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ABSTRACT

In this paper we study the problem of estimating probability

of large losses in the framework of doubly stochastic credit

risk models. We derive a logarithmic asymptote for the

probability of interest in a specific asymptotic regime and

propose an asymptotically optimal importance sampling

algorithm for efficiently estimating the same. The numerical

results in the last section corroborate our theoretical findings.

1 INTRODUCTION

With the expansion in the corporate credit risk market and

the surge in the trading of securitized products, such as

Collateralized Debt Obligations (CDOs), there is a need

for sophisticated credit risk models. The pricing and risk

management of these products requires the computation of

portfolio loss distributions. The current industry standard for

modeling portfolio losses is to have a non-stochastic (maybe

time varying) intensity for each obligor (see Andersen,

Sidenius, and Basu 2003 and Li 2001) boot-strapped from

the current term structure of CDS spreads for the individual

names and to correlate the default times using a copula

function. Some commonly used copula functions are the

normal copula and the student-t copula. See Li (2001)

for the use of copula functions in modeling correlation of

default times. One shortcoming of the copula framework is

that, in its current implementation, the intensity (and hence

the credit spread) dynamics are omitted, thus ignoring the

risk associated with changes in credit spreads.

In the current paper, we focus on the class of doubly

stochastic models (see Duffie and Singleton 2003) where the

dynamics of the intensity process are governed by affine-

jump diffusion processes. A stochastic intensity model,

though captures spread dynamics, tends to be computation-

ally intensive for the purpose of pricing and risk management

since it requires one to simulate the path of the default in-

tensity. In order to reduce the computational burden, we

apply the idea of importance sampling for estimating proba-
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bilities of large portfolio losses and for pricing CDOs using

simulation. Importance sampling is a variance reduction

technique for rare event simulation and is based on the

idea of conducting the simulation under a new measure for

which the event of interest occurs more frequently.

The most relevant work to ours is the recent paper by

Glasserman and Li (2005) on efficient simulation for credit

portfolio. They propose an importance sampling algorithm

for computing large loss probabilities in a static normal

copula model, where the dependency of the default times

are modeled through a normal copula function. They work

in a homogeneous framework where all firms have the same

default probabilities. In this paper we analyze a dynamic

reduced form model and also allow for heterogeneity.

The key contributions of the paper can be summarized

as:

1. We derive a logarithmic asymptote for large loss

probabilities for doubly stochastic reduced form

models in a specific asymptotic regime.

2. We present an asymptotically optimal change of

measure for estimating probabilities of large num-

ber of defaults for doubly stochastic reduced form

models.

3. We apply our analysis to the case of doubly stochas-

tic Poisson processes where the intensity process

follows an affine jump diffusion and is allowed to

be different for different obligors.

We also conducted a numerical study to illustrate the ef-

ficacy of the proposed importance sampling technique for

estimating the probability of large losses.

The paper is organized as follows. In Section 2 and 2 we

explain our problem setup and discuss reduced form models,

respectively. In Section 3 we provide some preliminaries

necessary for understanding simulation using importance

sampling. We also provide a notion of optimality in that

section. In Section 4 we present our proposed algorithm for a

general setup and prove its optimality. In Section 5, we apply
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the results of Section 4 to the setting of doubly stochastic

reduced form models where the intensity process follows an

affine jump diffusion. Section 6 contains numerical results.

Proof of all the theorems has been omitted for the purpose

of brevity.

2 PROBLEM DEFINITION

Fixing a probability space (Ω,F ,P) and an information

filtration {Ft : t ≥ 0} satisfying the usual conditions (see

Protter 2004 for details), let X = {X(t) : t ≥ 0} be a

time-homogeneous Markov process in Rd, for some integer

d ≥ 1. Consider a system with N obligors. For the ith

obligor define the default intensity λi(t) = fi(X(t)). The

default time τi of the ith obligor is modeled as the first

jump time of a doubly stochastic processKi(·) with intensity

λi. Under the doubly stochastic assumption, conditional on

{λi(t) : t > 0}, Ki(·) is a Poisson process with intensity

λi. In particular,

P (τi > t) = E[P (Ki(t) = 0|λi)] = E[e−
R

t

0
λi(s)ds].

Intuitively, λi(t)∆t is the probability of default of obligor

i in the interval [t, t + ∆t) conditional on survival upto

time t. Moreover, in the modeling of multi-obligor default

times, X could include common economy wide, industry

specific or firm specific factors. The default time correlation

is generated through dependence of firms’ intensities on the

common factors. A nice feature of intensity models is that

they enable one to model the joint movement of the obligors’

default probabilities. Note that under the doubly stochastic

setting conditional on the covariates X , the default times

of the obligors are independent.

The probability of interest is P
(∑N

i=1 Zi ≥ b
)
, where

Zi is an indicator of default by time T for the ith obligor and

b is the default threshold. The simulation of the probability

of interest is conducted in two stages. In stage 1, we

simulate the dynamics of the underlying common factors

and in stage 2, we generate default indicators. Since the

single name default probability is small, the event of interest

is rare. Thus the effort required to get a good estimate of the

probability of interest using naive simulation is tremendous,

and one has to resort to variance reduction techniques.

In later sections, we apply our analysis to the case where

each obligor belongs to one of theNc classes and the default

intensity of the ith obligor belonging to class j is given by

λ
(j)
i (t) = wj ·X(t)+ǫ

(j)
i (t) where X = (X(t) : t ≥ 0) is a

stochastic process of “common factors,” where X(t) ∈ Rd
+,

wj is the weight on common factors for all firms belonging

to class j and ǫ
(j)
i is the idiosyncratic component. Here,

we allow for each class of obligors to weigh differently on

each of the common factors. Thus, in the case where each

of the common factor represents the riskiness of different
742
industries we would expect IBM to weigh more heavily

on the technology factor as compared to the automotive

factor, on which firms like GM and Ford would be heavily

weighed. The idiosyncratic factors are assumed to follow

affine-jump diffusions and represent the firm’s own riskiness

independent of all other factors.

3 IMPORTANCE SAMPLING PRELIMINARIES

In this section, we state some definitions from the simulation

literature. Consider a probability space (Ω,F ,P). Let

{Xn : n ≥ 1} be a sequence of random variables adapted

to a filtration {Fn : n ≥ 1} defined on this space. Let

M be a stopping time with respect to the filtration {Fn :
n ≥ 1}. We are interested in the expectation of the random

variable I(X1, . . . ,XM ), where I(·) is an indicator function

of a rare event, i.e. γ = E[I(X1, . . . ,XM )]. To estimate

this expectation by naı̈ve simulation, we generate m i.i.d.

samples of the function I(X1, . . . ,XM ) and average them

to get an unbiased estimate γ̂m. The relative error of the

estimator (defined as the ratio of standard deviation and

mean) is given by

√
(1−γ)

mγ
. As γ → 0, the number of

simulation runs must increase without bound in order to

have a small relative error.

Importance Sampling (IS) is a variance reduction tech-

nique which is particularly efficient in the computation of

small probabilities. Consider another probability measure

P̃ on the same sample space (Ω,F) such that P ≪ P̃,

i.e., P is absolutely continuous w.r.t. P̃, on the set

{ω : M < ∞, I(X1, . . . ,XM ) = 1}. It is then a straight

forward application of Wald’s identity that

E[I(X1, . . . ,XM )] = Ẽ[I(X1, . . . ,XM )LM ], (1)

where LM = dP

deP

∣∣∣
FM

is the Radon-Nikodym derivative

restricted to FM , and Ẽ is the expectation operator under

the measure P̃. In light of (1), we can generate i.i.d samples

of I(X1, . . . ,XM )LM under the measure P̃ and the average

of these is an unbiased estimate of E[I(X1, . . . ,XM )]. The

variance of this estimator is VareP[I(X1, . . . ,XM )LM ]. We

refer to P̃ as the Importance Sampling (IS) change-of-

measure and LM as the corresponding likelihood ratio. By

choosing the IS change-of-measure appropriately we can

substantially reduce the variance of the estimator.

3.1 Asymptotic Optimality

Consider a sequence of rare-events indexed by a parameter

u. Let Iu be the indicator of this rare event, and suppose

E[Iu] → 0 as u → ∞. Let P̃ be an IS distribution and L
be the corresponding likelihood ratio. Let Zu = LIu.
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Definition 1 (asymptotic optimality) A sequence

of IS estimators is said to be asymptotically optimal if

log Ẽ[Z2
u]

log Ẽ[Zu]
→ 2 as u→ ∞. (2)

3.2 Exponential Twisting

In this subsection, we describe the concept of exponential

twisting which will be used in the chapter repeatedly. Con-

sider the probability space (Ω,F ,P). Let X be a random

variable defined on this space. Let Q be another probability

measure defined on the same space.

Definition 2 (exponential twisting) The measure

Q is said to be an exponentially twisted measure of P

with respect to the random variable X , by a parameter θ,

if

dQ

dP
=

exp(θX)

EP[exp(θX)]
.

Let M(θ) represent the log-moment generating func-

tion, i.e., M(θ) = log EP[exp(θX)], then the mean of the

random variable X under the measure Q is given by M ′(θ).

4 A TWO-STAGE SIMULATION ALGORITHM

AND ITS OPTIMALITY

In this section we derive results for simulating the probability

of interest in a general setup and prove the asymptotic

optimality of the proposed algorithm. The results of this

section are subsequently applied to the specific setup where

the dynamics of the intensity process is governed by an

affine jump diffusion. Consider a “sequence of portfolios”

indexed by κ. In the κth system, the number of obligors

are κ, and the random variable Zκ denotes the number of

defaults observed upto some finite time T . Our goal is to

efficiently estimate the probability of a large fraction b of

defaults, i.e., P (Zκ ≥ κb) .
In the setting of reduced form doubly stochastic models

our problem can be modeled in two stages. In the first stage, a

d−dimensional random variableAκ from distributionGκ(·)
is generated. In the second stage, conditional on Aκ the

number of defaults Zκ is generated from the conditional

distribution Fκ(·;Aκ), where Fκ(y;Aκ) = P(Zκ ≤ y|Aκ).
We elaborate on the specifics of Aκ, and the distributions

Gκ(·) and Fκ(·;Aκ) in the context of doubly stochastic

poisson processes in later sections.

This section is organized as follows. We first derive a

logarithmic asymptote for the probability of interest and then

describe an asymptotically optimal importance sampling

algorithm for estimating the same using simulation.
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Define M
(1)
κ (θ1) = log E[eθ1·Aκ ], M

(2)
κ (θ2; p) =

log E[eθ2Zκ |Aκ = p], where θ1 and p are vectors in Rd
+

and θ2 is a scalar taking value in R+.

We make the following technical assumptions:

(A1) M (1)(θ1) := limκ→∞ κ−1M
(1)
κ (κθ1) exists on the

extended real line for all θ1 ∈ Rd
+. Further, there

exists δ > 0 such that M (1)(δ) <∞ and M (1) is

essentially smooth.

(A2) M (2)(θ2; p) := limκ→∞ κ−1M
(2)
κ (θ2; p) exists on

the extended real line for all θ2 ∈ R+ and p ∈ Rd
+.

Further, there exists δp > 0 such thatM (2)(δp; p) <
∞ and M (2)(·; p) is essentially smooth for all p.

(A3) We assume that P(Zκ > x|Aκ = y1) ≤ P(Zκ >
x|Aκ = y2), for all x ∈ R+ and y1, y2 ∈ Rd

+

satisfying y1 < y2. The inequality y1 < y2 holds

iff the inequality holds co-ordinate wise.

Assumptions (A1) and (A2) ensure that a large deviation

principle holds for random variables Aκ and Zκ conditional

on Aκ, respectively. The third assumption (A3) implies that

Zκ|Aκ is stochastically increasing in Aκ.

The following theorem provides an asymptotic lower

bound for the probability of interest.

Theorem 1 Under assumptions (A1), (A2) and (A3)

we have

lim inf
κ→∞

log P(Zκ ≥ κb)

κ
≥ sup

y∈Rd
+

[
inf

θ1∈Rd
+

(M (1)(θ1) − θ1 · y)

+ inf
θ2∈R+

(M (2)(θ2; y) − θ2b)

]
. (3)

We shall later show that under technical conditions, the

lower bound of Theorem 1 is achieved. Let the function

on the right-hand-side as a function of b be represented

by ψ(b). An intuitive explanation of the above result is

as follows: the first term on the right hand side is the

asymptote for the probability that the vector Aκ exceeds y,

and the second term on the right hand side is the asymptote

for the probability that the losses exceed κb conditional on

the event {Aκ = y}. The sum of the two terms thus is

a logarithmic estimate of the probability of the joint event

{Aκ ≥ y}
⋂
{Zκ > κb}. Taking the supremum over y′s

gives us the most likely value of y for which the event of

interest {Zκ > κb} occurs.

We now outline the importance sampling algorithm.

Let y∗, θ∗1 and θ∗2 be the arguments where the supre-

mum is achieved in (3). For technical reasons, we as-

sume in this section and henceforth that all extremums

are attainable and unique. Define the function θ∗2(y) =
argminθ2∈R+

(M (2)(θ2; y) − θ2b).
The proposed IS algorithm involves two stage expo-

nential twisting.
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]
.

1. In the first stage, generate Aκ from the exponential

twisted distribution G∗
κ(·) where

dG∗
κ(x)

dGκ(x)
= exp(κθ∗1 · x−M (1)

κ (κθ∗1)).

2. Conditional on Aκ generate Zκ from the exponen-

tial twisted distribution F ∗
κ (·;Aκ) where

dF ∗
κ (x;Aκ)

dFκ(x;Aκ)
= exp

[
θ∗2(Aκ)x−M (2)

κ (θ∗2(Aκ);Aκ)

3. The likelihood ratio L is given by

L = exp
(
−κθ∗1 ·Aκ +M (1)

κ (κθ∗1) − θ∗2(Aκ)Zκ

+M (2)
κ (θ∗2(Aκ);Aκ)

)
.

If Zκ ≥ κb count L else count 0. Average over a

number of runs to obtain an estimate and confidence

interval.

In order to prove the asymptotic optimality of the proposed

importance sampling algorithm, we make the following

technical assumptions.

(A4) The set B := cl({y ∈ Rd
+ : θ∗2(y) > 0}) is a

compact set, where cl(A) represents the closure of

set A.

(A5) The function θ∗2(y) is a continuous function of y.

The sequence of functions {κ−1M
(2)
κ (θ∗2(y); y) :

κ = 1, 2, . . .} is uniformly equicontinuous for y ∈
B.

(A6) We assume that

ψ(b) = inf
θ1∈Rd

+

sup
y∈Rd

+

[
(M (1)(θ1) − θ1 · y)

+ inf
θ2∈R+

(M (2)(θ2; y) − θ2b)

]
. (4)

To interpret Assumption (A4), consider the conditional

probability P(Zκ > κb|Aκ = y) as a function of y. As-

sumption (A4) implies that the aforementioned conditional

probability decays exponentially only on a compact set B.

(On the complement set Bc, the conditional probability ei-

ther does not decay with y or has a decay rate slower than

exponential, implying that the event is “not rare.”) Assump-

tion (A6) implies that the supremum and the infimum in

(4) can be interchanged.
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Theorem 2 Under assumptions (A1)-(A6), we have

log P(Zκ ≥ κb)

κ
→ ψ(b),

log EQ
[
L2I{Zκ≥κb}

]

κ
→ 2ψ(b),

as κ→ ∞.
The above theorem, thus, establishes that the proposed

change of measure is asymptotically optimal for estimating

P(Zκ > κb).

5 AFFINE JUMP DIFFUSIONS

In this section we apply our analysis to the case where

defaults are generated by a doubly stochastic poisson pro-

cess and the intensities follow affine jump diffusions. We

also derive the exact dynamics of the intensities under the

importance sampling measure. In this section the “original

measure” would refer to the measure under which we wish

to compute the expectations (and hence do the simulation)

i.e. it would be the physical measure when we want to

estimate risk measures for a portfolio and it would be the

risk-neutral measure when we would be pricing derivatives.

Fix a probability space (Ω,F ,P) and an information fil-

tration Ft. LetX = {X(t) : t ≥ 0} be a time-homogeneous

Markov process in some state space D ⊂ Rn, satisfying

the following stochastic differential equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t) + dJ(t),

where W is an Ft-standard Brownian motion in Rn, µ :
D → Rn, σ : D → Rn×n and J is a pure jump process

whose jumps have a fixed probability distribution ν on

Rn and arrive with intensity {γ(X(t)) : t ≥ 0} for some

γ : D → [0,∞). For c ∈ Rn, the set of n−tuples, let

Γ(c) =
∫

Rn exp(c ·z)dν(z). Let Gt be the minimal filtration

generated by the process X .

X is said to follow an “affine” jump-diffusion if

• µ(x) = K0 + K1x for K = (K0,K1) ∈ Rn ×
Rn×n,

• (σ(x)σ(x)T )ij = (H0)ij + (H1)ijx for H =
(H0,H1) ∈ Rn×n × Rn×n×n,

• γ(x) = l0 + l1x for l = (l0, l1) ∈ R × Rn.

Let f(x) = ρ · x for ρ ∈ Rn. From Duffie, Pan, and

Singleton (2000) we know that, under technical regularity

conditions

φ(Xt, t, T, ρ) = E

[
exp

(∫ T

t

f(X(s))ds

)∣∣∣∣∣Ft

]
,

= exp(α(t, ρ) + β(t, ρ) ·Xt),
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where α and β satisfy the following ODEs

β̇(t, ρ) = −ρ−KT
1 β(t, ρ) −

1

2
β(t, ρ)TH1β(t, ρ) (5)

−l1(Γ(β(t, ρ)) − 1),

α̇(t, ρ) = −K0 · β(t, ρ) −
1

2
β(t, ρ)TH0β(t, ρ)

−l0(Γ(β(t, ρ)) − 1),

β(T, ρ) = 0, α(T, ρ) = 0. (6)

The system of ODEs (5)-(6) can be efficiently solved nu-

merically using Runge Kutta.

5.1 Homogeneous Model

We first consider a homogeneous model with N obligors

where the default intensity of each obligor is identical, i.e.,

λi(s) = w · X(s) for all i. Under the doubly stochastic

assumption and the homogeneity assumed here, conditional

on the path of the intensities or equivalently the “common

factors” X , the defaults are independent and the default

probability of all the obligors is identical and is given by

P (τi < T |GT ) = 1 − exp

(
−

∫ T

0

λ(s)ds

)

= 1 − exp

(
−w ·

∫ T

0

X(s)ds

)
. (7)

Since conditional on GT the defaults are independent and

the default probabilities are identical, the number of defaults

Z conditional on GT are distributed binomial with number

of trials equal to the number of firms and probability given

by (7).

In the notation of the general setup introduced in Section

4,A =
∫ T

0
X(s)ds and, Z conditioned on A is Binomially

distributed with parameters (N, p(A)), where p(A) = 1 −
exp(−w ·A).

5.1.1 Asymptotic Regime

In this subsection, we will consider a sequence of portfolios

indexed by κ. In the κth portfolio, there are κ obligors.

We assume that all obligors have identical default intensity,

given by λ(κ)(t) = w ·X(κ)(t), where X(κ)(t) is an affine

stochastic process satisfying

dX(κ)(t) = µ(κ)(X(κ)(t))dt

+σ(κ)(X(κ)(t))dW (t) + dJ (κ)(t), (8)

where
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• µ(κ)(x) = K
(κ)
0 +K

(κ)
1 x, where K

(κ)
0 = K0 and

K
(κ)
1 = K1 for K = (K0,K1) ∈ Rn × Rn×n,

• (σ(κ)(x)σ(κ)(x)T )ij = (H
(κ)
0 )ij + (H

(κ)
1 )ijx

where H
(κ)
0 = H0/κ and H

(κ)
1 = H1/κ for

H = (H0,H1) ∈ Rn×n × Rn×n×n,

• J (κ) is a pure jump process whose jumps have a

fixed probability distribution ν(κ) and jump inten-

sity γ(κ)(X(κ)(t)), where ν(κ) satisfy ν(κ)(A) =
ν(κA) which implies Γ(κ)(c) = Γ( c

κ
). Moreover,

γ(κ)(x) = (l
(κ)
0 + l

(κ)
1 x) where l

(κ)
0 = κl0 and

l
(κ)
1 = κl1 for l = (l0, l1) ∈ R × Rn.

The number of defaults Zκ is Binomial(κ, p(Aκ)),

where Aκ =
∫ T

0
Xκ(s)ds.

Assumptions (A1)-(A6) are easily verified for this setup.

Moreover,

M (1)(θ1) = log φ(X(0), 0, T, θ1)

= α(0, θ1) + β(0, θ1) ·X(0),

M (2)(θ2; y) = log[p(y)(eθ2 − 1) + 1].

5.1.2 Importance Sampling Algorithm

In the spirit of Section 4, let y∗, θ∗1 and θ∗2 be the extremums

of the following optimization problem

sup
y∈Rd

+

[
inf

θ1∈R+

(
α(0, θ1) + β(0, θ1) ·X(0) − θ1y

)

+ inf
θ2∈R+

(
log[p(y)(eθ2 − 1) + 1] − θ2b

)]
.

The first step of the proposed algorithm is to generateAκ

from the exponential twisted distribution (with the twisting

parameter κθ∗1). Since the distribution Gκ(·), and hence the

distribution G∗
κ(·), is not known analytically it would not be

feasible to generate Aκ directly. We thus characterize the

dynamics of the intensity under the exponentially twisted

measure. As explained in Section 4, y∗ is the “most likely”

value of Aκ for which the event of interest happens.

Let

ξT =
exp

(
κθ∗1

∫ T

0
X(κ)(s)ds

)

exp
(
α(κ)(0, κθ∗1) + β(κ)(0, κθ∗1) ·X(κ)(0)

)

ξt = E[ξT |Gt]

=
exp

(
κθ∗1

∫ t

0
X(κ)(s)ds

)

exp
(
α(κ)(0, κθ∗1) + β(κ)(0, κθ∗1) ·X(κ)(0)

) ×

exp
(
α(κ)(t, κθ∗1) + β(κ)(t, κθ∗1) ·X(κ)(t)

)
.
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Under some technical conditions, ξ is a positive martingale.

We define a probability measure Q by dQ
dP

= ξT . It is easily

verified that under measure Q the random variable Aκ has

the desired distribution given by G∗
κ. As shown in Duffie,

Pan, and Singleton (2000) the dynamics of the process

X(κ) after a change of measure with density process ξ still

remain affine. For sake of brevity we do not write down

the dynamics of X(κ) under measure Q. The dynamics are

exactly the same as in (8) with an addition superscript Q

for all parameters. The parameters are such that:

K
(κ)Q
0 (t) = K

(κ)
0 (t) +H

(κ)
0 (t)β(κ)(t, T, κθ∗1)

K
(κ)Q
1 (t) = K

(κ)
1 (t) +H

(κ)
1 (t)β(κ)(t, T, κθ∗1)

l
(κ)Q
0 (t) = l

(κ)
0 (t)Γ(β(κ)(t, T, κθ∗1), t)

l
(κ)Q
1 (t) = l

(κ)
1 (t)Γ(β(κ)(t, T, κθ∗1), t)

Γ(κ)Q(c, t) =
Γ(κ)(c+ β(κ)(t, T, κθ∗1), t)

Γ(κ)(β(κ)(t, T, κθ∗1), t)

H(κ)Q(t) = H(κ)(t).

Since we know that β(κ)(t, T, κθ∗1) = κβ(t, T, θ∗1) and

using the dynamics of the κth system we get

K
(κ)Q
0 (t) = K0(t) +H0(t)β(t, T, θ∗1)

K
(κ)Q
1 (t) = K1(t) +H1(t)β(t, T, θ∗1)

l(κ)Q(t) = κl(t)Γ(β(t, T, θ∗1), t)

Γ(κ)Q(κc, t) =
Γ(c+ β(t, T, θ∗1), t)

Γ(β(t, T, θ∗1), t)

H(κ)Q(t) =
H(t)

κ
.

We above explicitly write down the dependence of β
on the twisting parameter θ∗1 .

Thus under the new measure we find that the drift of

the process increases, the jump size frequency increases and

the mean jump size increases also; all of which contribute

to higher default probability under the new measure.

In the second stage of the algorithm, conditional on

Aκ, we generate Zκ from the exponentially twisted (by

parameter θ∗2(Aκ)) binomial distribution. Under the new

distribution, Zκ is still binomial with parameters κ and

p∗(Aκ) where

p∗(Aκ) = p(Aκ)
eθ∗

2 (Aκ)

p(Aκ)(eθ∗

2
(Aκ) − 1) + 1

.

Substituting the optimal choice of θ∗2(Aκ) in the above

relation one obtains

p∗(Aκ) = max(p(Aκ), b).
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The likelihood ratio L is given by

exp

(
−κ

(
θ∗1 ·

∫ T

0

X(s)ds− α(0, θ∗1) − β(0, θ∗1) ·X(0)

))

×

(
p(Aκ)

p∗(Aκ)

)Zκ
(

1 − p(Aκ)

1 − p∗(Aκ)

)κ−Zκ

.

5.2 Heterogeneous Model

We now return to our original problem described in section

2.

Proposition 1 Let τ
(j)
i be the default time of the

ith obligor belonging to the jth class. Conditional on the

path of the common factor the default time distribution is

given by

P (τ
(j)
i < T |GT ) = 1 − exp

(
−wj

∫ T

0

X(s)ds

)
×

exp(αj(T ) + βj(T )ǫ
(j)
i (0)).

As in the previous subsection, A =
∫ T

0
X(s)ds. Be-

cause of heterogeneity the number of defaults are no longer

binomial distributed. In fact Z =
∑N

i=1 Z
(j)
i , where Z

(j)
i

is an indicator of default by time T for the ith obligor

belonging to the jth class. Conditional on A, Z
(j)
i is a

Bernoulli random variable with probability pj(A) where

pj(A) = 1 − e−wj ·A exp(αj(T ) + βj(T )ǫ(j)(0)).

5.2.1 Asymptotic Regime

As in the the case of the homogeneous model we will

consider a sequence of portfolios indexed by κ. In the

κth portfolio, there are κ obligors and Nc classes. Each

obligor belongs to one of the Nc classes. Let the proportion

of each obligors of each class be denoted by ϕj : j =
1, ..., Nc such that

∑
j ϕj = 1. We assume that the ith

obligor belonging to class j has default intensity given

by λ
(j)(κ)
i (t) = wj · X(κ)(t) + ǫ

(j)
i (t), where ǫ

(j)
i is the

idiosyncratic component and X(κ)(t) is an affine stochastic

process having dynamics as in the homogeneous case.

The number of defaults Zκ is the sum of κ bernoulli

random variables i.e.

Zκ =

κ∑

i=1

Z
(j)
κ,i ,

where Z
(j)
κ,i is an indicator of default by time T for the ith

obligor belonging to class j. Conditional on Aκ, Z
(j)
κ,i is a
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Bernoulli random variable with probability pj(Aκ) and

pj(Aκ) = 1 − e−wj ·Aκ exp(αj(T ) + βj(T )ǫ(j)(0)).

Again, Assumptions (A1) - (A6) are easily verified.

And we have

M (1)(θ1) = log φ(X(0), 0, T, θ1)

= α(0, θ1) + β(0, θ1) ·X(0).

M (2)(θ2; y) is given by

M (2)(θ2; y) =

Nc∑

j=1

ϕj log[pj(y)(e
θ2 − 1) + 1]

5.2.2 Importance Sampling Algorithm

As in the previous subsection, let y∗, θ∗1 and θ∗2 be the

extremum of the following optimization problem

sup
y∈Rd

+

[
inf

θ1∈R+

(
α(0, (0, θ1)) + β(0, (0, θ1)) ·X(0) − θ1y

)
+

inf
θ2∈R+




Nc∑

j=1

ϕj log[pj(y)(e
θ2 − 1) + 1] − θ2b




 .

Once θ∗1 is computed the dynamics of the state variables

under the twisted distribution can be derived in exactly the

same manner as in the homogeneous case. For the second

stage, conditional onAκ, Z
(j)
κ,i is a Bernoulli random variable

with probability p∗j (Aκ) where

p∗j (Aκ) = pj(Aκ)
eθ∗

2 (Aκ)

pj(Aκ)(eθ∗

2
(Aκ) − 1) + 1

.

Thus, under the proposed change of measure the single

name default probability is atleast as large as level b.

6 NUMERICAL RESULTS

We conducted simulations to estimate the loss probability

in a doubly stochastic setting where the common factor

follows a CIR process. We present here the case for a

1-factor homogeneous model. Specifically,

dX(t) = κ(θ −X(t))dt+ σ
√
X(t)dB(t),

The parameters we chose are κ = 0.2, θ = 100bp, σ =
0.06, λ(0) = θ and T = 5 years. The number of firms

m is set to 100. The weight on the common factor for

each firm is the same and is equal to 1. There is no

idiosyncratic component. At these parameter choice the
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5 year single obligor default probability is 4.86%. We

conduct 10000 simulation runs to estimate the probability

for different threshold levels. For each threshold level,

besides performing naive simulation and two stage optimal

importance sampling, we also performed simulation when

only the first or the second stage twisting is performed. For

each threshold level, we note the variance reduction obtained

for the different simulation methodologies viz-a-viz naive

simulation.

Table 1: Affine Diffusion

b p(y∗) γ̂b Both 1st 2nd

Stage Stage Stage

10% 0.079 6.55E-2±3.17% 5 2 2

15% 0.109 8.43E-3±3.79% 31 4 2

20% 0.139 8.24E-4±4.28% 254 26 3

25% 0.169 6.21E-5±4.73% 2760 135 74

30% 0.198 3.78E-6±5.10% 39039 761 86

In Table 1, the first column is the threshold level b.
The second column p(y∗) is the expected default probability

conditional on the path of intensities under the new measure.

Mathematically,

p(y∗) = EQ

[
1 − exp

(
−

∫ T

0

X(s)ds

)]

where Q is the new measure obtained after twisting the dis-

tributions. The third column γ̂b is the estimate of probability

at the desired threshold level along with the corresponding

95% confidence interval for the estimator. We report here

the 95% confidence interval obtained from the simulation

results for two stage optimal importance sampling. The

standard error of the estimator for naive simulation is

√
γ̂b(1 − γ̂b)

n

where n is the number of simulation runs, equal to 10000
here.

The fourth column reports the variance reduction ob-

tained for the two-stage importance sampling algorithm

versus naive simulation. The fifth and sixth columns report

the variance reduction obtained when using importance sam-

pling algorithms for only the 1st and 2nd stages respectively,

over the naive simulation.

When conducting 1st stage importance sampling only,

we switch off the second stage twisting i.e. θ∗2 = 0. For the

first stage we change the measure such that 1 − e−y∗

= b
and θ∗1 solves the following optimization problem

inf
θ1∈R+

(
α(0, (0, θ1))+β(0, (0, θ1)) ·X(0)+ θ1 log(1− b)

)
.
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When conduction 2nd stage importance sampling only,

we switch off the first stage change of measure i.e. θ∗1 = 0.

We simulate the common factor with parameters as in the

original measure. Conditional on the path of the intensities,

we perform the 2nd stage twisting exactly as in the case of

the two-stage importance sampling.

As the threshold level b increases the probability of

interest decreases. From the results in Table 1, we ob-

serve that the variance reduction achieved from all the

three importance sampling schemes over naive simulation

increases many folds as the event becomes rarer. In the case

when the probability of interest is around 0.6 basis point

(for b = 0.25), variance reduction of the order of 2760 is

achieved by our proposed algorithm. In contrast 1st and

2nd stage importance sampling achieve only a small fraction

of that. To put the above numbers in perspective the vari-

ance reduction could be viewed equivalently as reduction

in number of runs, to achieve the same level of accuracy,

by the same factor.

We also observe that in our parameter choice the 1st

stage importance sampling scheme outperforms the 2nd

stage importance sampling scheme for all threshold lev-

els. Whereas, our proposed two stage importance sampling

scheme outperforms both 1st and 2nd stage importance

sampling by significant factors. The relative gain obtained

by using two stage importance sampling increases as the

event of interest becomes rarer.

A key observation is that under the two stage importance

sampling measure p(y∗) varies between [0.7b, 0.8b]. The

ratio of p(y∗) to b decreases as b increases. Note that

in the 1st stage importance sampling algorithm applied

to the homogenous case p(y∗) is such that the expected

default probability is simply the threshold level b. Whereas

for Algorithm 2, p(y∗) is simply the single name default

probability under the original measure.
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