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ABSTRACT

Let (Xn : n ≥ 0) be a sequence of iid rv’s with mean zero

and finite variance. We describe an efficient state-dependent

importance sampling algorithm for estimating the tail of

Sn = X1 + ... + Xn in a large deviations framework as

n ր ∞. Our algorithm can be shown to be strongly

efficient basically throughout the whole large deviations

region as n ր ∞ (in particular, for probabilities of the

form P (Sn > κn) as κ > 0). The techniques combine

results of the theory of large deviations for sums of regularly

varying distributions and the basic ideas can be applied to

other rare-event simulation problems involving both light

and heavy-tailed features.

1 INTRODUCTION

We are interested in efficient simulation of large devia-

tion probabilities for sums of heavy-tailed iid (independent

and identically distributed) rv’s (random variables). In par-

ticular, our main goal is to provide a framework, based

on state-dependent importance sampling, to simulate such

probabilities with bounded relative error. In order to put

our results in perspective, let us briefly discuss the problem

at hand in the setting of light-tailed rv’s. One of the most

basic examples that arises in rare-event simulation consid-

ers large deviation probabilities for sums of iid rv’s with

finite (and steep) moment generating function (in particular,

with light-tailed increments). This example may constitute

the most natural starting point of any introductory discus-

sion on rare-event simulation, not only because sums of

iid rv’s arise in a huge number of application settings but

also because, methodologically, this example illustrates key

ideas behind the design of importance samplers that take

advantage of the theory of large deviations (see Bucklew

1990 and Dembo and Zeitouni 1998). The connection be-

tween importance sampling and large deviations theory has

been thoroughly studied in substantial generality (see, for

instance, Bucklew 1990, Heidelberger 1995, Asmussen et
7571-4244-0501-7/06/$20.00 ©2006 IEEE
al. 1994, Sadowsky 1996, Dieker and Mandjes 2005 and

Dupuis and Wang 2004). As a consequence, understanding

the ideas behind rare-event simulation of large deviation

probabilities for sums of iid rv’s in light-tailed systems has

helped substantially in the development of general rare-event

simulation methodology based on large deviation theory.

In the presence of heavy-tailed features, the connection

between large deviations theory and importance sampling

has been studied substantially in recent years. The work by

Asmussen et al. (2000) provides a number of examples that

indicates some of the problems that arise when trying to

apply importance sampling ideas based on large deviations

theory for systems with heavy-tailed characteristics; see

also Bassamboo, Juneja and Zeevi (2005) for additional

issues arising in rare-event simulation for systems with

heavy tails. Perhaps the simplest way to see the types of

issues that arise in rare-event simulation of systems with

heavy-tailed features steams from the fact that often, in the

heavy-tailed setting, the large deviations behavior of the

system is caused by one or few components with “extreme”

behavior, while the rest of the system is operating in “normal”

circumstances. Implementing a change-of-measure with

such characteristics is may be non-trivial, the reason is that

– in general – the contribution of the sample paths that lie

in the large deviations domain for which none or very few

components exhibit “extreme” behavior is non-negligible

(for the purpose of controlling the variance of the estimator).

It is then important (and often not easy) to have a good

understanding of the contribution of the sample paths that

will add to the variance significantly but are negligible in

terms of the most likely asymptotic behavior of the system.

Motivated by the problem of providing direct means

for connecting large deviations and importance sampling

for systems with heavy-tailed characteristics, we revisit

large deviation probabilities for sums of iid rv’s – although,

in our case, in a heavy-tailed context. More precisely,

set S0 = 0 and define Sn = X1 + ... + Xn where the

Xi’s have regularly varying right tails with index α > 2
(i.e., P (X > xt) /P (X > t) −→ x−α as tր∞ for each
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x ∈ (0,∞)). Further, assume that the Xi’s have mean zero

and finite variance (precise conditions are given in Section

4 below). Our goal is to develop an efficient importance

sampling algorithm for estimation of tail probabilities of

the form P (Sn > b) when both n and b are large in a large

deviations regime. In particular, assuming some technical

regularity conditions on the density of the increments, we

shall develop an efficient importance sampling algorithm

that:

1. Is based on a state-dependent change-of-measure.

2. Takes advantage of large deviations estimates that

are used to approximate the zero-variance change-

of-measure – which can be characterized by a

system of linear equations.

3. Is based on basic principles that can be applied

to many other rare-event simulation problems in-

volving systems with heavy-tailed or light-tailed

characteristics.

4. Provides a strongly efficient estimator for large

deviations probabilities of the form P (Sn > b)
whenever b ≥ cn1/2+ε for ε > 0. In other words,

the algorithm is efficient basically throughout the

whole large deviations domain.

Item 3 is particularly convenient because in practical

situations the tail parameter b is not explicitly given as a

function of n, so, it is desirable to have an algorithm that is

guaranteed to exhibit good performance over a wide region

of the space.

Going back to our discussion in the context of light-

tailed increments. It is important to recall that the impor-

tance sampling algorithm based on the standard exponential

change-of-measure, although logarithmically efficient, is not

strongly efficient (i.e., the squared coefficient of variation

is not bounded as a function of n but grows at a subex-

ponential rate, typically is of order O
(
n1/2

)
as n ր ∞).

However, the ideas behind the state-dependent algorithm

that we propose here can be adapted in light-tailed situa-

tions to provide strongly efficient algorithms (see Blanchet

and Glynn 2006b). The robustness characteristic discussed

in item 3 is a feature that is also shared by the standard ex-

ponential change-of-measure in the context of light-tailed

increments but one needs to impose the extra condition

b ≤ c1n for some c1 > 0 (of course, as we indicated

before, the estimator remains weakly efficiency).

Rare-event simulation for sums of heavy-tailed incre-

ments has been studied in the literature. However, most of

the previous work in this line has considered the case in

which n is fixed (n is often allowed to be a random vari-

able with exponentially decaying tails) and b ր ∞. This

situation is motivated by the problem of efficient estimation

of the tail distribution of the steady-state waiting time of

the M/G/1 queue, which – by virtue of the Pollaczek-
758
Khintchine representation – can be expressed as a sum of a

random number of positive iid rv’s with an explicit distri-

bution (in fact, a Geometric number of such positive rv’s).

Several efficient algorithms have been developed for the

situation in which n is fixed, the first one which applies

to the case of regularly varying increments and is based

on conditional Monte Carlo was proposed by Asmussen

et al. (2000), Juneja and Shahabuddin (2002) proposed

an importance sampling algorithm based on Hazard rate

twisting. Recent work of Asmussen and Kroese (2006)

proposed improved estimators that are strongly efficient and

have excellent practical performance. Dupuis, Leder, and

Wang (2006) proposed algorithms that are based on state-

dependent importance sampling, their change-of-measure,

although motivated from a control-theoretic perspective, is

perhaps the closest in nature to the one discussed here –

although is not designed to cover the case in which n is

large. An efficient rare-event simulation algorithm for the

tail of the steady-state waiting time in the GI/G/1 queue

was recently proposed by Blanchet and Glynn (2006). The

method proposed in this paper shares important similarities

to the algorithm given in Blanchet and Glynn (2006) for

the GI/G/1 queue. In particular, the basic idea here also

involves the use of asymptotic results that approximate the

zero-variance change-of-measure, however, the fact that the

large deviations domain in our current context is parameter-

ized by both time and space introduces an interesting twist

to the method studied in Blanchet and Glynn (2006). In

particular, the proposed change-of-measure suggested here

should control the behavior of the estimator on the domain

of both large and moderate deviations.

The general strategy proposed here involves three steps.

First, we need to characterize the zero-variance change-of-

measure by means of a system of linear equations – this step

provides the structure of the importance sampler that will

be proposed using approximations based on large deviations

theory. Second, we must study the large deviations theory

that applies to the problem at hand, in this case large

deviations for sums of regularly varying random variables,

and analyze changes-of-measure suggested by the large

deviations theory. This step involves studying the behavior

of the estimators suggested (in combination with step 1) by

theory of large deviations. The last step involves a careful

analysis of the likelihood ratio on a large deviations domain

of interest and the use of this analysis in the estimates of

the second moment of the likelihood ratio.

The rest of the paper is organized as follows. In Section

2 we review basic concepts related to strong efficiency

of rare-event simulation estimators and basic notions on

importance sampling. Section 3 provides a characterization

of the optimal change-of-measure. In Section 4 we review

basic notions of large deviations theory for sums of regularly

varying distributions and propose a convenient change-of-

measure; this part corresponds to step 2 in the outline given
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in the previous paragraph. In Section 5 we provide an

outline of a proposed algorithm and analyze its efficiency.

2 ON IMPORTANCE SAMPLING AND EFFICIENT

RARE-EVENT SIMULATION

Suppose that we are interested in estimating P (Z ∈ A) > 0,

for a given random object taking values on a space X with

a σ-field B. We define the probability distribution FZ (dz)
on (X ,B) via FZ (dz) = P (Z ∈ dz), so that P (Z ∈ A)
can be expressed as

P (Z ∈ A) =

∫

A

FZ (dz) .

Let G (dz) be any probability distribution on (X ,B) and

assume that the likelihood ratio L (z) = IA (z) (dF/dG) (z)
is well defined. Then,

P (Z ∈ A) = EG[L (Z)] =

∫
L (z)G (dz) , (1)

note that we are using EG (·) to denote an expectation that

is computed under the distribution G (·) (similarly, we will

use V arG (·) for variances under G (·) and so on).

Importance sampling takes advantage of representation

(1) in order to estimate P (Z ∈ A). We can simulate m
iid copies of Z using the distribution G (·) and output the

importance sampling estimator

W
(m)
IS =

1

m

m∑

k=1

L (Zk) .

By the LLN’s and identity (1), this is a consistent estimator

of P (Z ∈ A) as mր∞. Note that importance sampling

can achieve zero variance. Indeed, if

G (dz) = P (Z ∈ dz|Z ∈ A)

we have that

G (dz) =
P (Z ∈ dz) I (z ∈ A)

P (Z ∈ A)

and therefore, say, if m = 1 and Z = z1

WIS = L (z1) = P (Z ∈ dz1)

[
P (Z ∈ dz1)

P (Z ∈ A)

]
−1

= P (Z ∈ A) .

So, our estimate of P (Z ∈ A) is exact (in particular, it has

zero variance). Obviously, this importance sampling algo-

rithm cannot be implemented in most applications because

it requires knowledge of P (Z ∈ A), which is the quantity
759
of interest. However, this discussion indicates that a good

importance sampling distribution should be similar to the

conditional distribution of Z given that Z ∈ A.

In our context, Sn = Z and A = [b,∞). Thus, to

construct good importance sampling schemes, it is necessary

to obtain a description of the distribution of the increments

(Xi’s) given that Sn > b in a large deviations regime

– developing a good understanding of this distribution is

one of the main goals of large deviations theory. One of

the goals of this paper is to translate this understanding

into a simulation algorithm that satisfies good theoretical

properties in terms of efficiency – properties that we review

next.

We are interested in measuring the “efficiency” of a

procedure for estimating β ≡ P (Z ∈ A) via simulation in

a setting in which β ≈ 0. In order to be precise, we shall

introduce a parameter n such that βn ≡ P (Zn ∈ An) −→ 0
as nր∞ and perform our complexity analysis under this

asymptotic regime.

We want to produce an estimate, β̂n,r, such that for

given ε, δ ∈ (0, 1),
∣∣∣β̂n,r − βn

∣∣∣ ≤ βnε with probability

(1− δ). Here we use the subindex r to denote the number

of iid replications required to produce β̂n,r. Suppose that

Ln,k

(
Zk

n

)
denotes the likelihood ratio obtained in the k-th

replication using a given importance sampling estimator.

We then consider the unbiased estimator

β̂n,r =
1

r

r∑

k=1

Ln,k

(
Zk

n

)
.

We can use the CLT to conclude that if σ2
n = V arG (Ln,k) <

∞ (where V arG (·) is the variance computed under the

importance sampling distribution) and r is large,

P

(
r1/2

σn

∣∣∣β̂n,r − βn

∣∣∣ ≥ z1−δ/2

)
≈ δ,

where P
(
N (0, 1) ≤ z1−δ/2

)
= 1 − δ/2. In other words,

we must have that

σnz1−δ/2

βnε
≈ r1/2.

We therefore require O(ε−2z2
1−δ/2(σn/βn)2) replications

to achieve the required level of precision. The quantity

cvn ≡ σn/βn is known as the coefficient of variation of the

random variable Ln (Zn) and (as indicated above) governs

the number of replications required to generate an estimator

with a controlled relative error.

The best performance (up to proportionality constants

and for fixed δ and ε) is obtained by importance sampling
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distributions such that

lim
n→∞

σn

βn
<∞. (2)

Thus, such an importance sampling distribution is said

to achieve “strong efficiency” (one can also find the

terms “bounded efficiency” or “bounded relative error”).

Other notion that appears often in the rare-event simula-

tion literature is “logarithmic efficiency” which requires

cvn = o
(
log β−1

n

)
as nր∞.

3 ON THE OPTIMAL IMPORTANCE SAMPLER

FOR P{Sn > b}

For 0 ≤ k ≤ n and x ∈ R we consider

u (n− k, x) = P (Sn > b|Sk = x) .

It is not hard to see that u (·) is satisfies the system of linear

integral equations

u (n− k, x) = E[u (n− k − 1, Sk+1)|Sk = x] (3)

= E[u (n− k − 1, x + X)]

subject to u (0, x) = I (x > b). In particular, we note that

equation (3) indicates that, for k ∈ {0, ..., n− 1},

Q∗

n−k (x, y + dy) =
P (x + X ∈ y + dy) u (n− k − 1, y)

u (n− k, x)
(4)

is a well defined (time in-homogeneous) Markov transition

kernel. If we use Q∗

n−k (sk, ·) as our importance sampling

distribution to generate the sample Sk+1 = sk+1 given that

Sk = sk, the contribution to the likelihood ratio in our

importance sampling estimator is given by the ratio

P (X ∈ sk+1 − sk + dy)

Q∗

n−k (sk, sk+1 + dy)
=

u (n− k, sk)

u (n− k − 1, sk+1)
,

which corresponds to the generation of the k-th increment

sk+1 − sk. Thus, the combined likelihood ratio of the

generated increments (ranging k ∈ {0, ..., n− 1}) takes the

form (observing that we must have that sn > b and using

the condition u (0, x) = 1 (x > b))

L∗ =

n−1∏

k=0

u (n− k, sk)

u (n− k − 1, sk+1)
=

u (n, s0)

u (0, sn)
= u (n, s0) .

Therefore, Q∗

n−k (·) gives rise to the zero-variance im-

portance sampling estimator and provides a description

of the process (Sk : 0 ≤ k ≤ n) conditioned on the event

{Sn > b, S0 = x0}. The previous (somewhat heuristic) de-

scription of the zero-variance change-of-measure enhances
760
intuitive ideas borrowed from importance sampling, a more

precise description can be given in terms of Martingale

theory – we shall not discuss this approach here many texts

deal with this approach in one form or another, see for

instance Meyn and Tweedie (1993) or Del Moral (2004).

4 LARGE DEVIATIONS FOR SUMS OF

REGULARLY VARYING INCREMENTS

The following assumptions are imposed throughout the rest

of the paper. Assume that (Xn : n ≥ 1) is a sequence of

iid rv’s that satisfy:

i) The Xn’s possess a continuously differentiable density

f (·) that satisfies f ′ (t) ∼ L (t) t−(α+2) as t ր ∞ for

α > 2, where L (·) is a slowly varying function at infinity.

That is, L (tx) /L (t) −→ 1 as tր∞ for each x ∈ (0, 1).
ii) EXn = 0, EX2

n = 1 and E |X|p < ∞ for p ≥ 2
(note that α ≥ p must be satisfied).

We are interested in efficient rare-event simulation

methodology for

u (n, 0) = P (Sn > b|S0 = 0) for b ≥ cn1/2+ε given c, ε > 0,

when n is large.

The large deviations theory for sums of the form Sn =
X1 + ... + Xn (S0 = 0) has been studied extensively.

In particular, a result developed by Rozovskii (1989) (see

also Borovkov and Borovkov 2001) provides a convenient

asymptotic description of the distribution of Sn for large n.

In order to describe Rozovskii’s result we shall introduce

some notation, which we shall use throughout the rest of

the paper, namely,

F (b) ≡ P (X > b) ,

Φ (z) ≡ P (N (0, 1) > z) ,

where N (0, 1) denotes a standard Gaussian rv. We now

state Rozovskii (1989).

Theorem 1 Under assumptions i) and ii) above,

P (Sn > b) =
[
nF (b) + Φ

(
b/n1/2

)]
(1 + o (1))

as nր∞ uniformly over b > n1/2.

Theorem 1 indicates that if define (for 0 ≤ k ≤ n− 1)

v (n− k, x)

≡
[
(n− k) F (b− x) + Φ

(
b− x√
n− k

)]
I
(
b− x >

√
n− k

)

+I
(
b− x ≤

√
n− k

)
,

then v (n− k, x) is approximately close to u (n− k, x)
in a suitable asymptotic sense (in particular, if (b− x) >
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(n− k)
1/2

and n is much larger than k). Our discussion

in Section 3 on the characterization of the zero-variance

importance sampling distribution suggests to consider, for

k ∈ {0, ..., n−1} the (time in-homogeneous) Markov kernel

Qn−k (x, y + dy) =
P (X + x ∈ y + dy) v (n− k − 1, y)

w (n− k, x)
,

where w (n− k, x) is defined as

w (n− k, x) = E[v (n− k − 1, x + X)].

Since v (·) is a suitable approximation to u (·) in a certain

asymptotic sense, it is natural to expect that the “local”

likelihood ratio (w (n− k, x) /v (n− k − 1, y)) will be well

behaved on a certain region, described in terms of time

and space, that represents the domain under which the

asymptotics provide a description that is close enough to

the behavior of u (·). So, it is intuitively clear that the

performance of our algorithm (in terms of the behavior

of the local likelihood ratios and the ability to mimic the

zero-variance change-of-measure) will be very good in the

domain under which the asymptotics are guaranteed to be

good enough. In order to describe a convenient region under

which importance sampling can be successfully applied (i.e.,

the local likelihood ratio is suitably controlled) we define

the stopping time (given ε, c > 0 and n ∈ N)

τn,ε,c = inf{k ≥ 0 : Sk > b− c (n− k)
1/2+ε}.

An important part of our analysis will involve iden-

tifying a region under which importance sampling can be

successfully applied, a computation that will be done in the

next section. In the mean time, let us state the following

estimate which will be useful in the design (and analysis) of

our efficient simulation algorithm. It concerns the distribu-

tion of the first passage time τn (ε, c) and follows as a direct

consequence of Theorem 1 from Borovkov and Borovkov

(2001).

Proposition 1 If assumptions i) and ii) are in force,

P
(
τn,ε,c/2 ≤ n

)
= (1 + o (1))

n∑

j=1

F
(
b− 2−1c (n− j)

1/2+ε
)

as nր∞ uniformly over b ≥ cn1/2+ε for fixed constants

ε, c > 0.

Equipped with the previous two estimates, we are ready

to describe our efficient importance sampling scheme.
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5 A PROPOSED ALGORITHM AND EFFICIENCY

ANALYSIS

As we indicated before, the natural strategy is to apply the

importance sampling scheme suggested by Qn−k (·) if we

are well inside a domain where the asymptotic description

of u (·) is guaranteed to hold – for purposes of rare-event

simulation. In particular, we propose to apply importance

sampling at time k as long as k < τn,ε,c/2. Large deviations

theory for heavy-tailed sums of iid rv’s indicates that large

excedences occur by means of a single large increment

and the size of the overshoot over a given barrier is large.

Consequently, it is plausible to expect that a good importance

sampling algorithm that is applied only at steps k < τn,ε,c/2

(whenever τn,ε,c/2 ≤ n) should induce the occurrence of the

event {Sn > b} with relatively high probability. Therefore,

it should be the case that a simple algorithm that just

stops the importance sampling scheme by time τn,ε,c/2 and

outputs the corresponding likelihood ratio times the indicator

I
(
τn,ε,c/2 ≤ n, Sn > b

)
should behave reasonably well. Of

course, we also expect that a slightly better algorithm would

be one that applies the change-of-measure whenever we are

in the (time/space) region under which importance sampling

can be guaranteed to apply – not only up to the first time the

process leaves the region. However, as we will see, already

the vanilla version algorithm outlined will be shown to be

strongly efficient, so we shall just analyze the following

simple version of the procedure.

Algorithm 1

Given parameters b ≥ cn1/2+ε c and ε > 0.

Set s = 0, m = 0, L = 1
STEP 1. Sample X from the density fm+1 (·) defined

via

fm+1 (x) = f (x)
v (n−m− 1, s + x)

w (n−m, s)
.

Actualize

L ←− L
w (n−m, s)

v (n−m− 1, s + X)
,

s ←− s + X,

m ←− m + 1.

Repeat STEP 1 until s > b−2−1c (n−m)
ε

or m = n.

STEP 2. IF m = n then RETURN L ·I (s > b), ELSE

generate n − m iid rv’s (X1, ...Xn−m) according to the

density f (·), evaluate s′ = X1 + ...+Xn−m and RETURN

L · I (s′ + s > b). STOP.

It follows that the estimator proposed is given by

L =

τn,ε,c/2−1∏

k=0

w (n− k, Sk)

v (n− k − 1, Sk+1)
I
(
τn,ε,c/2 ≤ n

)
I (Sn > b) .

(5)
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The efficiency analysis of L involves estimating

EQ
0 L2

= EQ
0




τn,ε,c/2−1∏

k=0

w (n− k, Sk)
2

v (n− k − 1, Sk+1)
2 ; τn,ε,c/2 ≤ n;Sn > b




= E0




τn,ε,c/2−1∏

k=0

w (n− k, Sk)

v (n− k − 1, Sk+1)
; τn,ε,c/2 ≤ n;Sn > b




= w (n, 0) E0




τn,ε,c/2−1∏

k=1

w (n− k, Sk)

v (n− k, Sk)
R; τn,ε,c/2 ≤ n


 ,

where

R ≡
u
(
n− τn,ε,c/2, Sτn,ε,c/2

)

v
(
n− τn,ε,c/2, Sτn,ε,c/2

) .

By virtue of Theorem 1, there exists a deterministic constant

λ0 ∈ (0,∞) (independent of n and b) such that R ≤ λ0.

Consequently, we obtain

EQ
0 L2 ≤ λ0w (n, 0) P0

(
τn,ε,c/2 ≤ n

)

·E0




τn,ε,c/2−1∏

k=1

w (n− k, Sk)

v (n− k, Sk)
R

∣∣∣∣∣∣
τn,ε,c/2 ≤ n


 .

Now, it follows from Proposition 1 that there exists a constant

λ1 ∈ (1,∞) (independent of n and b) such that

P0

(
τn,ε,c/2 ≤ n

)
≤ λ1nF

(
b− cn1/2/2

)
.

Consequently, it is possible to find a constant λ ∈ (0,∞)
(independent of n and b) such that

EQ
0 L2 ≤ λw (n, 0) v (n, 0)

·E0




τn,ε,c/2−1∏

k=1

w (n− k, Sk)

v (n− k, Sk)

∣∣∣∣∣∣
τn,ε,c/2 ≤ n


 . (6)

The efficiency analysis of our estimator depends on

our ability to control the behavior of the local likelihood

ratio w (n− k, x) /v (n− k, x) on the region b − x ≥
2−1c (n− k)

1/2+ε
. The next lemma, which is proven in

the appendix, provides the estimates that allow to control

the behavior of the local likelihood ratio.

Lemma 1 Under assumptions i), ii) and iii) we have

that there exists a constant ρ ∈ (0,∞) such that

w (n− k, x)

v (n− k, x)
≤ 1+ρ

[
1

(n− k)
1/2 · (b− x)

+ F
(√

n− k
)]
762
uniformly over (b− x) > c (n− k)
1/2+ε

for c ∈ (0,∞)
given.

Using the previous lemma, we are ready to state and

prove our main result.

Theorem 2 If assumptions i), ii) and iii) are in force,

then the estimator L, provided by Algorithm 1 (displayed

in (5)), is strongly efficient.

Proof. Equation (6) combined with Lemma 1 implies

that

EQ
0 L2 ≤ λw (n, 0) v (n, 0) exp

(
ρ

n∑

k=1

(
1

k1+ε
+

1

kα/2

))
.

Since

lim
n−→∞

w (n, 0) v (n, 0)

u (n, 0)
2 = 1

and
∑(

k−(1+ε) + k−α/2
)

< ∞, strong efficiency of the

estimator L follows. The proof of the theorem is complete.

Finally, we provide the proof of Lemma 1.

Proof of Lemma 1. We shall first introduce some

notation. Set β = (n− k)
1/2

, aβ = b − x and β′ =(
β2 − 1

)1/2
. Let us write

ṽ (β, a) = [β2F (aβ) + Φ (a)]I (a > 1) + I (a ≤ 1) ,

and

w̃ (β, a) =
(
β2 − 1

)
E[F (aβ −X) ;X ≤ aβ − β′]

+ E[Φ (a−X/β′) ;X ≤ aβ − β′] + F ((a− 1) β′) .

We have just expressed the functions v (·) and w (·) in

more convenient terms. In particular, note that ṽ (β, a) =
v (n− k, x) and w̃ (β, a) = w (n− k, x). We will show

that

w̃ (β, a)

ṽ (β, a)
= 1 + O

(
1

aβ2

)
+ O

(
F (β)

)
.

as β ր ∞. This will imply the conclusion of the lemma.

First we estimate the ratio

E[F (aβ −X) ;X ≤ aβ − β′]/F (aβ) . (7)

Fix δ ∈ (0, 1) and note that, by applying a Taylor expansion,

using assumption i), and the fact that EX = 0, we obtain

(as β ր∞)

E[F (aβ −X) ; |X| ≤ δaβ]/F (aβ)

= 1 +
E[X2f ′ (ξ) ; |X| ≤ δaβ]

F (aβ)
+ o

(
a−2β−2

)
,
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,

where ξ is a rv such that aβ (1− δ) ≤ ξ ≤ aβ (1 + δ). The

term o
(
a−2β−2

)
above is justified because

f (aβ) E[X;X < −δaβ ∪X > δaβ]

F (aβ)
= o

(
a−2β−2

)

as β ր∞. Therefore, we can conclude that

E[F (aβ −X) ; |X| ≤ δaβ]/F (aβ)

= 1 + O

(
1

(aβ)
2

)
.

On the other hand,

E[F (aβ −X) ;X ≤ −δaβ]/F (aβ)

≤ F (aβ (1 + δ))P (X ≤ −δaβ) /F (aβ) = o

(
1

aβ2

)

where the previous estimate follows from assumption ii)

(E |X|p < ∞ for p ≥ 2). Finally, note that (again by

assumption i))

E[F (aβ −X) ; δaβ ≤ X ≤ aβ − β′]/F (aβ)

≤ F (β′)

F (aβ)
P (δaβ ≤ X ≤ aβ − β′) = O

(
F (β)

)
.

As a consequence, placing all these estimates together into

(7), we obtain that

E[F (aβ −X) ;X ≤ aβ − β′]/F (aβ)

= 1 + o

(
1

aβ2

)
+ O

(
F (β)

)

as β ր∞. Our next goal is to estimate the contribution of

the terms involving Φ (·), this is done following a similar

strategy as in the case of the ratio (7). First of all, observe that

(under the assumption that a ≥ cβε for ε, c > 0) there exists

β0 ∈ (0,∞) such that, for fixed δ ∈ (0, 1),
(
β2F (aβ)

)2 ≥
aΦ (δa) uniformly over β ≥ β0. Now, combining the mean

value theorem and the triangle inequality we obtain

E[Φ (a−X/β) ; |X| ≤ δaβ]/β2F (aβ)

≤ Φ (a)

β2F (aβ)
+

aΦ (a (1− δ))

β2F (aβ)

E |X|
β

= o

(
1

aβ2

)
.

The contribution of the expectations over the sets {X ≤
−δaβ} and {X ∈ [δaβ, aβ − β′]} can be handled analo-

gously. We then obtain

E[Φ (a−X/β) ; |X| ≤ δaβ]/β2F (aβ) = o

(
1

aβ2

)
.
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Let us now put all our estimates together,

w̃ (β, a)

β2F (aβ)
=

E[F (aβ −X) ;X ≤ aβ − β′]

F (aβ)

−E[F (aβ −X) ;X ≤ aβ − β′]

β2F (aβ)
+

F (aβ − β′)

β2F (aβ)

+
E[Φ (a−X/β) ;X ≤ aβ − β′]

β2F (aβ)
.

Our estimates for (7) indicate that the ratio in the first line

of the previous display equals 1+o
(
a−1β−2

)
+O

(
F (β)

)
;

likewise for the integral in the third line of the display. On

the other hand, we have that

F (aβ − β′)

β2F (aβ)
=

1

β2
[1 + O

(
1

a

)
].

Therefore, again making use of our previous estimates for

(7), we conclude

w̃ (β, a)

β2F (aβ)
= 1 + O

(
1

aβ2

)
+ O

(
F (β)

)
. (8)

Finally, since ṽ (β, a) = β2F (aβ)+Φ (a) and (as discussed

previously) Φ (a) = o
(
β4F (aβ)

2
)

, (8) implies

w̃ (β, a)

ṽ (β, a)
= 1 + O

(
1

aβ2

)
+ O

(
F (β)

)

as β ր∞, which completes the proof of the result.
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