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ABSTRACT

We consider a portfolio containing CDO tranches as well as

ordinary bonds. Our interest is in large loss probabilities and

risk measures such as value-at-risk. When loss is measured

on a mark-to-market basis, estimation via simulation requires

a nested procedure: In the outer step one draws realizations

of all risk factors up to the horizon, and in the inner

step one re-prices each instrument in the portfolio at the

horizon conditional on the drawn risk factors. Practitioners

perceive the computational burden of such nested schemes

to be unacceptable, and adopt a variety of somewhat ad

hoc measures to avoid the inner simulation. In this paper,

we question whether such short cuts are necessary. We

show that a relatively small number of trials in the inner

step can yield accurate estimates, and analyze how a fixed

computational budget may be allocated to the inner and the

outer step to minimize the mean square error of the resultant

estimator.

1 INTRODUCTION

A collateralized debt obligation (“CDO”) is a structured

financial product in which a set of debt claims serve as

collateral for a set of securities that differ in seniority. The

juniormost claimant, known as the equity tranche, is the

first to absorb default losses in the pool. When default

losses fully exhaust the equity tranche, a mezzanine tranche

absorbs subsequent losses, and so on. Senior tranches are

very unlikely to realize any credit losses and typically are

rated AA or AAA by public rating agencies. CDOs have

revolutionized bank balance sheet management, and more

recently have given rise to a speculative market in “corre-

lation trading” of standardized CDO tranches constructed

synthetically on traded credit default swap indexes.

Most existing research related to CDOs concerns pric-

ing. Duffie and Gârleanu (2001) demonstrate how CDO

tranches may be priced using the stochastic default intensity

methods widely applied to single-name investment grade

bonds and credit derivatives. This paper remains influen-

tial as a conceptual benchmark, but practitioners generally

find the computational burden of this model prohibitive
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for real-time trading. Instead, copula models based on Li

(2000) are commonly used, despite compelling evidence that

calibration of such models to prices can yield misleading

comparative statics (Willemann 2005).

Risk-measurement applications introduce additional

challenges. When loss is measured on a mark-to-market

basis, estimation via simulation of risk-measures such as

Value-at-Risk (“VaR”) or large loss probabilities requires a

nested procedure: In the outer step one draws realizations

of all risk factors up to the horizon, and in the inner step

one re-prices each instrument in the portfolio at the hori-

zon conditional on the drawn risk factors. As stochastic

default intensity models are perceived as too costly even for

one-time pricing calculations, it has been widely assumed

that such models are infeasible for the inner step of a VaR

simulation, because the inner step must be executed once

for each trial in the outer step. Copula pricing methods

may sometimes be used in the inner step. However, copula

models are inherently static, and so cannot be applied to

repricing at a future horizon except by ad hoc means. More

typically, practitioners avoid the inner step altogether by

decomposing the CDO tranches into credit default swaps

(“CDS”) on the individual names in the collateral pool. The

exposure assigned to each name is determined by the delta

of the tranche price with respect to a small change in the

name’s CDS spread. How well this approach works in prac-

tice has not been studied carefully, but intuition suggests

that it will work poorly. In risk-management applications,

one is interested in tail events that generate large portfolio

losses. Large losses occur when many defaults (and not just

small credit spread changes) have occurred. Delta-implied

exposures in general will bear little resemblance to tranche

price changes in the event of a default in the collateral pool.

In this paper, we question whether inner step simulations

must necessarily impose a large computational burden. We

show that a relatively small number of trials in the inner

step can yield accurate estimates for VaR and large loss

probabilities. Since an expectation is replaced by a noisy

sample mean, the estimator is biased, and we are able to

characterize this bias asymptotically. Our main contribution

is to analyze how a fixed computational budget may be

allocated to the inner and the outer step to minimize the
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mean square error of the resultant estimator. We note

that the inner step can be implemented in broadly two

different ways, and we analyze the optimal allocation in

both the settings. Numerical results testing the efficacy of

the proposed algorithms will be presented at the conference.

In Section 2 we develop the modelling framework for

portfolio of CDOs. In Section 3, we introduce the nested

simulation methodology, and analyze the optimal alloca-

tion of computational resources between the two stages that

minimizes the mean square error of the resultant estima-

tor. Here, we also characterize the bias in the simulation

estimator. We conclude briefly in Section 4. Here we also

discuss our related ongoing research.

2 MODEL OF PORTFOLIO OF CDO TRANCHES

In this section, we develop a model of a portfolio containing

CDO tranches as well as single-name instruments. In our

setting, a single-name instrument can be represented as

a special case of a CDO, so without loss of generality

we assume that all positions in the portfolio are CDO

tranches. For simplicity in exposition, these are assumed to

be unfunded, synthetic CDOs. An unfunded synthetic CDO

is nothing more than a basket of single-name credit default

swaps (CDS) with prioritized structuring of default payouts

by the tranche holders. This greatly simplifies the cashflow

rules without limiting the more general applicability of the

methodology.1

The reference names in the CDO collateral pools are

drawn from a universe consisting of m obligors. Each CDO

tranche is defined by a set of variables (At,Γt,∆t, s, T )
where

• At is a vector At = (a1t, . . . , amt) of dollar ex-

posures in the CDO pool to each name in the

underlying universe. Exposure is zero for names

not included in a pool.

• Γt and ∆t are the attachment and detachment

points, respectively, for a tranche. These too are

expressed in dollars. The face value of the tranche

at time t is ∆t − Γt.

• s is the spread on the tranche. We assume the

CDO issuer pays the tranche holder a continuous

stochastic premium of s(∆t − Γt). Note that s is

constant over the life of the CDO, but the residual

face value of the tranche is nonincreasing over time

due to default losses.

• T is the maturity of the CDO.

1In the US and Europe, there are CDS indices based on the most

widely-traded names. One can also trade standard “index tranches” of

unfunded synthetic CDOs of the index names. The index tranche market

has become quite liquid. Positions in this market fall naturally into our

model framework.
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We can approximate a “plain vanilla” loan or bond in

the portfolio as a single-name credit default swap. That is,

the credit risk for the holder of a bond issued by obligor i is

equivalent to the credit risk for the seller of a CDS written

on i. It is represented by a vector At that is equal to the

bond exposure a at position i and zeros elsewhere; Γt = 0;

∆t = a; and T equal to the maturity of the bond. Therefore,

without loss of generality, we say that the portfolio consists

of K CDO tranches. Position k will be represented by

Pkt = (Akt,Γkt,∆kt, sk, Tk).

Note that we can have two positions in the pool that are

different tranches of the same CDO—no complications arise

in this case.

Credit risk at the obligor level is modeled in the reduced-

form framework of Duffie and Singleton (1999). Obligor

i has a stochastic default time τi. When t < τi, the

obligor has a stochastic default intensity λit. The vector

of default intensities is denoted Λt. In models of multi-

name derivatives such as CDOs and basket default swaps,

cross-sectional dependence in Λt is a central concern. We

assume that the λit are correlated via common dependence

on a diffusion Wt. Conditional on Wt, changes in the λit

are independent and default events are independent.

When a default occurs in a CDO pool, the tranche

holder pays out its contractual protection. Let χjt be the

payout required of the tranche in the event that obligor j
defaults at time t. A payout is required only if the loss on

this default exhausts all tranches junior to the given CDO

tranche, and can never be greater than the remaining face

value of the CDO tranche, so

χjt = min{max{(1 − Rjt)ajt − Γt, 0},∆t − Γt}

where Rjt is a recovery rate. The recovery rate may be

stochastic but, following standard practice, we assume that

any uncertainty is idiosyncratic. Now let Xjt represent the

cumulative payout by the tranche for default of obligor j.

This is

Xjt = It≥τj
· χj,min{t,τj}

Subsequent to the payout on the defaulted obligor, the vector

of exposures A and the attachment and detachment points

must be updated. Exposure to defaulted obligor j in the

CDO pool is set to zero, i.e., aj,τ+

j
= 0. The tranche

attachment and detachment are decremented as well via:

dΓt = −min{Γt,
∑

i

dXit}

d∆t = −min{∆t,
∑

i

dXit}
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To keep the focus on credit risk, we assume that risk-

free interest rates are constant at r. In this case, the price

of position k at time t can be written as the function

V (Λt, Akt,Γkt,∆kt, sk, Tk − t).

Note that V does not depend directly on k because the

instruments all take the same contractual form. Similarly,

V does not depend directly on time because the effects of

the passage of time on the CDO are absorbed in the A, Γ
and ∆ parameters and the remaining maturity Tk − t. Thus,

we can write a very generic pricing function.

Our objective is to model the distribution of the dis-

counted value of portfolio profit and loss at a fixed horizon.

Profit and loss (“P/L”) is measured on a mark-to-market

basis and includes the cashflows received and payed out.

We normalize the present time to 0. The model horizon is

H . For convenience, we assume H ≤ min{Tk}. Realized

loss on position k is denoted Yk and is calculated as

Yk = V (Λ0, Ak0,Γk0,∆k0, sk, Tk)

− e−rHV (ΛH , AkH ,ΓkH ,∆kH , sk, Tk − H)

+

∫ H

0

e−rtdXkt − sk ·
∫ H

0

e−rt(∆kt − Γkt) dt.

The first term is current value, the second term is the dis-

counted value at the horizon, the third term is the discounted

value of the payouts made, and the last term is the dis-

counted value of the stream of premium payments received.

Note that Yk is negative whenever the position generates a

profit. Portfolio loss is simply Y =
∑K

k=1
Yk.

Whenever P/L is modeled on a mark-to-market basis,

we need to consider the relationship between the empirical

and risk-neutral properties. The empirical measure governs

the evolution of the portfolio over the horizon, whereas the

risk-neutral measure governs the repricing of the portfolio at

the horizon. In a large and efficient market, it is reasonable

to assume that investors demand a premium only on non-

diversifiable sources of risk. In our model, Wt represents

the only such source of risk, so we assume that a change in

drift in Wt determines the relationship between λit and its

counterpart λ̃it under the risk-neutral measure Q. Note that

the default event itself (i.e., conditional on λit) attracts no

risk-premium, so at each moment in time we have λ̃it = λit.

That is, the equality holds instantaneously at each point in

time, but the two evolve into the future by different processes

(Lando, Jarrow, and Yu 2005).

3 SIMULATION FRAMEWORK

We now develop notation related to the simulation process.

The simulation is nested: There is an “outer step” in which

we draw histories up to the horizon H . For each trial in
751
the outer step, there is an “inner step” simulation needed

for repricing at the horizon.

Let L be the number of trials in the outer step. In each

of these trials, we

1. Draw a single path Wt under the empirical measure

for t = (0,H]. Here, the interval (0,H] may be

discretized into a large number of equally spaced

times and Wt may be sampled at these times (see,

e.g., Glasserman 2004).

2. Conditional on Wt, draw paths for the default

intensities.

3. Conditional on the {λit}, draw default events and

(when default occurs) recovery rates.

4. Evaluate the cashflow components of Yk for each

k.

5. Evaluate the price of each position at H .

It is the last step that calls for the “inner step” simulation.

We consider two distinct methods to conduct this inner step

simulation:

A. We draw N independent trials of joint paths for the

m obligors on (H,max{Tk}], and in each path cal-

culate the price of each CDO tranche as a discounted

expected value of future cashflows.

B. For position k, draw pkN trials of joint paths for

the obligors with positive exposure in CDO k. For

each path, we calculate the price of position k as a

discounted expected value of future cashflows. Here

pk ≥ 0 and
∑

k≤K pk = 1. The key thing here is

that we price each position independently of other

positions.

In either case, inner-step simulations are governed by the

risk-neutral measure Q.

We assume that the CDO prices at time 0 are already

known and can be taken as constants in our algorithm. Of

course, this can be relaxed.

Let the random vector ξ denote all the economic infor-

mation available at the model horizon H that is required to

reprice in the inner step simulations and thereby complete

a draw of portfolio loss Y . A sufficient representation of ξ
includes

• Default times τi and recoveries Ri for obligors that

default in (0,H].
• The time-H default intensity vector ΛH for sur-

viving borrowers.

• The time-H common factor WH .

3.1 Estimating the Probability of Large Losses

We first consider the problem of efficient estimation of

α = P (Y (ξ) > u) via simulation for a given u. If for
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each generated ξ, the mark-to-market values of each po-

sition were known, the associated Y (ξ) would be known

and simulation would involve generating i.i.d. samples

Y1(ξ1), Y2(ξ2), . . . , YL(ξL) and taking the average

1

L

L
∑

i=1

Ii(Yi(ξi) > u)

as an estimator of α. However, the mark-to-market value

of each CDO is not known and is estimated via the inner

step simulations.

We first focus on the Method A described earlier in this

section for generating the inner step simulations. Method

B is similar and is discussed later. Suppose that through

outer step simulation a sample ξ is generated. For CDO

k, suppose that (ΛH , AkH ,ΓkH ,∆kH , sk, Tk −H) denotes

the information associated with ξ. Then, in the inner step,

N trials are conducted, and at each trial, a noisy sample

of
∑

k≤K V (ΛH , AkH ,ΓkH ,∆kH , sk, Tk − H) of mark-

to-market CDO prices is generated. Let Zi(ξ) denote the

zero-mean pricing error associated with the ith such sample,

and set

Z̄N (ξ) =
1

N

N
∑

i=1

Zi(ξ).

In place of Y (ξ), we take as its surrogate Y (ξ) + Z̄N (ξ)
as an estimate of loss in the portfolio. By the law of large

numbers,

Z̄N (ξ) → 0 a.s.

as N → ∞. The estimator for P (Y (ξ) > u) then involves

generating i.i.d. samples

(Y1(ξ1) + Z̄N
1 (ξ1)), . . . , (YL(ξL) + Z̄N

L (ξL))

via outer and inner step simulation and taking the average

α̂L,N =
1

L

L
∑

i=1

Ii[Yi(ξi) + Z̄N
i (ξi) > u].

We now develop an expression for the mean square

error of the estimator represented by α̂L,N for both Methods

A and B and discuss the parameters that minimize this.

3.1.1 Inner step simulation: Method A

Let αN denote P (Y (ξ) + Z̄N (ξ) > u). The mean square

error of the estimator α̂L,N separates into

E(α̂L,N − α)2 = E(α̂L,N − αN + αN − α)2

= E(α̂L,N − αN )2 + (αN − α)2.
752
Further, note that

E(α̂L,N − αN )2 =
αN (1 − αN )

L
.

Suppose that the computational effort to generate one

sample of ξ (outer step simulation) on an average equals

β > 0, and to generate an inner step simulation sample on

the average equals γ. Then, average effort per iteration of

simulation equals Nγ+β and average effort for L iterations

equals L(Nγ + β). By law of large numbers this is close

to the actual effort when L is large. We suppose that the

overall computational budget is fixed C. We analyze the

problem of determining best N,L that minimize the mean

square error of the estimator αL,N when L(Nγ + β) = C
for large C.

Thus we consider the optimization problem

min
N,L≥0

αN (1 − αN )

L
+ (αN − α)2

subject to L(Nγ + β) = C, as C → ∞.

We address this problem by first showing that

αN = α + c/N + o(1/N)

for a specified c. The objective function then reduces to

finding N that minimizes

Nα(1 − α)γ + o(N)

C
+

c2

N2
+ o(1/N2).

It is easy to see that an optimal N for this has the form

N∗ =

(

2c2

α(1 − α)γ

)1/3

C1/3 + o(C1/3).

Therefore optimal L has the form

L∗ =

(

α(1 − α)

2γ2c2

)1/3

C2/3 + o(C2/3),

and the mean square error at optimal N∗ equals

(

cα(1 − α)γ

2C

)2/3

+ o(C−2/3).

We now evaluate the expression αN − α to show that

c above equals

1

2

d

du
fY (u)E[σ2

ξ |Y = u],
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where σ2
ξ denotes the conditional variance of Zi (conditioned

on ξ) and fY (·) denotes the marginal pdf of Y (we suppress

the dependence on ξ in our notation wherever it is visually

convenient). Our methods here are drawn from the literature

on granularity adjustment (Martin and Wilde 2002, Gordy

2004) which in turn is based on sensitivity analysis of VaR

(Gourieroux, Laurent, and Scaillet 2000).

Some notation is needed for this. Let Z̃N = Z̄N ·
√

N .

Then αN = P (Y + Z̃N/
√

N > u). Let fξ(·) denote the

pdf of random vector ξ. Let fY,Z̃N
(·, ·) denote the joint pdf

of Y and Z̃N . Then,

αN =

∫

ℜ

∫ ∞

u−z/
√

N

fY,Z̃N
(y, z)dydz,

so that

αN − α =

∫

ℜ

∫ u

u−z/
√

N

fY,Z̃N
(y, z)dydz. (1)

Using the Taylor’s series expansion of the pdf in (1),

fY,Z̃N
(y, z) = fY,Z̃N

(u, z) + (y − u)f ′
Y,Z̃N

(u, z) + o(y − u),

where f ′
Y,Z̃N

(y, z) is the derivative of the bivariate density

with respect to y, we get

αN − α =

∫

ℜ

z√
N

fY,Z̃N
(u, z)dz

−
∫

ℜ

z2

2N
f ′

Y,Z̃N
(u, z)dz + o(1/N).

Technical conditions on the smoothness of f are imposed

to ensure that the remainder term has the form o(1/N).
Note that the first term above equals

fY (u)√
N

E[Z̃N |Y = u]

which equals zero since

E[Z̃N |Y = u] = E[E[Z̃N (ξ)|Y (ξ) = u, ξ]] = 0.

We now show that
∫

ℜ y2f ′
Y,Z̃N

(u, z)dz equals

d

du
fY (u)E[σ2

ξ |Y = u].
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This follows as:

∫

ℜ
z2f ′

Y,Z̃N
(u, y)dy =

d

du

∫

ℜ
z2fY,Z̃N

(u, z)dz

=
d

du
fY (u)E[Z̃2

N |Y = u]

=
d

du
fY (u)E[E[Z̃2

N |ξ]|Y = u]

=
d

du
fY (u)E[σ2

ξ |Y = u].

It can also be seen that

∫

ℜ
z2f ′

Y,Z̃N
(u, z)dz

= fY (u)

∫

ℜ
z2

f ′
Y,Z̃N

(u, z)

fY,Z̃N
(u, z)

fY,Z̃N
(u, z)

fY (u)
dz

= fY (u)E

[

Z̃2
N

f ′
Y,Z̃N

(Y, Z̃N )

fY,Z̃N
(Y, Z̃N )

∣

∣

∣

∣

Y = u

]

= fY (u)E

[

σ2
ξ

f ′
Y,Z̃N

(Y, Z̃N )

fY,Z̃N
(Y, Z̃N )

∣

∣

∣

∣

Y = u

]

.

The latter two representations have the advantage that they

may be estimated via Monte-Carlo simulation whenever the

expressions for fY,Z̃N
and f ′

Y,Z̃N
are available or can be

cheaply estimated.

In the conference, we present simulation methods for

estimating c and the numerical results demonstrating the

effectiveness of such estimates in minimizing the mean

square error of resultant performance measures.

3.2 Inner Step Simulation: Method B

We now discuss Method B to generate inner step simulations.

Here, each CDO’s mark-to-market price at the portfolio

horizon is estimated by conducting independent simulations.

As mentioned earlier, we conduct piN simulations for CDO

i where each pi ≥ 0 and
∑

i≤K pi = 1. Suppose that the

average effort to generate a single such simulation is γi.

Then, total inner step simulation effort equals Nγ where

γ =
∑

i≤K

piγi.

The resulting sample from an iteration of outer and

inner step simulation is

Y (ξ) +
K

∑

i=1

1

piN

piN
∑

j=1

Zij(ξ)
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where Zij(ξ) denotes the sample from simulation j for

CDO position i, again normalized to zero mean. (Here we

ignore minor technicalities associated with piN not being

an integer.)

The analysis to compute the mean square error proceeds

exactly as in Section 3.1.1. The resultant c in this setting

can be seen to equal

1

2

d

du
fY (u)

K
∑

i=1

1

pi
E[σ2

i,ξ|Y = u] (2)

where σ2
i,ξ denotes the variance of Zij(ξ) conditioned on

ξ. Recall that the mean square error at optimal N∗ equals

(

cα(1 − α)γ

2C

)2/3

+ o(
1

C2/3
).

We now consider the problem of determining approxi-

mation to optimal (pi ≥ 0 : i ≤ K). Note that u and hence

α and C are fixed, therefore it is reasonable to search for

(pi ≥ 0 : i ≤ K) that minimize the product cγ. Recall that

γ =
∑

i≤K piγi. Typically, the exact expression for

d

du
E[σ2

i,ξ|Y = u]

may not be known. However, in many portfolio credit risk

models, for a reasonable class of parameters, it is possible to

express E[σ2
i,ξ|Y = u] as approximately δig(u) for δi ≥ 0

and a smooth non-negative function g(u). In CreditRisk+,

for example, the conditional variance E[σ2
i,ξ|Y = u] is

equal to a constant times u plus terms proportional to u2

(Gordy 2004). When such a relationship holds, (2) may be

re-expressed as

K
∑

i=1

1

pi
E[σ2

i,ξ|Y = u] · d

du

(

fY (u) +
g′(u)

g(u)

)

.

Therefore, under these circumstances a good solution

to minimizing the mean-square error corresponds to finding

(pi ≥ 0 : i ≤ K) that minimize

∑

i≤K

piγi

K
∑

j=1

1

pj
E[σ2

j,ξ|Y = u],

subject to
∑

i≤K pi = 1.

Since the terms pi and pj appear as ratios in the objective,

the constraint
∑

i≤K pi = 1 simply involves normalizing

any solution of the unconstrained problem. From the first

order conditions, it is easy to see that the solution to this
754
problem (p∗i : i ≤ K) corresponds to:

p∗i =

√

E[σ2
i,ξ|Y = u]/γi

∑

j≤K

√

E[σ2
j,ξ|Y = u]/γj

.

This is intuitive as one expects that higher computation

resources be allocated to a position with higher variabil-

ity and lower computational effort. This is captured by

E[σ2
j,ξ|Y = u] in the numerator and γi in the denominator.

3.3 Estimating Value-At-Risk

We now consider the problem of efficient estimation of VaR

for Y . For a target insolvency probability α, VaR is the

value yα given by

yα = inf{y : P (Y ≤ y) ≥ 1 − α}

We consider Method A for the inner step of simulation. The

extension to Method B is straightforward and is omitted.

As before, our simulation generates samples

(Y1(ξ1) + Z̄N
1 (ξ1), . . . , (YL(ξL) + Z̄N

L (ξL)). (3)

Let U1, . . . , UL denote the sequence in (3) in descending

order. Then, ŷα = U⌈αL⌉ provides an estimate of yα,

where ⌈a⌉ denotes the integer ceiling of the real number

a. Our interest is in characterizing the mean square error

E[(ŷα − yα)2] and then minimizing it.

Let ỹα denote the α quantile corresponding to the

random variable Y (ξ) + Z̄N (ξ). We decompose the mean

square error as

E[(ŷα−yα)2] = E[(ŷα−E[ŷα]+E[ŷα]−ỹα+ỹα−yα)2]

= σ2(ŷα) + (E[ŷα] − ỹα)2 + (ỹα − yα)2

− 2(E[ŷα] − ỹα)(ỹα − yα). (4)

Treating ŷα as an estimator of ỹα, we have the well-known

results

E[ŷα] = ỹα −
α(1 − α)f ′

Y +Z̄N (ỹα)

2(L + 2)fY +Z̄N (ỹα)3
+ O(1/L2)(5)

σ2(ŷα) =
α(1 − α)

(L + 2)fY +Z̄N (ỹα)2
+ O(1/L2), (6)

where fY +Z̄N (·) denotes the pdf of rv Y + Z̄N (see Chen

2002, Law and Kelton 2000).

Note that ỹα is a function of N and ỹα → yα as

N → ∞. We now evaluate ỹα − yα more precisely by way
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of the Taylor’s series expansion,

α = P (Y + Z̄N > ỹα) = P (Y + Z̄N > yα)

− (ỹα − yα)fY +Z̄N (yα) + o(ỹα − yα).

From our analysis earlier on αN − α, we have

P (Y + Z̄N > yα) = P (Y > yα) + c̃/N + o(1/N)

where c̃ = 1

2

d
dufY (u)E[σ2

ξ |Y = u]|u=yα
, and since P (Y >

yα) = α, it follows that

ỹα − yα =
c̃

NfY +Z̄N (yα)
+ o(ỹα − yα).

Under mild technical conditions, fY +Z̄N (yα) → fY (yα),
therefore it can be seen that

ỹα − yα =
c̃

NfY (yα)
+ o(1/N). (7)

Recall that C denotes our overall computational budget,

and L(Nγ + β) = C. Plugging this into (5) and impos-

ing mild regularity conditions, we find (E[ŷα] − ỹα)2 is

O(N2/C2). Similarly, we find (E[ŷα] − ỹα)(ỹα − yα) is

O(1/C), and hence the mean square error E[(ŷα − yα)2]
equals

α(1 − α)(Nγ + β)

CfY (yα)2
+O(N2/C2)+

c̃2

N2fY (yα)2
+O(1/C).

This can be seen to be minimized at

N∗ =

(

2c̃2

α(1 − α)γ

)1/3

C1/3 + o(C1/3).

Therefore optimal L has the form

L∗ =

(

α(1 − α)

2γ2c̃2

)1/3

C2/3 + o(C2/3).

These values are identical up to terms of size o(C2/3) to

the optimal values for estimating P (Y > u) derived in the

previous section when u = yα.

4 CONCLUSION AND ONGOING RESEARCH

In this paper we considered the problem of efficient estima-

tion of the probability of large losses and the value-at-risk for

a portfolio comprising many CDO tranches. We proposed

a two stage simulation procedure and discussed computa-

tional resource allocation to each stage so as to minimize

the resulting mean square error. Our analysis was con-

ducted for the reduced form models increasingly popular
755
for modeling credit risk. It is evident from our analysis that

with minor adjustments, it remains valid more generally for

other approaches to credit risk (e.g., structural models) as

well as market risk modeling. As we noted in the introduc-

tion, the simulation results describing the efficacy of the

proposed resource allocation strategies would be presented

in the conference.

We have not considered importance sampling techniques

in this paper. Combining our computational resource allo-

cation methodology with existing IS techniques should be

entirely straightforward and effective.

Our ongoing research considers dynamic allocation of

N in the simulation inner step. Note that in estimating

P (Y > u) as in Section 3, in the inner simulation step if

the average of the generated samples Y +Z1, . . . , Y +ZN ,

for small value of N , is seen to be much smaller than u or

much larger than u, it may be waste of effort to generate

many more samples in the inner simulation step. However,

if this average is close to u, it makes sense to generate

many samples to reduce the bias in the estimator. Another

topic of ongoing research concerns the asymptotic behavior

of our optimal allocation as the number of positions K or

the number of obligors m grow large.
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