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ABSTRACT 

Nearly every well installation process nowadays relies on 
some sort of risk assessment study, given the high costs in-
volved. Those studies focus mostly on estimating the total 
time required by the well drilling and completion opera-
tions, as a way to predict the final costs. Among the differ-
ent techniques employed, the Monte Carlo simulation cur-
rently stands out as the preferred method. One relevant 
aspect which is frequently left out from simulation models 
is the dependence relationship among the processes under 
consideration. That omission can have a serious impact on 
the results of risk assessment and, consequently, on the 
conclusions drawn from them. In general, practitioners do 
not incorporate the dependence information because that is 
not always an easy task. This paper intends to show how 
Copula functions may be used as a tool to build correla-
tion-aware Monte Carlo simulation models. 

1 INTRODUCTION 

The total time taken in drilling and completion operations 
of oil and gas wells are subject to considerable uncertainty 
and risk factors, due to the limited knowledge concerning 
the geologic characteristics of the formation, technical dif-
ficulties and unexpected behavior of human operators (Ja-
cinto 2002). Moreover, this time represents 70 to 80% of 
the final cost of the well due to the high costs of daily rent 
of the drilling and completion rigs. The planning and risk 
assessment of these activities are hindered by unexpected 
events such as kicks (bags of gas), loss of circulation and 
well collapse. Those events can cause waste of time, in-
creasing costs, decline of the production or even the loss of 
the well (Jacinto 2002). 

Risk analysis and management of petroleum explora-
tion ventures is growing worldwide and many international 
petroleum companies have improved their exploration per-
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formance by using principles of risk analysis in combina-
tion with new technologies (Harbaugh 1995, Rose 2001).  

Lately, Monte Carlo simulation has been the preferred 
technique for many well forecasting applications related to 
operational risk analysis. The total time taken in well drill-
ing and completion operations and their associated cost are 
two good examples of variables considered in such fore-
casting. 

In this study we discuss some problems involved in 
the estimation of the total time taken in well drilling and 
completion operations and present one solution that makes 
use of copulas, mathematical functions that allow for the 
generation of joint distributions of dependent random vari-
ables. The next section presents a short description of oil 
and gas well engineering and tries to identify the uncer-
tainty and risk factors present in the well accomplishment. 
A brief description of the Monte Carlo tool and some of 
the problems in its utilization are presented in Section 3. In 
Section 4, we show how not considering dependence when 
simulating dependent data can affect the total time and, in 
Section 5, we introduce and discuss copulas as one tool to 
generate dependent data. Finally, in Section 6, we show 
one application example of the proposed methodology be-
fore we present our final remarks in Section 7. 

2 DRILLING AND COMPLETION 
ENGINEERING AND RISK ANALYSIS 

2.1 Drilling and Completion Operations 

The development of a petroleum field includes many ac-
tivities: drilling and completion of wells, installation of 
fluid collector systems (manifolds and flexible lines), con-
struction and installation of a production unity (petroleum 
platform), installation of the production drain flow system 
(oil and gas pipelines, oil ships) (Jacinto 2002). 
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The drilling of an oil well is accomplished through a 
rig. The rocks are drilled by the action of the rotation and 
weight applied to an existent drill in the extremity of a 
drilling column. Rock fragments are continually removed 
through a drilling fluid or mud, which is pumped into the 
interior of the drilling column by an injection head (swivel) 
and comes back to the surface through the ring space 
formed between the walls of the well and the column. 
When a certain depth is reached, the column is removed 
and a coating column goes down into the well. The space 
between the coating tubes and the walls of the well is ce-
mented with the purpose of isolating the crossed rocks, al-
lowing the progress of the drilling. In this way, the well is 
drilled in several phases, characterized by the different di-
ameters of the bits (Jacinto 2002). 

When the drilling is finished, a new stage of opera-
tions, designed to prepare the well so it can produce in safe 
and economic conditions during its useful life is carried 
out: the completion. In this phase, the valves in the head of 
the well that control the flow of petroleum are installed. 
The well is conditioned and shelled, and the production 
column is installed. Then the production of petroleum can 
begin (Jacinto 2002). 

2.2 Risk Analysis 

Risk connotes the possibility of loss and the chance or 
probability of that loss. Modern risk analysis utilizes prin-
ciples of statistics, probability theory and utility theory 
(Jain 1991, Bedford 2001, Vose 2001). In oil exploration 
there are many aspects of risk. Risk and uncertainty are as-
sociated with drilling operations, with field development 
and with production. In this paper, we are going to concen-
trate on those elements of risk associated to the drilling and 
completion of individual wells (Jacinto 2002). If the opera-
tions needed to drill and complete a given well are carried 
out without problems, the total time is usually short. On the 
other hand, if the same well has a few setbacks, failures, 
accidents and even if workovers occur (such as equipment 
failure, drill breaks, wall tumbling or a well blowout), the 
total time could be much longer than expected. So, when 
forecasting the total time, it must be expressed by a prob-
ability distribution, instead of a single number. 

The components of well drilling and completion times 
are often difficult to define with any degree of accuracy or 
exactitude and the failure sources can be blunder, system-
atic or random, associated with operation, equipment, ma-
terial, geology or workmanship (Harbaugh 1995). 

3 THE TRADITIONAL MONTE CARLO 
METHOD FOR RISK EVALUATION 

Because of the probabilistic nature associated with the time 
of drilling and completion operations, the estimation of the 
necessary time to rent all the required rigs is considered a 
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complex task. The scenario where the analyst takes deci-
sions is full of uncertainties for nearly every action. There-
fore, several of them are risky decisions. 

One of the most traditional techniques to deal with de-
cision and risk analysis under uncertainty is modeling and 
simulation using the Monte Carlo method. Considering the 
assumption that the analyst can associate a theoretical ran-
dom distribution, which better describes each operation in 
the process, it is possible to model and simulate the system 
by random sampling from the input distributions. In this 
case, the defined functions are related to the time to con-
clude each drilling and completion operation. In its great 
majority, these are random variables (Law 1991, Jain 1991, 
Bedford 2001, Vose 2001, Evans 2002, Coelho 2005). 

During this research, we developed a customized 
simulation tool (E&P Risk) that allows the estimation of 
the total time necessary to execute all needed operations. 
Before performing the simulation, the analyst should de-
fine the representative distribution for each operation. In 
the E&P Risk suite, this can be done by searching the op-
eration time from the corporate database and performing a 
fitting process using a built-in tool. For every operation, an 
input distribution can be adopted and fed into the model. 

In the first version of  the tool, we assumed that all the 
operations were independent. At the end of the simulation, 
after generating hundreds or even thousands of samplings 
of the operation time, an estimation of the total time is pre-
sented in conjunction with a risk exposition histogram, 
with the indication of some desired percentiles to better 
support the decisions (Figure 1). As the histogram and their 
related results (estimated total time and cost) are presented, 
the decision maker can now use those values to take a de-
cision and/or use them to refine it after confronting it with 
those obtained with the aid of complementary approaches 
like the one we are going to explain in the next topic. 
 

 
Figure 1: Risk Exposition Histogram 

 
One problem related to the use of the Monte Carlo 

method is the independence assumption for all the input 
distributions. If the completion times of one or more opera-
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tions are actually correlated, the implications on the final 
results of the simulation could be remarkable. In such 
cases, the simulation results might even be considered un-
suitable for decision making. 

4 IMPLICATIONS IN CONSIDERING 
INDEPENDENT, THINGS THAT ARE 
DEPENDENT 

Let us consider T1, T2, …, TK random variables that repre-
sent the times involved in the execution of each of a given 
set of operations (e.g. some well drilling and completion 
operations, as mentioned above). Then, it is well known 
that the mean or expected value and the variance of the to-
tal time T = T1 + T2 +… + TK are given by 
 

 ∑
=

=
K

k
kTETE

1
)()(  

and 

 ∑ ∑∑
= =

−

<

+=
K

k

K

k

K

kk
kkk TTCovTVarTVar

1 1

1

'
' ),(2)()(  

 
where E(Tk) and Var(Tk) are, respectively, the mean value 
and the variance of each Tk, and Cov(Tk,,Tk’) is the covari-
ance between Tk and Tk’. The latter is a measure of de-
pendence between two random values and it is equal to 
zero when they are independent. Therefore, unless all the 
covariances between the random variables are zero, the 
variance of T will not be equal to the sum of the individual 
variances. As the covariance can be either positive or nega-
tive, by considering independent, things that are dependent, 
one can end up with a value for the variance of the total 
time quite different, either below or above, from  the true 
value. 

As we can see, dependence does not affect the mean 
total time, but it can very badly affect its variance, which 
will affect the extreme values of the total time distribution, 
such as P10 and P90, for example. Table 1 shows that via 
statistics for three values of ρ, Pearson’s correlation coeffi-
cient. (X and Y are normal random variables with means 
30 and 40, and variances 25 e 64, respectively.) 
 
Table 1: Statistics Related to T = X + Y for Three Different 
Values of ρ  

Type of 
Dependence P10 P25 

Mean 
P50 

P75 P90 Variance

ρ = 0 
(independence) 57.9 63.6 70 76.4 82.1 89 

ρ = 0,8 
(positive  

dependence) 
54.1 61.7 70 78.3 85.9 153 

ρ = -0,8 
(negative  

dependence) 
63.6 66.6 70 73.4 76.4 25 
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Therefore, it is very important to consider dependence 
when generating bivariate, or higher dimension, dependent 
data. 

5 GENERATING MULTIDIMENSIONAL DATA - 
COPULAS 

In order to generate multidimensional data, we need to 
know the joint distribution of the random variables.  For 
dimension 2, H(x,y) = Prob(X ≤ x, Y ≤ y). Considering in-
dependence, H(x,y) = F1(x)F2(y), where F1(x) and F2(y) are 
the marginal (one-dimensional) distributions of X and Y, 
respectively. So, in the independence case, it is sufficient 
to know the two marginal distributions to construct the 
joint distribution. When we have dependence, besides that 
we will need also to know the type and extent of the de-
pendence. 

One probabilistic model which has been considered in 
the literature to accomplish that is the multivariate normal 
distribution, where the dependence is well defined by Pear-
son’s correlation coefficient, ρ. When we are modeling the 
time of drilling and completion operations, we do not ex-
pect that the normal distribution will be appropriate to 
model each individual time of the operations, because they 
usually follow asymmetric distribution. Therefore, by con-
sidering asymmetric distributions we would be more realis-
tic. In the literature, we can find some multivariate asym-
metric distributions, like, for instance, the Gumbel’s 
bivariate exponential distribution (Nelsen, 1999) and mul-
tivariate gamma distributions (Mathai and Moschopoulos, 
1991) that could be used. However, they have two draw-
backs for our purposes. They require the same marginal 
distributions and also, the interpretation of the dependence 
between the random variables is not, in general, easy to 
understand. In this work, we propose the use of copulas to 
generate joint distributions. 

Copulas are functions that associate a point in the unit 
square [0,1]x[0,1], for the two-dimensional case, to a point 
in the interval [0,1]. Formally, Copula is any function C : 
[0,1]n → [0,1] with the following properties: 
 

1. C(u1,u2,...,un)  is increasing in each argument ui є 
[0,1], i=1,2,...,n; 

2. C(1,1,...,ui, 1, ...,1) = ui for all i; 
3. For all (a1,a2,...,an), (b1,b2,...,bn) є [0,1]n with ai ≤ 

bi, we have 
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with uj1 = aj  and  uj2 = bj, j=1,...,n. 
 
One example of a two-dimensional, one-parameter 

copula is the following function: 
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with }0{\ℜ∈θ , the copula parameter. This copula is 
known as Frank Copula. Examples of copulas can be found 
in (Nelsen 1999), (Xue-Kun Song 2000), and in many 
other publications. 

Now, if we consider u = F1(x) and v = F2(y), where F1 
and F2 are any two one-dimensional distributions, associ-
ated to two random variables X and Y, then one joint dis-
tribution of X and Y with a dependence parameter θ is 
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Therefore, using this approach we can construct joint 

distributions from any one-dimensional distributions. For 
instance, if F1 is the cumulative distribution function of a 
triangular distribution, with parameters α < β < γ, and F2 is 
the cumulative distribution function of an exponential dis-
tribution, with mean μ, then 
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All the information about the dependence between the 

two random variables is in the parameter θ, whose value 
can be interpreted in terms of Kendall’s τ measure of asso-
ciation. In our context, it is important to have the depend-
ence between the random variables expressed in terms of a 
coefficient like Kendall’s τ, because it is not affected by 
strictly increasing transformations of the random variables. 
It assumes values in the interval [-1, 1], being negative 
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when the two variables are negatively correlated, and being 
positive when they are positively correlated. The closer τ is 
to 1 (or -1), the stronger will the dependence between the 
two variables be. The zero value means no correlation. It 
can be shown that τ and θ are related to each other by the 
following expression: 
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For the Frank Copula, we have that (see Embrechts, 

2001) 
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Another advantage of copulas is that there are algo-

rithms that can be implemented to generate dependent data. 
Below we present one algorithm for our Frank Copula 
setup: 
 

1. Generate u e w from two independent U[0, 1] dis-
tributions; 

2. Evaluate, for a given θ (or τ), 
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3. Evaluate )(1

1 uFx −=  and )(1
2 vFy −= . The pair (x, 

y) is a pair of random numbers with dependence 
defined by θ (or τ); 

4. Repeat 1–3 as many times as it is the desired 
number of pairs. 

 
In the next section we present one application example 

using simulated data. 
 

6 APPLICATION EXAMPLE 

We now introduce a case study in order to illustrate the 
significance of observing the correlations among random 
variables when doing risk analysis. The case study is com-
prised of a series of experiments which deal with two sup-
posedly correlated well operations. We are interested in es-
timating the total time (and, consequently, the cost) for the 
completion of those operations. For the purposes of this 
exercise, let us assume that the completion times for the 
first operation (operation A) are given by a triangular dis-
tribution and that those for the second (operation B) are 
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given by an exponential one. Table 2 shows the parameters 
of the two distributions. 
 

Table 2: Parameters of the Marginal Distributions 
Operation Distribution for Completion Time 

A Triangular(216, 288, 456) 
B Exponential(150) 

 

The dependence between the operations is expressed 
by means of the Frank Copula, which is used to produce 
the bivariate data for the experiment. The two distributions 
shown above are the marginal distributions used by the 
copula function. Another parameter, τ (Kendall’s correla-
tion coefficient), specifies the degree of dependence be-
tween two generated values of a pair. 

To illustrate the effects of considering the correlations 
when doing bivariate generation of random variables, the 
experiment will be repeated with different values for the 
dependence parameter of the copula, including negative 
dependence. The experiments, with 10,000 replications 
each, generate a value for the first and second completion 
times as described above in section 5. Table 3 shows the 
results for P10, P50 and P90, percentiles obtained for dif-
ferent values of τ (Kendall’s Correlation Coefficient).  
 

Table 3: Percentiles for Different Values of τ  
Percentiles 

Exp.# Correl 
τ. P10 P50 P90 P90 - P10 

1 -0,95 399 425 602 203 
2 -0,80 389 429 607 218 
3 -0,60 371 433 620 249 
4 -0,40 351 437 641 290 
5 -0,20 331 434 645 315 
6 None 314 434 676 362 
7 0,20 300 429 695 395 
8 0,40 290 427 713 423 
9 0,60 280 420 724 444 

10 0,80 275 419 738 463 
11 0,95 273 422 742 469 

 
 
In the experiment number 6 the values were generated 

in an independent way, meaning that the second comple-
tion time is not correlated with the first one. If we look at 
the results of that experiment, we observe that the distance 
from P10 to P90 is about 362 hours. The P50 – P90 gap is 
larger than the P10 – P50, as a result of the skewed Trian-
gular and Exponential distributions. Consider now the re-
sults of experiments 7 to 11. As the correlation coefficient 
increases, so does the distance between P10 and P90. In 
experiment number 10, for instance, the simulated time for 
operation B is correlated to that of operation A, according 
to a coefficient of 0.8. In this case, the distance from P10 
731
to P90 is now about 463 hours. At this level of correlation 
and taking only two operations into account, the difference 
for the total time could be of more than four days. On the 
other hand, looking now at the experiments 1 to 5, the re-
sults are the opposite. As the coefficient negatively in-
creases, the gap between P10 and P90 reduces. If again we 
analyze in terms of risk assessment, the same reasoning 
applies, i.e., not considering a negative correlation could 
result in a super estimation for the total time. And, in this 
case, if we remember that the daily rent of the drilling and 
completion rigs in petroleum wells could cost more than 
US$250,000.00 a day, these differences are very signifi-
cant. Figure 2 shows the evolution of the P10, P50 and P90 
percentiles as a function of the Kendall’s correlation coef-
ficient. 
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Figure 2: Percentiles as a Function of the Correlation Coef-
ficient 

7 FINAL REMARKS 

Risk assessment is an important constituent in the devel-
opment process of a well installation. Well drilling and 
completion operations, especially in deep waters, are very 
risky and uncertain operations, subject to great variability. 
That variability influences the final cost severely, making 
the employment of more elaborate techniques a factor of 
most importance. 

One of the most traditional techniques to deal with de-
cision and risk analysis under uncertainty, especially when 
dealing with well forecasting, is the application of prob-
abilistic methods, in particular Monte Carlo Simulation. 

Associated with Monte Carlo simulation models, cop-
ula functions provide a simple, yet powerful framework 
that allows for the appreciation of the dependence among 
correlated operations, while not imposing restrictions on 
the marginal distributions used to model them. 

When empirical data related to the processes involved 
are available, practitioners can verify which copula would 
better fit their data. That can be done by using, for in-
stance, maximum likelihood based methods. Details can be 
found in Mendes and Melo (2005). 
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