm 1: Selecting the Important Set I

1. Let total variance V =
∑

k V̂k, important variance

V I = 0, important set I = ∅, and unimportant set

M = {1, . . . , S}.
2. Rank the V̂k in descending order.

3. Select the largest remaining V̂k. Let V I ← (V I +
V̂k). Let I ← I

⋃ {k} and M ←M − {k}.
4. If V I

V ≥ 0.9 or |I| = 10 then terminate the algo-

rithm with important set I . Otherwise, return to

step 3.

We are now ready to implement this method into an

external sampling algorithm to solve two-stage stochastic

programs.
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4 AN EXTERNAL SAMPLING ALGORITHM

USING QMC SAMPLING WITH PADDING

(ES-QMCP)

In order to estimate elements of the covariance matrix from

the second stage stochastic program (2), we need a first stage

solution x. Thus the algorithm we propose is an iterative

algorithm where the sampled stochastic program is solved

to obtain a new x at each iteration using a QMC point set

with padding and then that x is used to determine the set of

important variables for the next iteration. The initial x value

is determined by solving the sampled optimization problem

using a Monte Carlo point set (as we have not yet identified

the important random variables by that time). To estimate

each random variable’s contribution Vk to the variance and

determine the set of important random variables, we estimate

E[Q(x, ξ)] using a Monte Carlo point set. Then from the

samples we can estimate the covariance matrix of the Zk
terms (as defined in section 3). In order to gauge each

random variable’s full effect on the overall variance, it

is essential that we employ a sampling scheme with no

variance reduction while estimating the covariance terms.

The full External Sampling Algorithm using Quasi-Monte

Carlo Sampling with Padding (ES-QMCP) is detailed below.

Algorithm ES-QMCP

Below, N (0) and α are pre-specified parameters or the

algorithm.

1. Initialization:

(a) Rewrite the second stage dual objective as
∑

k Zk as described in section 3.

(b) Set iteration count i← 0, important set I(0) =
∅, and sample size N (0).

(c) Using a Monte Carlo point set of size N (0),

solve the sampled optimization program to

determine first stage solution x∗(0) and optimal

value ψ(0).

2. Increment: Let i← i+ 1 and N (i) = αN (i−1).

3. Using N (i) Monte Carlo samples to solve the sec-

ond stage stochastic program at x = x∗(i−1), cal-

culate the estimates V̂k, k = 1, . . . , s using one of

the two heuristics described in section 3.

4. Using Algorithm 1, select the important set I(i)

for iteration i.
5. Using a padded point set — a Quasi-Monte Carlo

point set for random variables k ∈ I(i) and a

Monte Carlo point set on random variables k /∈
I(i) — solve the sampled optimization program

to determine first stage solution x∗(i) and optimal

value ψ(i).

6. If a stopping criterion is satisfied, then terminate

the algorithm with optimal first stage solution x∗(i)
778
and optimal value ψ(i). Otherwise return to step 2.

2

In our implementation we used N (0) = 8, α = 2 and

the algorithm was stopped when
|ψ(i)−ψ(i−1)|

ψ(i−1) ≤ ǫ, i.e., when

the relative change in optimal value between iterations was

less than some tolerance ǫ. We used ǫ = 0.01. One could

use more sophisticated criteria, but we used this simple one

for a preliminary implementation. We will compare this

algorithm to the corresponding algorithm ES-MC where all

sampling is done with crude Monte Carlo, thus making

it unnecessary to estimate the importance of the random

variables.

Algorithm ES-MC

1. Initialization:

(a) Set iteration count i ← 0, and sample size

N (0).

(b) Using a Monte Carlo point set of size N (0),

solve the sampled optimization program to

determine first stage solution x∗(0) and optimal

value ψ(0).

2. Increment: Let i← i+ 1 and N (i) = αN (i−1).

3. Using a Monte Carlo point set, solve the sam-

pled optimization program to determine first stage

solution x∗(i) and optimal value ψ(i).

4. If a stopping criterion is satisfied, then terminate

the algorithm with optimal first stage solution x∗(i)

and optimal value ψ(i). Otherwise return to step 2.

2

5 NUMERICAL RESULTS

We now look at four test problems:

• gbd – the airline fleet assignment problem first

proposed by (Dantzig 1963)

• LandS1, LandS2 – an electrical investment plan-

ning problem that originally appeared in (Louveaux

and Smeers 1988). LandS2 is just a version of

LandS1 with the objective coefficients shuffled.

• APL1P – a model for electric power capacity ex-

pansion from (Infanger 1992).

Since our test problems are all relatively small (3 to 5
random variables) we can explicitly write out the dual for

the second stage problems. Given a problem with s random

variables, we hope to identify the subset I of variables that

are most important to the optimal value of the problem.

In our QMC sampling scheme with padding, the random

variables in I are generated via a scrambled (t,m, |I|)-
sequence in base 2 and the remaining s− |I| variables by

Monte Carlo sampling. For an s-dimensional problem, there
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are 2s possible sampling schemes (technically, the order of

the QMC variables matters so there would be
∑s
k=0

(

s
k

)

k!
sampling schemes, but for simplicity we will assume that

the order is irrelevant). Our samples are generated using the

publicly available random sampling routines from (Friedel

and Keller 2002) which we built into the SUTIL library

(Czyzyk, Linderoth, and Shen 2005).

We are interested in testing two results:

• How well our two heuristics for estimating the Vk
explain the importance of the random variables

• The performance of the algorithm ES-QMCP using

each of the two heuristics

For the first item, we quantify a random variable’s

importance by how much variance reduction is gained by

including it the set of important variables. Since the test

problems are all small, we can estimate the expected objec-

tive value of the second stage stochastic programs using all

2s sampling schemes (for a given x value). For each sam-

pling scheme, we solve 10 realizations of the second stage

program with a sample size of N = 1024 using the ATR

solver (Linderoth and Wright 2003). We then estimate the

overall variance of that estimator for each sampling scheme

by the variance across the replications for the sampling

scheme. Let the variance estimate for sampling scheme i,
i = 1, . . . , 2s be Yi.

From the 2s variance estimates we perform a linear

regression. We assume that the variance for sampling scheme

i can also be estimated as a linear function

Ŷi = β̂0 +
s
∑

j=1

β̂jXij (12)

where β̂j is the effect on the variance from random variable

j (usually negative to indicate variance reduction), β̂0 is

the constant term, and Xij is one if random variable j is

included in the important set and zero otherwise. So each

β̂j is a rough measure of the importance of random variable

j. From statistics (e.g., Tamhane and Dunlop 2000), β̂j can

be calculated as

β̂j =

∑2s

i=1 λij Ȳi
2s−1

(13)

where Ȳi =
P2s

i=1 Yi

2s and λij is +1 if random variable j is

in the important set for sampling scheme i and −1 if not

(for j = 0, λij = +1 for all i). We also can assess the

quality of the regression model by calculating

R2 =

∑2s

i=1(Yi − Ŷi)
∑2s

i=1(Yi − Ȳi)
.

779
Table 1: Assessing Heuristics to Identify Important Variables

- gbd

Random V̂j
j Variable β̂j Heuristic 1 Heuristic 2

0 Constant 372.92 n/a n/a

1 d1 −87.25 127, 701.88 133, 094.52
2 d2 −25.43 5, 690.23 4, 966.30
3 d3 −34.53 13, 656.90 11, 517.01
4 d4 −240.68 285, 821.12 295, 241.44
5 d5 −27.35 142.38 31.45

Correlation with β̂: −0.9866 −0.9856

Regression R
2

= 0.7617

In our problem descriptions, we also assess the quality

of our two heuristics for estimating the importance by

calculating the correlation between the V̂j and the β̂j . As

mentioned earlier, those values depend on the first-stage

solution x; the numbers we report below were obtained

with x = x∗, the optimal solution (which is known as those

problems have been solved in the literature). This is done

only with the purpose of evaluating the heuristics; the ES-

QMCP and ES-MC algorithms, of course, do not require

knowledge of the optimal solution.

After the describing the test problems, we look at the

performance of the ES-QMCP algorithm using the two

heuristics on those problems versus the corresponding ES-

MC algorithm.

5.1 gbd

We begin with the fleet assignment problem first described

by (Dantzig 1963). Four types of aircrafts are to be assigned

to five different routes (with three of the aircraft/route com-

binations not valid). The random variables are the customer

demands for each route (denoted dj). This is a relatively

simple problem where the dual variables are independent

and thus the importance of each random variable can be

quantified in closed form.

Using the random demand scenarios from (Linderoth,

Shapiro, and Wright 2005), we calculate our V̂j estimates

using both heuristics and compare to our regression estimates

β̂j . Since all of the terms in the objective are independent,

we expect our covariance estimates between different terms

to be approximately zero and for the two heuristics to give

similar results for the values of the V̂j . Not surprisingly,

this is the case and both are highly correlated with the β̂j
estimates from the regression (see Table 1) with random

variables d1 and d4 accounting for nearly all of the variance.
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Table 2: Assessing Heuristics to Identify Important Variables

- LandS1

Random V̂j
j Variable β̂j Heuristic 1 Heuristic 2

0 Constant 1.34 n/a n/a

1 d1 −1.16 2, 066.60 3, 206.57
2 d2 −0.08 918.19 1, 251.99
3 d3 0.48 66.73 41.61

Correlation with β̂: −0.9954 −0.9989

Regression R
2

= 0.6645

5.2 LandS

Our next example is an electrical investment planning prob-

lem that originally appeared in (Louveaux and Smeers 1988).

The first stage decision involves allocating capacity to four

new technologies subject to capacity minimums and budget

restrictions. The second stage decision is regarding the

production of three different modes of electricity for each

technology to meet customer demand subject to the capaci-

ties from the first stage. In this problem the customer demand

for each mode of electricity is random (again denoted dj).
We use the modifications to the demand scenarios from

(Linderoth, Shapiro, and Wright 2005) where the random

variables have identical independent distributions with 100
equally likely realizations. Here however, the dual variables

are not independent and thus the terms in the dual objective

function are correlated.

We consider two forms of this problem. The first is the

original problem which we will refer to as LandS1. Here

the cost coefficients cij in the primal objective function

(where i is the technology and j the mode of electricity)

take the form ci2 = 6ci3 and ci1 = 10ci3. Since the

demand random variables are identically distributed, we

expect the relationship between the cij to cause d1 to be

the most important random variable, followed by d2 then

d3. It turns out that this is indeed the case. In fact the

difference in importance is so drastic that there is little room

for improvement by including the covariance terms in our

estimates of the V̂j (see Table 2).

To alleviate the effects of the structure of the cij , we

consider a second form LandS2 of the problem where we

shuffle the 12 cij coefficients. Here in Table 3, we see that

the correlations between the V̂j and β̂j are lower than the

other problems and that surprisingly the inclusion of the

covariance terms into the heuristics actually gives a worse

correlation. It is worthwhile to note however that the R2

for the regression where we estimate the β̂j is much lower

than that of the other problem, so it is possible that the β̂j
are not good estimates.
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Table 3: Assessing Heuristics to Identify Important Variables

- LandS2

Random V̂j
j Variable β̂j Heuristic 1 Heuristic 2

0 Constant 0.23 n/a n/a

1 d1 −0.20 305.88 668.54
2 d2 0.06 9.80 13.40
3 d3 0.05 207.85 379.20

Correlation with β̂: −0.7897 −0.8602

Regression R
2

= 0.5055

Table 4: Assessing Heuristics to Identify Important Variables

- apl1p

Random V̂j
j Variable β̂j Heuristic 1 Heuristic 2

0 Constant 20, 458 n/a n/a

1 a1 −514 2, 714, 095 11, 267, 140
2 a2 −436 1, 635, 107 7, 257, 204
3 d1 −204 2, 266, 447 1, 966, 338
4 d2 −10, 821 6, 565, 340 3, 942, 965
5 d3 −10, 308 9, 656, 419 6, 888, 416

Correlation with β̂: −0.9308 0.2093

Regression R
2

= 0.8364

5.3 apl1p

Our final problem is a model for electric power capacity

expansion first described in (Infanger 1992). The problem

consists of two electrical generators that can operate at three

levels. The first stage problem is to determine capacity for

the two generators. The second stage decision is to determine

how much to produce at each of the three operation levels

on the two generators subject to the the availability of the

two generators (random variables denoted ai) and customer

demand for each of the three operation levels (random

variables denoted dj).
Again, the terms in the dual objective function are

correlated due to the structure of the dual constraints. We

see in Table 4 that the inclusion of the covariance terms into

the heuristic for V̂j significantly improves the correlation

with the β̂j . In fact, Heuristic 2 indicates that a1 and a2 are

the two most important random variables, while Heuristic

1 and the regression indicate that they are significantly less

important than d2 or d3.



Drew and Homem-de-Mello
Table 5: A Comparison of the ES-QMCP and ES-MC

Algorithms

gbd Optimal Value Iterations Total Samples

Mean 95% CI Mean 95% CI Mean 95% CI

MC 1,671.94 24.95 7.0 4.3 8,248 9,326

QMCP 1,648.46 24.17 4.0 1.1 590 446

True Optimal Value = 1,655.62

LandS1 Optimal Value Iterations Total Samples

Mean 95% CI Mean 95% CI Mean 95% CI

MC 227.89 6.60 4.8 2.1 670 550

QMCP 225.03 1.04 2.0 0.0 104 0

True Optimal Value = 225.62

LandS2 Optimal Value Iterations Total Samples

Mean 95% CI Mean 95% CI Mean 95% CI

MC 126.54 2.52 3.4 2.4 254 491

QMCP 127.72 1.15 2.0 0.0 104 0

True Optimal Value = 128.20

apl1p Optimal Value Iterations Total Samples

Mean 95% CI Mean 95% CI Mean 95% CI

MC 24,375.16 685.52 4.8 2.5 670 992

QMCP-1 24,647.62 204.30 3.6 1.0 411 197

QMCP-2 24,686.32 29.13 3.4 1.0 360 208

True Optimal Value = 24,642.32

5.4 Numerical Results of the Algorithm

We now test our algorithm ES-QMCP against the Monte

Carlo analogue ES-MC for each of our test problems (in-

cluding both versions of LandS). Five replications of each

algorithm were run for each problem. For gbd, LandS1,

and LandS2, since the choice of heuristic does not seem

to effect the choice of the important subset we only run

algorithm ES-QMCP using Heuristic 1. For apl1p, where

the importance of the random variables can vary depending

on the heuristic we run ES-QMCP using both Heuristic

1 and Heuristic 2 (denoted ES-QMCP-1 and ES-QMCP-2

respectively).

We use three measures to assess the performance of

the algorithms: (1) the optimal value at the end of the

algorithm, (2) the number of iterations of the algorithm

until convergence, and (3) the total number of samples used

in the algorithm. Note that in ES-QMCP since we need to

estimate the important subset, each iteration uses twice as

many samples as an iteration of ES-MC. In Table 5, we

report the mean and the half-width of the 95% confidence

interval about the means for each performance measure.

From our results, we see that ES-QMCP performs better

than ES-MC in all areas. The average optimal values from

the algorithm are closer to the actual results; it requires

fewer iterations; and on average uses fewer samples even

though each iteration itself is more expensive. Also, the

variances of these measures are lower under ES-QMCP

suggesting that we can more accurately predict when the

algorithm will stop.

For apl1p, where we run the algorithm using two differ-

ent heuristics for estimating the important variables, the two

heuristics seem indistinguishable at 5 replications though it

is indeed possible that one heuristic would prove superior

if the number of replications were increased.
781
6 CONCLUSIONS

Our empirical data suggests that external sampling algo-

rithms that incorporate Quasi-Monte Carlo methods are more

efficient than their Monte Carlo counterparts in terms of

the number of samples needed. Still QMC point sets are

more time-intensive to generate than Monte Carlo samples.

Additionally computing time must be devoted to determin-

ing the important subset of random variables. Ultimately,

there is a tradeoff between the additional time necessary to

come up with good estimates of the important subset and

the number of fewer samples required by the algorithm.

Research is ongoing to quantify this tradeoff.
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