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Abstract

We develop a class of control variates for the American

option pricing problem that are constructed through the

use of MARS – multivariate adaptive regression splines.

The splines approximate the option’s value function at each

time step, and the value function approximations are then

used to construct a martingale that serves as the control

variate. Significant variance reduction is possible even in

high dimensions. The primary restriction is that we must be

able to compute certain one-step conditional expectations.

1 INTRODUCTION

Simulation is now a widely used tool for pricing financial

derivatives. This is true even for American options, where

there is an embedded optimization problem. While sim-

ulation optimization is widely viewed as being a difficult

problem, the American-option pricing problem possesses a

great deal of structure that makes it more tractable than one

might otherwise expect. The result is that simulation is,

indeed, a viable approach to such problems, especially if

one exploits the known theory of such problems to develop

variance reduction techniques.

In this paper we further develop a control variate for

pricing American options. The key idea, which is more

precisely developed later, is as follows. We first model the

price process of the underlying instruments as a Markov

process. We then define a class of mean-zero martingales that

are functions of the Markov process. Since the martingales

have zero mean, they can be used as control variates in

simulations. The trick then is to choose a good martingale

from within the class of such martingales. Our martingales

come from MARS (multivariate adaptive regression splines).

We sketch the key ideas behind MARS later and refer the

interested reader to Friedman (1991) for full details. With

some care in implementation, we get very large efficiency

improvements, even in some high dimensional problems.
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The key idea is the use of the martingales as control

variates. This idea was first developed in Henderson and

Glynn (2002) for a range of estimation problems related

to Markov processes. This methodology was adapted to

the American option pricing problem by Bolia and Juneja

(2005). The primary contribution of this paper over Bolia

and Juneja (2005) is the use of MARS to select an appropriate

martingale. The MARS methodology can be viewed as an

automated method for selecting a linear combination of

European options (not necessarily on traded assets) that

mimic the payoff of the American option. In that sense,

this paper is also an outgrowth of Rasmussen (2005), where

a small collection of European options, evaluated at the

time of exercise of the American option, are used to define

a control variate in the same way that we do here. Our

paper can also be viewed as an outgrowth of Laprise et al.

(2006) who develop upper and lower bounds on the price of

an American option (on a single asset) through a procedure

that essentially involves holding a portfolio of European

options.

A similar class of martingales to the one used here

was also exploited in Andersen and Broadie (2004). In that

paper, the martingales were used not for variance reduction

but to compute an upper bound on the option price. The

technique employed “simulation within simulation” in order

to estimate certain conditional expectations in the martingale.

Our use of MARS allows us to compute those conditional

expectations without the need to resort to simulation, for

the same reasons that Bolia and Juneja (2005), Rasmussen

(2005) and Laprise et al. (2006) did not need to resort to

simulation to compute the conditional expectations. Indeed,

it is this fact that allows our martingale to be used for variance

reduction as well as for computing an upper bound on the

price.

As is fairly standard in American option pricing, we

actually price a Bermudan option, that is, an option that can

only be exercised at a finite number of dates. The prices

we estimate can be viewed as lower bounds on the true

option price, because we price the option using a specific
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exercise strategy that is feasible, but not necessarily optimal.

Upper bounds on the true option price can be recovered

using a martingale duality result established independently

in Rogers (2002) and Haugh and Kogan (2004), and used in

Andersen and Broadie (2004) and Bolia and Juneja (2005);

we do so here as well.

To summarize, the primary contribution of this paper

over and above previous work is to identify a particularly ef-

fective approach for selecting an effective martingale control

variate from within an already-known class of such control

variates. In work reported elsewhere, we also exploit some

standard statistical tools to perform automatic reparame-

terizations of the problem that yield even greater variance

reductions; see Ehrlichman and Henderson (2006).

The remainder of this paper is organized as follows.

Section 2 briefly reviews the American option pricing prob-

lem, the method we use to determine the exercise policy, and

introduces the class of martingale control variates within

which we work. It also identifies the optimal martingale.

Section 3 reviews the key ideas from MARS methodol-

ogy, and explains how we use MARS to approximate the

optimal martingale. The algorithm is then outlined in Sec-

tion 4, some numerical examples are given in Section 5,

and Section 6 offers some conclusions.

For further details and justification of the procedure,

the reparameterizing extension mentioned above, and more

extensive numerical results, see Ehrlichman and Henderson

(2006).

2 MATHEMATICAL FRAMEWORK

We adopt much of the notation of Andersen and Broadie

(2004) in what follows.

Let (Xt : t = 0, 1, . . . , T ) be a discrete-time Markov

process on R
d, for some finite d, and some fixed integer T .

This process represents the price dynamics of the underlying,

and potentially additional information that is used to compute

the payoff of the option when exercised. For notational

ease we assume that the option can be exercised at any time

t = 0, 1, 2, . . . , T . We assume an arbitrage-free market and

therefore work with a risk-neutral pricing measure. See,

e.g., Duffie (2001) or Glasserman (2004) for background.

Let g(t,Xt) ≥ 0 represent the payoff as a function

of time and state if the option is exercised at time t, t =
0, . . . , T . We assume that Eg2(t,Xt) < ∞. Let r be the

riskless interest rate which, for simplicity we assume is

constant and deterministic, so that $1 at time 0 is worth ert

dollars at time t.
Let F = (Ft : t = 0, . . . , T ) be the natural filtration of

(Xt), and let T (t) be the set of all stopping times (with

respect to F) taking values in {t, t+1, . . . , T}, t = 0, . . . , T .

Each stopping time in T (t) represents an exercise strategy

for an option newly released at time t. Let Et[·] = E[· |Ft].
720
The Bermudan option pricing problem is to compute

the option price Q0, where

Qt = sup
τ∈T (t)

Et

[

e−r(τ−t)g(τ,Xτ )
]

, (1)

for t = 0, . . . , T . The standard theory of option pricing,

e.g., Duffie (2001), ensures that there exists an optimal

family of stopping times (τ∗
t : t = 0, . . . , T ) such that τ∗

t

attains the supremum in (1) for each t. This optimal family

satisfies the recursion

τ∗
T = T

τ∗
t =

{

t if g(t,Xt) ≥ e−rEtQt+1,

τ∗
t+1 otherwise,

for t = T − 1, . . . , 0.

Similarly, the family of option values (Qt : t =
0, . . . , T ) satisfies the recursion

QT = g(T,XT ),

Qt = max
{

g(t,Xt), e
−rEtQt+1

}

,

for t = T − 1, . . . , 0.

2.1 Lower and Upper Bounds

We adopt the least-squares Monte Carlo (LSM) method

(Longstaff and Schwartz 2001) for developing an approxi-

mation to the optimal stopping time family (τ∗
t ) and thereby

the option price family (Qt). The stopping times (τt) we

obtain are sub-optimal, so that the option prices (Lt) im-

plied by the algorithm are lower bounds on the true option

prices (Qt). Here Lt = Ete
−r(τt−t)g(τt,Xτt

).
To obtain an upper bound we employ a martingale

duality result developed independently by Haugh and Kogan

(2004) and Rogers (2002). Let π = (πt : t = 0, . . . , T )
denote a martingale with respect to F. By the optional

sampling theorem, for any t ≥ 0,

Qt = ert sup
τ∈T (t)

Et

[

e−rτg(τ,Xτ ) − πτ + πτ

]

= ert sup
τ∈T (t)

Et

[

e−rτg(τ,Xτ ) − πτ

]

+ ertπt

≤ ertEt max
s=t,...,T

[

e−rsg(s,Xs) − πs

]

+ ertπt

=: Ut.

(2)

The martingale π here is arbitrary, and any such choice

yields an upper bound. We next give a class of martingales

from which to choose.
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2.2 Martingales

Let ht : R
d → R be such that E|ht(Xt)| < ∞ for each

t = 0, 1, . . . , d. Define π0 = 0, and for t = 1, . . . , T , set

πt =
t
∑

s=1

e−rs(hs(Xs) − Es−1hs(Xs)).

Then (πt) is evidently a martingale, and can be used to

obtain an upper bound on the option price as in (2).

Such martingales can also be used to great effect as

control variates in estimating the lower bound process. Re-

call that Lt = Ete
−r(τt−t)g(τt,Xτt

) for each t, and so

if we can compute the stopping time (τt) (as is possible

using the LSM method), then conditional on Ft, we can

compute Lt by averaging conditionally independent repli-

cates of e−r(τt−t)g(τt,Xτt
). But in a slight extension of

an observation in Bolia and Juneja (2005), Ehrlichman and

Henderson (2006) observe that if ht(Xt) = Lt, then

πτt
− πt = e−rτtg(τt,Xτt

) − e−rtLt.

Hence, conditional on Ft, we can estimate Lt with zero

(conditional) variance by

e−r(τt−t)g(τt,Xτt
) − ert(πτt

− πt).

If F0 is the trivial sigma field, so that X0 is deterministic,

then taking t = 0 we get a zero variance estimator of L0,

the lower bound on the option price at time 0. Moreover,

Andersen and Broadie (2004) show that with this choice of

martingale, the inequality in (2) is tight provided the sub-

optimal stopping times (τt) are equal to the true optimal

stopping times (τ∗
t ). They also show that in the more

general setting, this “duality gap” is bounded above by

E
∑T

s=1(Qs − Ls).
Of course, we cannot set ht(Xt) = Lt, since we are

trying to compute Lt in the first place. But this observation

motivates us to search for a set of functions (ht) such that

ht(Xt) ≈ Lt

for each t, in some sense. (We do so in the mean-square

sense.) We then use the induced martingale (evaluated at

time τt) as a control variate in estimating L0. To com-

pute this martingale, we need to be able to compute the

conditional expectation Es−1hs(Xs) efficiently. Andersen

and Broadie (2004) do so using simulation. We instead

restrict the class of functions (ht) considered so that these

conditional expectations can be evaluated without the need

to resort to further simulation, in the same spirit as Bolia

and Juneja (2005) and Rasmussen (2005). However, our

class of functions, which come from MARS, differs from
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that in Bolia and Juneja (2005), and is closer to that used

in Rasmussen (2005). We now explore MARS.

3 MARS

Multivariate adaptive regression splines (Friedman 1991), or

MARS, is essentially a nonparametric regression technique.

MARS has been used in many contexts. We use MARS

to approximate the value function Lt. Interestingly, MARS

has been used to approximate value functions of stochastic

dynamic programs before (Chen et al. 1999), although in

a very different setting.

We use a restricted version of MARS that can be

described as follows. Given predictors x1, . . . , xN ∈ R
d

and responses y1, . . . , yN , MARS fits a model of the form

y ≈ ĥ(x) = α0 +

d
∑

i=1

Ji
∑

j=1

αi,j(qi,j [x(i) − ki,j ])+.

Here x(i) denotes the ith component of x, the Jis are

integers, α0 and the αi,js are constants, and qi,j ∈ {−1, 1}.

The “knots” ki,j are selected from the ith coordinates of

the predictors, i.e., ki,j ∈ {xn(i) : 1 ≤ n ≤ N} for each j.

We now give the essential idea behind how MARS fits

this model. For full details see Friedman (1991), or for a

summary, see Hastie et al. (2001). MARS proceeds in a

stepwise manner. For each n = 1, . . . , N and i = 1, . . . , d,

MARS considers adding the 2 basis functions

(x(i) − xn(i))+, (−[x(i) − xn(i)])+. (3)

A basis function is added if the improvement in fit exceeds a

given threshold, up to a maximum number of basis functions.

After this step is completed, MARS then removes some of

the basis functions, so long as a certain quantity that balances

fit and number of basis functions is not reduced. Based on an

argument in Friedman (1991), Ehrlichman and Henderson

(2006) states that the fitting time is bounded by a term that

is of the order d5N . Our experiments below indicate that

this bound may be quite pessimistic.

We apply MARS to select the martingale as follows.

Consider time step t, and suppose that we have N samples

X
(1)
t , . . . ,X

(N)
t of Xt. Suppose further that corresponding

to these samples, we have N noisy samples Y
(1)
t , . . . , Y

(N)
t

of Lt. (The noisy sample Y
(i)
t is simply the payoff at-

tained by the LSM method on the post-t portion of the

path X
(i)
0 ,X

(i)
1 , . . . ,X

(i)
T . Since the post-t path is a single

realization of the future evolution of (Xs) beyond time t,

Y
(i)
t can be viewed as a noisy sample of Lt.) We then use

MARS to fit an approximation L̂t (previously denoted ht)
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of Lt as

L̂t(x) = α0 +
d
∑

i=1

Ji
∑

j=1

αi,j(qi,j [x(i) − ki,j ])+.

After we fit such an approximation for each t = T, . . . , 1,

we then perform a “production run” in which the martingale

and corresponding estimators are computed.

In computing the resulting martingale π̂ = (π̂t : t =
0, . . . , T ), we need to be able to compute the conditional

expectations

Et−1(qi,j [Xt(i) − ki,j ])+,

for each t. But this is simply the value of a European option

on a single asset which, depending on the complexity of

the Markov process, can be computed very easily. For

certain pricing problems the calculation can be difficult.

Therefore, in many cases instead of applying the MARS

algorithm directly to (Xt), we instead apply MARS to a

transformation of (Xt).

4 ALGORITHM SUMMARY

We give a simple summary of the algorithm here. For full

details see Ehrlichman and Henderson (2006).

To construct the naı̈ve estimator we run the LSM method

in a first phase, thereby obtaining the stopping times (τt).
Then, in a second phase we independently compute the

sample average of a number of i.i.d. replicates of

e−rτ0g(τ0,Xτ0
).

To construct the MARS-based estimator, we again pro-

ceed in 2 phases. In Phase 1, we apply the LSM method to

compute the stopping times (τt), while simultaneously fitting

the approximation functions L̂t using MARS. In Phase 2 we

generate mutually independent paths of (Xt : t = 0, . . . , T )
that are independent of the paths used in Phase 1. The Phase

2 paths are then used to estimate the lower bound via a

sample average of terms of the form

e−rτ0g(τ0,Xτ0
) − π̂τ0

.

In our implementation, we include the usual control variate

multiplicative constant β in front of the control π̂τ0
, and

estimate its optimal value using the usual methodology; see,

e.g., Law and Kelton (2000) for details. We also use the

Phase 2 paths to estimate the upper bound via a sample

average of terms of the form

max
t=0,1,...,T

[

e−rtg(t,Xt) − π̂t

]

.
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The LSM method in Phase 1 involves a regression that is

performed separately from the MARS fit of the lower bounds.

One might consider using MARS for the LSM regressions

as well, perhaps due to programming convenience, but in

our experiments we have not seen significant gains in the

performance of the policy represented by the stopping times

computed by such a method. Moreover, it would be slower

to use MARS than to use simple regression.

5 NUMERICAL EXAMPLES

We now apply the methodology above to price a range of

derivatives. Our calculations were performed using R (R

Development Core Team 2005). In order to avoid stating

results that are strongly platform-dependent (like computa-

tion times), we instead report ratios of computation times.

To be able to compare “apples with apples” we proceed as

follows.

In all experiments we fix the runlengths for Phase 1

and Phase 2 to 10,000 and 20,000 respectively. We record

the following quantities.

r1 The time required in Phase 1 for both the LSM

method and for MARS to fit the L̂t functions.

r2 The time required in Phase 2 to compute the MARS-

based estimators of the lower and upper bounds.

r̃1 The time required in Phase 1 for the LSM method

alone.

r̃2 The time required in Phase 2 to compute the naı̈ve

estimator of the lower bound.

s2 An estimate of the variance of the MARS-based

estimator of the lower bound.

s̃2 An estimate of the variance of the naı̈ve estimator

of the lower bound.

L̂0 The MARS-based estimate of the lower bound.

We then compute the Phase 2 runlengths (ñ and n for the

naı̈ve and MARS-based estimators respectively) required to

achieve a confidence interval halfwidth for the lower bound

that is approximately 0.1% of the lower bound estimate.

Hence

ñ =
1.962s̃2

0.0012L̂2
0

and

n =
1.962s2

0.0012L̂2
0

.

We then compute approximations for the computational time

corresponding to these runlengths, viz

R̃ = r̃1 +
ñ

20, 000
r̃2 and

R = r1 +
n

20, 000
r2.
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Finally, we report

TR = R̃/R (4)

as an estimate of the speed-up factor (or time reduction)

of the MARS-based estimator over the naı̈ve estimator. We

also report

VR = s̃2/s2 (5)

as the variance reduction factor. The former measure repre-

sents the true improvement in efficiency of the MARS-based

estimator over the naı̈ve estimator, while the latter measure

indicates the variance reduction without adjustment for com-

putation time.

5.1 Example: Asian Options

We first price Bermudan-Asian options under the Black-

Scholes model. More precisely, we have that Xt = (St, At),
where S0 is deterministic, and S1, . . . , ST are generated via

St = St−1 exp

(

r − σ2

2
+ σWt

)

,

for independent standard normal variates W1, . . . ,WT . The

average process (At : t = 1, . . . , T ) is given by

At =
1

t

t
∑

s=1

Ss.

(Note that A0 is undefined.) The averaging dates are assumed

to coincide with the possible exercise dates, which now

exclude the date t = 0.

The payoff function of the Bermudan-Asian put is given

by g(0, ·) ≡ 0 and

g(t,Xt) = (K − At)+

for t ≥ 1.

As noted at the end of Section 3, the MARS fitting is

applied to a transformation of (Xt) rather than to (Xt) itself.

Indeed, we replace St by its logarithm, and the arithmetic

average At by the logarithm of the geometric average

Ãt = exp
1

t

t
∑

s=1

log Ss.
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This yields an approximation

L̂t =

JS
∑

j=1

αS,j

(

qS,j

[

log St − kS,j

]

)

+

+

JA
∑

j=1

αA,j

(

qA,j

[

log Ãt − kA,j

]

)

+
.

The marginal conditional distributions of log St and log Ãt

given Ft−1 are Gaussian, with conditional means

Et−1 log St = log St−1 + r − σ2

2
,

for t = 1, . . . , T , and

E0 log Ã1 = E0 log S1,

Et−1 log Ãt =
1

t

(

(t − 1) log Ãt−1 + log St−1

+ r − σ2

2

)

,

for t = 2, . . . , T , and conditional marginal variances

Vart−1 log

[

St

Ãt

]

=

[

σ2

(σ/t)2

]

,

for t = 1, . . . , T . (The full covariance matrix is irrelevant

for our purpose.) This allows us to easily compute the

conditional expectations Et−1L̂t.

Table 1 gives the results for Bermudan-Asian options.

We considered an option maturing in 6 months with monthly

exercise/averaging dates, so that T = 6. The annualized

risk-free rate was 12r = .06, and the initial asset price was

S0 = 100. The stopping times were fit in the LSM method

using polynomials of degree up to 4 in St and At for each

t = 1, . . . , T − 1.

In Table 1 the column “Naı̈ve L0” gives the naı̈ve esti-

mate together with a 95% confidence interval halfwidth in

parentheses. The corresponding information for the MARS-

based estimate is given in the column “MARS L0,” and

the MARS-based estimate of the upper bound appears un-

der “MARS U0.” The columns headed “VR” and “TR”

respectively give the variance reduction ratio and efficiency

improvement ratios given by (5) and (4), to two significant

figures.

The reduction in variance is dramatic, approximately

equal to a factor of 200 in the examples we tried. Of course,

one must take into account computational time. When we

do so, the efficiency improvement factor ranges from about

40 to 80. Finally, the estimated bounds on the option price

are very close, suggesting that the stopping times found by

the LSM method are quite good.
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Table 1: Asian Option Results

σ
√

12 K Naı̈ve L0 MARS L0 MARS U0 VR TR

.3 95 2.77 (.07) 2.73 (.00) 2.78 (.00) 210 85

.3 115 15.92 (.14) 15.86 (.01) 15.95 (.01) 230 44

.6 95 7.88 (.15) 7.80 (.01) 7.94 (.01) 190 71

.6 115 20.57 (.23) 20.48 (.02) 20.65 (.01) 230 56
5.2 Example: Basket Options

Next, we consider options on baskets of d as-

sets whose prices are given by (Xt : t = 0, . . . , T ) =
(St(i) : t = 0, . . . , T ; i = 1, . . . , d). Specifically, we test

put options on the maximum and on the average of the

assets, which have respective payoff functions

gmax(t, x) =
(

K − ∨d
i=1x(i)

)

+
, and

gavg(t, x) =

(

K − 1

d

d
∑

i=1

x(i)

)

+

.

The underlying assets are assumed to follow the multidi-

mensional Black-Scholes model, which is discretized as

St(i) = St−1(i) exp

(

r − 1

2
σ2

i + σiWt(i)

)

, (6)

for i = 1, . . . , d, where Wt = (Wt(1), . . . ,Wt(d)) is a

sequence of independent (in time) multivariate N (0, 1) ran-

dom variates with a specified correlation matrix. To simplify

things, we assume that there is a single constant ρ ∈ (−1, 1)
such that Cor (Wt(i),Wt(j)) = ρ for all 1 ≤ i < j ≤ d,

and we take σ1 = · · · = σd = σ. We take the annualized

risk-free rate 12r to be .06 and the initial asset prices to

be S0(i) = 100, for i = 1, . . . , d. The dimension d of the

problem takes the values d = 2, 5, 10, 20. For the payoff

function gavg, we take the basis functions for fitting the

stopping times in the LSM method to be the polynomials of

degree up to two in the d asset prices. For the function gmax,

we take the basis functions to be the polynomials of degree

up to two in the order statistics of the asset prices, which

is in the spirit of a suggestion in Longstaff and Schwartz

(2001).

As in the Asian case, we apply the MARS-fitting algo-

rithm to the logarithm of St. The conditional distribution

of log St given Ft−1 is multivariate Gaussian with mean

log St−1 + r − σ2/2, and variance σ2. Again, this in-

formation is sufficient to compute the required conditional

expectations. The results are given in Tables 2 and 3. Again,

columns VR and TR are to two significant figures.

Table 2 presents the results for the put on the average.

The efficiency improvements seen here are not as strong as
724
those for the Asian option. Nevertheless, the factors, ranging

from about 2 to 3 for the uncorrelated case to about 7 to

9 for the correlated case, represent useful improvements.

Note that the upper bound estimates are quite poor; we

have been able to obtain far better results for both variance

reduction and the upper bound using the extension of this

work described in Ehrlichman and Henderson (2006), and

the results are reported there.

There is some degradation in performance as the di-

mension increases from 2 to 20 in the uncorrelated case.

The performance is better in the correlated case. It is plau-

sible that the efficiency improvements are stronger when

the assets are positively correlated, and that the degradation

with dimension is smaller in that case as well, because a

large fraction of the assets’ returns is driven by a single

factor that is well represented in the individual (marginal)

prices.

The results for the put on the maximum (Table 3) are

less encouraging. In the uncorrelated case, the use of MARS

actually led to a reduction in efficiency for dimensions 5

and higher. (We did not report the results for d = 10, 20.)

The results for the correlated case are stronger, but not as

strong as we might like. This is most likely due to the fact

that the payoff function gmax is highly non-separable, so

the fitted functions L̂ are poor approximations for the true

value functions L.

6 DISCUSSION AND CONCLUSION

We have presented a technique for (almost) automatically

determining an effective martingale-based control variate for

pricing American options. The method employs separable

MARS approximations of the value functions. The key

advantages of this approach are that one can use off-the-

shelf software for fitting the approximation, the procedure

itself is highly automated, and the one-step conditional

expectations that help define the martingale can usually be

very easily computed.

The method works extremely well when the separa-

ble approximations are accurate, providing substantial ef-

ficiency improvements and excellent upper bounds on the

option price. However, for problems where the separable

approximation is not as accurate, the results are correspond-

ingly poorer. An extension of these methods described in
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Table 2: Basket Option Results: Put on Average

d σ
√

12 Naı̈ve L0 MARS L0 MARS U0 VR TR

Uncorrelated asset prices (ρ = 0).

2 .3 6.23 (.11) 6.25 (.05) 8.15 (.04) 4.1 3.6

2 .6 14.68 (.22) 14.67 (.10) 17.90 (.07) 4.7 4.1

5 .3 3.38 (.06) 3.38 (.04) 5.07 (.03) 2.7 2.2

5 .6 8.84 (.14) 8.80 (.08) 12.00 (.07) 3.2 2.6

10 .3 2.05 (.04) 2.04 (.03) 3.27 (.03) 2.4 1.8

10 .6 5.83 (.10) 5.81 (.06) 8.43 (.06) 2.7 2.1

20 .3 1.07 (.02) 1.12 (.02) 1.97 (.02) 2.0 1.6

20 .6 3.50 (.06) 3.59 (.04) 5.61 (.04) 2.3 1.9

Correlated asset prices (ρ = .45).

2 .3 7.75 (.13) 7.80 (.04) 8.79 (.02) 10.0 8.7

2 .6 17.50 (.25) 17.55 (.08) 19.38 (.05) 10.0 8.9

5 .3 6.58 (.11) 6.65 (.04) 7.73 (.03) 8.4 6.8

5 .6 15.12 (.23) 15.19 (.08) 17.29 (.05) 8.5 7.0

10 .3 6.13 (.10) 6.22 (.03) 7.16 (.02) 9.1 7.4

10 .6 14.15 (.21) 14.25 (.07) 16.17 (.05) 9.4 7.5

20 .3 5.69 (.10) 5.96 (.03) 6.79 (.02) 11.0 8.7

20 .6 13.42 (.20) 13.74 (.06) 15.41 (.05) 11.0 8.3
Table 3: Basket Option Results: Put on Max

d σ
√

12 Naı̈ve L0 MARS L0 MARS U0 VR TR

Uncorrelated asset prices (ρ = 0).

2 .3 3.83 (.08) 3.83 (.06) 6.00 (.05) 2.2 1.7

2 .6 9.83 (.19) 9.83 (.11) 13.92 (.09) 2.6 2.0

5 .3 0.39 (.02) 0.39 (.02) 0.95 (.02) 1.2 0.87

5 .6 1.54 (.06) 1.54 (.05) 3.32 (.06) 1.3 0.94

Correlated asset prices (ρ = .45).

2 .3 5.32 (.11) 5.38 (.06) 7.19 (.04) 3.5 2.8

2 .6 12.75 (.22) 12.84 (.11) 16.13 (.07) 4.1 3.3

5 .3 2.29 (.06) 2.30 (.04) 3.76 (.04) 2.2 1.7

5 .6 6.07 (.15) 6.17 (.09) 9.25 (.07) 2.4 2.0

10 .3 1.05 (.04) 1.10 (.03) 2.06 (.03) 1.8 1.4

10 .6 3.13 (.10) 3.23 (.07) 5.52 (.06) 2.0 1.6

20 .3 0.44 (.03) 0.45 (.02) 1.10 (.02) 1.6 1.3

20 .6 1.46 (.07) 1.50 (.05) 3.05 (.04) 1.8 1.5
725
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Ehrlichman and Henderson (2006) gives tremendous im-

provement in many cases where MARS alone does not do

so well.

One could apply quasi-Monte Carlo methodology (in-

cluding the randomized variants) in conjunction with the

methodology described here. This would likely result in

even greater variance reductions, although that remains to

be seen. The good news is that the overall procedure would

not change in any substantive way.
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