
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

AN ADAPTIVE PROCEDURE FOR ESTIMATING

COHERENT RISK MEASURES BASED ON GENERALIZED SCENARIOS

Vadim Lesnevski

Barry L. Nelson

Jeremy Staum

Dept. of Industrial Engineering & Management Sciences

Northwestern University

Evanston, IL 60208-3119, U.S.A.
ABSTRACT

Coherent risk measures based on generalized scenarios can

be viewed as estimating the maximum expected value from

among a collection of simulated “systems.” We present a

procedure for generating a fixed-width confidence interval

for this coherent risk measure. The procedure improves upon

previous methods by being reliably efficient for simulation

of generalized scenarios and portfolios with heterogeneous

characteristics.

1 INTRODUCTION

Coherent risk measures can improve the practice of risk

management (Artzner et al. 1999) and pricing derivative

securities (Jaschke and Küchler 2001, Staum 2004). How-

ever, coherent risk measures may need to be estimated by

simulation, which could be much slower than simulations

currently used in risk management and derivatives pricing,

too slow for routine use in practice.

Any coherent risk measure ρ has a representation of the

form ρ(Y ) = supP∈P EP[−Y/r], where Y is the value of a

portfolio at a future time horizon, r is a stochastic discount

factor which represents the time value of money, and P is a

set of probability measures (Artzner et al. 1999, Prop. 4.1).

Equations of a similar form hold for the related problems

in derivative security pricing. We simplify the problem

somewhat by assuming that the setP has only a finite number

k of elements P1,P2, . . . ,Pk. This assumption often holds,

for instance, when the decision maker designs the coherent

risk measure (or the underlying acceptance set, in the case

of derivative security pricing) by specifying k generalized

scenarios. The assumption also covers approximation of P
by the convex hull of k probability measures. Let X :=−Y/r

and µi := EPi
[X ]. The risk measurement involves a single

random variable X , which is a negative discounted portfolio

value or a discounted loss, viewed under multiple probability
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measures. For clarity in discussing simulations, let Xi be

a random variable whose distribution under the probability

measure Pr is the same as that of X under Pi, that is, such

that Pr[Xi ≤ x] = Pi[X ≤ x]. Because of the parallel with

ranking and selection, we refer to Xi as an observation of

system i.

In Lesnevski et al. (2005), we used tools from the

ranking-and-selection literature to create efficient proce-

dures for generating a fixed-width confidence interval for

a coherent risk measure. These procedures use screening

to eliminate some systems that seem likely to be inferior

after generating a small number of observations. One of

the procedures uses the technique of “restarting,” in which

the screening data are discarded so as to make it possible

to reduce the required sample sizes for the systems that

survive screening.

To sharpen screening we employ common random num-

bers (CRN; see Law and Kelton 2000) to induce positive

correlation between the alternatives and thereby reduce the

variance of their differences. To reduce the number of repli-

cations required for estimation, we employ control-variate

estimators (CV; see Law and Kelton 2000) to exploit strong

correlation between the response of interest, X , and a vec-

tor C of random variables with known expectations, called

control variates.

A disadvantage of the procedures presented in Lesnevski

et al. (2005) is that in some cases, they might require some

previous knowledge about the problem to be efficient. For

example, having a large screening budget is usually good, as

it allows the procedure to screen out most of inferior systems.

However, it might significantly decrease efficiency if more

than one system has the maximum mean, or if some systems

are nearly tied with the best. In such situations, screening

might not be able to eliminate all systems but one. Even

though the procedure with restarting is usually preferable

over other alternatives, if screening is ineffective, restarting

is wasteful of data. Before running the simulation, the user
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would have to decide whether or not to use restarting, and

how much data to allocate to the screening stage. Making a

good decision without substantial experience with simulation

problems of the same form is difficult.

Without restarting, information generated during

screening is reused during estimation of the confidence

interval, so the amount of work done during screening is

not very important. With restarting, information generated

during screening is thrown away, so it is important to make

sure that no excess work is done during screening. The

advantage of restarting is that the new data are statistically

independent of the screening exercise, so one may ignore

the measures which were screened out, and design for the

smaller problem.

In this paper we develop an adaptive multi-stage pro-

cedure which combines good features of both approaches.

The procedure is very efficient for all configurations, as it

gains the benefits of restarting and of having a large budget

to use for screening.

2 ADAPTIVE MULTI-STAGE PROCEDURE

Our procedure produces a lower confidence limit that covers

the coherent risk measure with probability at least 1−αa,

and an upper confidence limit that covers with probability

at least 1−αb. See Lesnevski (2006) for a proof. The

procedure spends some of this allowable error on screening

(αI), some on control variates (αC), and the remainder on

estimating the means of some systems. We use the control

variate Ci for the output Xi of system i to improve estimation

of the mean µi of system i.

The adaptive multi-stage procedure consists of two

phases. Phase I (“pre-screening”) consists of multi-stage

screening whose purpose is, while controlling relative cost,

to screen out as many inferior systems as possible, so that

they do not contribute to the critical values that determine

the overall sample size for mean estimation. No samples

obtained during pre-screening are used during Phase II,

which is an estimation procedure with additional multi-

stage screening.

2.1 Phase I: Pre-screening

The sole purpose of the first phase is to reduce the number of

systems and thus the natural bias of the estimation problem,

making a fixed-width confidence interval attainable with

fewer replications.

The maximal number of Phase I stages, m, is specified

in advance. The first stage of Phase I is stage 0 and

the first stage of Phase II is stage M, where the random

variable M ≤ m. The decision to proceed to Phase II is

made randomly, on the basis of the simulated data, when

the cost of continuing and doing one more stage of Phase I

is greater than the estimated approximate savings due to
734
further pre-screening. The growth rate R and the initial

sample size n0 are also specified in advance, so that the

total sample size during stage ` is N(`) = dn0R`e.
The initial sample size n0 should be chosen so that

sample averages are approximately normal. In most cases,

n0 = 30 is adequate. The procedure is most efficient if

the growth factor R is between 1.2 and 2.0, while m is

such that the total budget available for pre-screening is

large. For example, if R = 1.5 and m = 30, the total budget

available for Phase I is dn0Rm−1e = 3,835,021, which is

large enough for most applications. We found that R = 1.5
and m = 30 worked well on all problems we consider.

It wasn’t possible to improve on the performance much

by altering the parameters, as it was for the procedures

presented in Lesnevski et al. (2005).

Let I be the set of systems that have not been screened

out. Initially set I← {1, . . . ,k}. Each stage ` = 1, . . . , m

of Phase I consists of the following steps:

1. Simulation.

Simulate (Xi j,Ci j) for j = N(`−1)+1, . . . , N(`)
and all i ∈ I.

2. Screening.

For each h, i ∈ I such that h 6= i, set

¯̄Dhi ←
1

N(`)

N(`)∑

j=1

(Xh j−Xi j),

S2
hi ←

1

N(`)−1

N(`)∑

j=1

(Xh j−Xi j− ¯̄Dhi)
2,

Whi ←
tN(`)−1,1−αI/(2m(k−1))√

N(`)
Shi,

where tν ,p is the p quantile of the t distribution

with ν degrees of freedom.

Then set I←
{

i ∈ I|∀h ∈ I, ¯̄Dhi ≥−Whi

}
.

3. Checking whether to proceed to Phase II.

For each i ∈ I, compute the residual variance σ̂2
i

of regressing Xi,1, . . . ,Xi,N(`) on Ci,1, . . . ,Ci,N(`) and

define

cp :=
1

L
(Φ−1(1−αa/p+αC)+

Φ−1(1−αb +αI +αC)), (1)

where Φ is the standard normal cumulative distri-

bution function. If

|I|N(`)(R−1) > (c2
|I|− c2

1)max
i∈I

σ̂
2
i , (2)

the procedure jumps to Phase II by setting M←
`+1, which means that the next stage is the first
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stage of Phase II, and by setting K← |I|, which is

the number of systems left after pre-screening and

which will be used for determining final sample

sizes. Otherwise, set `← `+1 and return to Step 1.

Under the transition rule given by Inequality (2), pre-

screening stops after stage M−1 when the cost of doing one

more stage of pre-screening is greater than the approximate

maximal savings due to continuation, computed under the

assumption that after additional pre-screening there will be

only one system left and it will have the largest variance.

2.2 Phase II: Screening and Estimation

Phase II begins by restarting, that is, throwing out all the

data obtained in Phase I. The only effect of Phase I on

Phase II is that Phase I determines the subset I of systems

that Phase II handles. Phase II contains three parts.

First, in the initial stage M, the procedure determines

the required total sample sizes Ni for each of the systems

in I and the maximal necessary number P of subsequent

screening stages. Second, in stages M, . . . , M + P− 1,

the procedure does more screening. It maintains two sets

of systems: the set I contains systems that have survived

screening and from which the procedure has simulated as

many samples as are required to construct the fixed-width

confidence interval, while the set Î contains systems that

have survived screening so far, but which still require more

sampling. Finally, once the required sample size has been

reached for all surviving systems, the procedure constructs

a confidence interval.

Because M is the first stage after restarting, the proce-

dure discards dn0RM−1e Phase I samples. To compensate

for the discarded samples and keep the growth rate constant,

during Phase II the procedure sets N(`)← n0R`−1(R+1),
`≥M. This makes the total Phase II sample size grow at

the rate R. It also makes the initial sample size of Phase II

be N(M)−N(M− 1) ' n0RM , which is large enough to

ensure high-quality variance estimates.

Initialize Î← I and then I← ∅. Also initialize Ni←
N(M) for all i ∈ Î. Each stage ` = M, . . . , M +P consists

of the following steps, except that only stage M contains

Step 2, and Step 4 will not occur during stage M+P because

Î will be empty then:

1. Simulation.

Simulate (Xi j,Ci j) for j = N(` − 1) + 1, . . . ,

min{Ni,N(`)} and all i ∈ Î.

Set n← N(`)−N(M−1).
2. Setting final sample sizes.

If ` > M, skip this step.

Set α ′′
a ← αa/K−αC and α ′′

b ← αb−αI−αC, and
735
set the scaling constant

c← 1

L
(tn−q−1,1−α′′

a
+ tn−q−1,1−α′′

b
), (3)

where q := maxi∈I qi and each qi is the number of

control variates in Ci.

For each i ∈ Î, compute the residual variance

σ̂2
i of regressing Xi,N(M−1)+1, . . . , Xi,N(M) on

Ci,N(M−1)+1, . . . , Ci,N(M), and from it the total

sample size

Ni← dc2
σ̂

2
i + χ

2
qi,1−αC

e+N(M−1), (4)

where χ2
ν ,p is the p quantile of the chi-squared

distribution with ν degrees of freedom.

Set P← dlogR maxi∈I(Ni/N(M))e.
3. Updating I and Î.

Add to I systems that have reached their required

sample sizes and remove them from Î: set I ←
I
⋃{

i ∈ Î|Ni ≤ N(`)
}

and Î← Î\I.

4. Screening.

For each h, i ∈ Î such that h 6= i, set

¯̄Dhi ←
N(`)∑

j=N(M−1)+1

Xh j−Xi j

n
,

S2
hi ←

N(`)∑

j=N(M−1)+1

(Xh j−Xi j− ¯̄Dhi)
2

n−1
,

Whi ←
1√
n

tn−1,1−αI/(2P(K−1))Shi.

Then set Î←
{

i ∈ Î|∀h ∈ I, ¯̄Dhi ≥−Whi

}
.

5. Continue or compute confidence interval.

If Î 6= ∅, set `← `+1 and return to Step 1.

Otherwise, for each i ∈ I, compute the estimate µ̂i

from the regression of Xi,N(M−1)+1, . . . , Xi,Ni
on

Ci,N(M−1)+1, . . . , Ci,Ni
. Set

a ← 1

c
tN(M)−N(M−1)−q−1,1−α′′

a
and

b ← 1

c
tN(M)−N(M−1)−q−1,1−α′′

b
.

The confidence interval is

(max
i∈I

µ̂i−a,max
i∈I

µ̂i +b).

2.3 Efficiency of the Rule for Restarting

The adaptive procedure offers two significant improvements

over our previous procedures.
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First, we do not need to specify a screening budget in

advance. Choosing the screening budget too small or too big

could have a very significant effect on the performance of

our previous procedures, in some configurations making a

simulation dozens of times slower: see Table 3 in Section 3.

The adaptive procedure solves this problem by trying to

screen out a system in Phase II only until its required

sample size is reached. In effect, this allows the screening

budget to be arbitrarily large, to vary by system, and to be

determined adaptively by the required sample size.

Second, the adaptive procedure allows us to restart

whatever the configuration of the means µ1, . . . , µk may

be. The effect of the decision whether or not to restart

on performance is much less severe: as we will show

below, usually we do not expect to save more than 40-80%.

Restarting is usually beneficial because in a typical case

there is only one best system. Having an adaptive pre-

screening phase identifying a good time to restart allows

us to achieve very good performance in a typical case, and

reasonably good performance in all other cases.

How big are the benefits of pre-screening in a typical

case? To answer this question let us first estimate the

maximal possible savings due to restarting.

In the following analysis we make several simplifying

assumptions. First, we assume that the estimate of the

residual variance σ̂2
i of system i is always approximately

equal to the true residual variance σ2
i . Second, we ignore

the effect of the number of degrees of freedom on the

sample sizes for estimation. Third, we assume that the effort

required for screening out an inferior system is always the

same, whether in Phase I, Phase II, or in an alternative

procedure without pre-screening and restarting (such as the

multi-stage procedure with early stopping of Lesnevski et

al. 2005).

The total cost E of a simulation without pre-screening

is the sum of the cost Es of screening out inferior systems

and the cost Ee of estimation of the surviving systems:

E = Es +Ee.
The total cost Ẽ of a simulation with pre-screening is

the sum of the pre-screening cost Ẽp, the cost Ẽs of screening

out inferior systems in Phase II, and the estimation cost Ẽe

of the surviving systems: Ẽ = Ẽp + Ẽs + Ẽe.
Under our assumptions, the sample size Ni in Equa-

tion (4) is approximately equal to c2σ2
i . Without pre-

screening, the constant c in Equation (3) is approximately

equal to ck defined in Equation (1), where k is the initial

number of systems. With pre-screening, c is approximately

cK , where K is the number of systems remaining after

pre-screening. The smaller K, the bigger the benefit of

pre-screening, because smaller cK leads to smaller sample

sizes for estimation.

We will assume that whether we simulate with pre-

screening or not, the set I of the surviving systems is the

same. This is generally so when pre-screening is stopped
736
before the sample sizes for some systems exceed the sample

sizes required for estimation, which is exactly the case when

pre-screening could be beneficial.

A simulation without pre-screening costs E = Es +
c2

k

∑
i∈I σ2

i , and a simulation with pre-screening costs Ẽ =

Ẽp + Ẽs + c2
K

∑
i∈I σ2

i . The latter is minimized when c2
K is

as small as possible, which occurs when K = 1, i.e., there

is only one system left after pre-screening. Also, under

the assumptions we use in this section, the screening cost

Es is less than the total of the pre-screening and screening

costs Ẽp + Ẽs, so the maximal efficiency improvement E/Ẽ

is achieved when the pre-screening and screening costs are

negligible compared to estimation costs. This is a typical

case in practice: pre-screening and screening are very fast

compared to estimation, and they eliminate all but one

system. Under our assumptions, and if pre-screening and

screening costs are negligible, the efficiency improvement

due to restarting (i.e., due to having a pre-screening phase)

is

E

Ẽ
≈ c2

k

∑
i∈I σ2

i

c2
K

∑
i∈I σ2

i

=
c2

k

c2
K

≤ c2
k

c2
1

.

Figure 1 shows the maximal efficiency improvement c2
k/c2

1

as a function of the initial number of systems k. When the

number of systems k is between 20 and 1000, the savings

in a typical case are 40-80% at 1−α = 99% confidence

and 60-140% at 1−α = 95% confidence.

Figure 1: Maximal Efficiency Improvement Due to Restart-

ing with αa = 0.8α and αb = 0.2α

Recall that the transition rule given by Inequality (2)

chooses to restart when the cost of doing one more stage

of pre-screening is greater than the approximate maximal

savings due to continuation, computed under the assumption

that after additional pre-screening there will be only one

system left and it will have the largest variance. A typical

case indeed has one clear best system, so the effort required

for screening out inferior systems is relatively small, the
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approximate maximal savings are relatively large, and pre-

screening makes I a singleton.

How efficient is this transition rule in other situations?

Let us consider a configuration when there are several

systems which are tied for the best, while other systems are

relatively easy to screen out. In this case we might worry

that the cost of pre-screening could get too high before the

adaptive procedure proceeds to Phase II. Is our transition

rule still efficient?

Because now we are concerned that pre-screening may

be too expensive, we assume that pre-screening lasts a long

time and eliminates all inferior systems: the set I(M) of

systems used in Phase II equals I, the set of systems that

survive screening and reach their required sample sizes, and

the Phase II cost of screening Ẽs = 0. Again we assume

that I is the same whether we use pre-screening or not: here

we assume it contains only the systems that are tied. We

now show how the transition rule in Inequality (2) provides

a bound on Ẽp−Es, the excess cost of pre-screening in the

adaptive procedure over the cost of screening in a procedure

without restarting. The effort required to screen out inferior

systems is similar in either procedure, so Ẽp−Es≈KN(M−
1), the number of samples from the K = |I| surviving systems

that the adaptive procedure throws out by restarting.

Pre-screening stops after stage ` = M−1, the first time

that the cost (R− 1)|I(` + 1)|N(`) of the next stage ex-

ceeds (c2
|I(`+1)|−c2

1)maxi∈I(`+1) σ̂2
i (`). Under our present

assumption that the residual variance estimates are approx-

imately correct, this yields the approximate upper bound

N(M−2) ≤
(c2

|I(M−1)|− c2
1)maxi∈I(M−1) σ2

i

(R−1)|I(M−1)|

≤ (c2
K− c2

1)maxi∈I σ2
i

(R−1)K

because I(M−1) contains I(M) = I whose size is K, and

c2
p defined in Equation (1) increases in p at a rate that is

less than linear. Thus

KN(M−1) ≤ KRN(M−2)

≤ R(c2
K− c2

1)maxi∈I σ2
i

R−1
.

For R = 1.5, R/(R− 1) = 3, and the relative efficiency

improvement is

E

Ẽ
=

Es + c2
k

∑
i∈I σ2

i

Ẽp + Ẽs + c2
K

∑
i∈I σ2

i

=
Es + c2

k

∑
i∈I σ2

i

Es +3(c2
K− c2

1)maxi∈I σ2
i + c2

K

∑
i∈I σ2

i

≈ c2
k

∑
i∈I σ2

i

3(c2
K− c2

1)maxi∈I σ2
i + c2

K

∑
i∈I σ2

i

737
approximately, if the cost Es of screening is small. If the

variances of the tied systems are approximately equal, this

simplifies to

Kc2
k

3(c2
K− c2

1)+Kc2
K

.

For k = 256 and k = 64 the efficiency improvements as a

function of the number K of tied systems are shown in

Figure 2. A value less than 1 represents a loss of efficiency.

We see that even when some systems are tied, restarting

with our transition rule can still produce substantial benefits.

Even when all the systems are tied, the loss of efficiency

is very slight.

Figure 2: Effect of Ties on Approximate Efficiency Im-

provement Due to Restarting with αa = 0.8α and αb = 0.2α

The transition rule we presented is heuristic and is

one of many similar rules that all work well. This rule

is advantageous because of its simplicity and because it

allows us to reap most of the benefits of restarting, without

causing significant inefficiencies when restarting could be

harmful. More efficient transition rules could be designed

which take into account not only the sample variances of the

systems, but also their sample means. However, such rules

are complicated, and in most cases provide either small or

no savings. Because the benefits seem insufficient to justify

the additional complexity, we do not consider this approach

here.

3 PERFORMANCE OF THE ADAPTIVE MULTI-

STAGE PROCEDURE

In this section we use the basket put and options portfolio

examples discussed in Lesnevski et al. (2005) to illustrate

our procedure.

The basket put is the right to sell a certain number

of shares of three securities for a fixed price at a future

date. The simulation problem is to find the maximum



Lesnevski, Nelson, and Staum
expectation of the resulting discounted payoff, where the

expectation can be taken under any of k = 64 probability

measures. The 64 probability measures differ from each

other in the correlations among the three securities. The

basket put example uses put options on each of the individual

securities in the basket as control variates.

The options portfolio example measures the risk of a

portfolio of put and call options on three securities. The

simulation problem is to find the maximum conditional

expectation of the portfolio’s loss, where the conditional

expectation can be taken under any of k = 256 generalized

scenarios. The generalized scenarios are constructed by

conditioning on events in which some of four underlying

risk factors attain high, low, or moderate values. The options

portfolio example does not use control variates.

To test the adaptiveness of the procedure, in addition

to the ordinary configuration with one best system, we

also consider configurations “2 best” (obtained by adding

a duplicate of the best system), “4 best” (by adding 3

duplicates), and “16 best” (by adding 15 duplicates), so

that configuration “2 best” in the basket put example has

64+1 = 65 systems in total, while configuration “16 best”

has 64+15 = 79 systems. This is not the same as in Figure 2,

where the total number k of systems remains constant while

the number K that are tied varies.

We split the 1−α = 1% allowable error into components

αa = 0.8% for the lower confidence limit and αb = 0.2% for

the upper confidence limit. The error allocated to screening

is αI = 0.04%, and when using control variates, αC =
0.002% is allocated to controlling them. We choose initial

sample size n0 and the maximal number m of Phase I stages

to be 30, and the growth factor R to be 1.5. We use CRN

in all examples.

For ease of interpretation, we specify the fixed confi-

dence interval width L as a percentage of a quantity which

provides a natural scale for the example. For the options

portfolio example, this quantity is the portfolio’s standard

deviation. For the basket put example, this quantity is the

true value, the largest mean.

We report efficiency as a speed improvement relative

to the standard procedure, a modification of the two-stage

procedure of Chen and Dudewicz (1976), as explained in

Lesnevski et al. (2005, §§4.1–4.2). That is, we report the ratio

of the average number of samples required by the standard

procedure to the average number of samples required by the

adaptive multi-stage procedure. The results are summarized

in Table 1. Recall that efficiency improvement can be larger

than the number of systems k, which is 64 for the ordinary

configuration of the basket put, and 256 for that of the options

portfolio. The reason is that the improvement depends not

only on k, but also on the size of the best system’s standard

deviation relative to the standard deviations of other systems.

Table 2 shows how much work the procedure does in

excess of the work required by the “clairvoyant” procedure,
738
Table 1: Efficiency Relative to the Standard Procedure at

99% Confidence

Example

Config. Options Portfolio Basket Put

Precision

0.3% 1% 5% 0.3% 1% 5%

1 best 252 244 154 208 158 22

2 best 104 98 81 85 76 19

4 best 51 48 43 40 38 15

16 best 12 12 12 11 10 6.7

Table 2: Sample Size Relative to the Clairvoyant Procedure

at 99% Confidence

Example

Config. Options Portfolio Basket Put

Precision

0.3% 1% 5% 0.3% 1% 5%

1 best 1.0 1.1 1.7 1.1 1.4 10

2 best 1.2 1.2 1.5 1.2 1.3 5.4

4 best 1.1 1.2 1.3 1.2 1.2 3.2

16 best 1.1 1.1 1.1 1.1 1.1 1.7

the procedure that knows in advance which systems are

tied for the best, and applies the standard procedure to only

these systems in isolation. That is, the clairvoyant procedure

screens out all inferior systems by guessing right with no

work.

Like the multi-stage procedure with restarting analyzed

in Lesnevski et al. (2005), the adaptive procedure is less

than 10% more expensive than estimating a single mean

in the “1 best” configuration when a precise estimate is

required. If there are ties the procedure first tries to break

them, but when this becomes too expensive, proceeds to

estimation: this is its advantage over the multi-stage proce-

dure with restarting. Table 2 demonstrates the robustness

of the adaptive procedure’s performance to configuration.

As we see from the last column of Table 2, in the config-

uration with no ties at 5% precision the adaptive procedure

looks relatively inefficient compared to the clairvoyant pro-

cedure (10 times slower), but adding ties can make the

adaptive procedure look more favorable. This is because

5% is a low precision, so the final sample size is not very

large relative to the sample size required for screening. At

5% precision the clairvoyant procedure has a big advantage

in screening perfectly for free.

Table 3 shows the efficiency improvement of the adap-

tive procedure relative to the most efficient procedure of

Lesnevski et al. (2005): the multi-stage procedure with

restarting. (In all cases reported in Table 3, the multi-
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Table 3: Efficiency Relative to the Multi-Stage Procedure with Restarting at 99% Confidence

Options Portfolio Basket Put

Configuration Number of screening stages m

and Precision 5 10 15 20 25 30 5 10 15 20 25 30

0.3% 1.0 1.0 1.0 1.0 1.0 1.0 41 2.8 1.0 1.0 1.0 1.0

1 best 1% 1.0 1.0 1.0 1.0 1.0 1.0 30 2.3 1.0 1.0 1.0 1.0

5% 1.0 1.0 1.0 1.0 1.0 1.0 4.7 1.0 0.9 0.9 1.0 1.0

0.3% 0.9 0.9 0.9 0.9 1.0 1.8 17 1.6 0.9 1.0 1.6 6.1

2 best 1% 0.9 0.9 0.9 1.0 2.0 10 16 1.5 1.0 1.8 7.8 54

5% 0.9 0.9 1.2 4.0 25 205 4.6 1.0 1.6 6.5 44 328

0.3% 0.9 0.9 0.9 0.9 1.0 1.8 8.3 1.3 0.9 1.0 1.5 5.8

4 best 1% 0.9 0.9 0.9 1.0 2.1 10 7.8 1.2 1.0 1.8 7.7 53

5% 0.9 0.9 1.2 4.1 27 197 3.4 1.1 2.0 10 68 509

0.3% 0.9 0.9 0.9 0.9 1.0 1.7 3.1 1.0 1.0 1.0 1.6 5.7

16 best 1% 0.9 0.9 1.0 1.1 2.0 9.2 3.0 1.1 1.1 1.8 7.7 52

5% 0.9 1.0 1.2 4.3 27 201 2.1 1.1 2.7 15 110 833
stage procedure with early stopping was somewhat more

expensive than the multi-stage procedure with restarting.)

In some cases, the efficiency is slightly less than 1, i.e., the

adaptive procedure required slightly more samples than the

multi-stage procedure with restarting: the adaptive proce-

dure does not always pick the best possible time to restart,

but it picks a good time.

The efficiency of both of the procedures depends heavily

on the actual configuration of the means and the total

screening budget of n0Rm−1 observations per system. We

tested these procedures with n0 = 30 and R = 1.5 while

varying the maximal number of stages available for screening

from 5 to 30, so that the total budget available for screening

varied from 152 to 3,835,022 observations per system. We

set R = 1.5, not R = 2 as in Lesnevski et al. (2005), as

this choice of the growth factor makes all procedures more

efficient when there are ties.

The results in Table 3 illustrate the danger for our

previous multistage procedures of choosing the budget for

screening either too small or too large. What constitutes

too small or too large depends on the actual configuration,

whereas the adaptive procedure works well in all of them.
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