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ABSTRACT 

This paper considers the application of stochastic optimiza-
tion methods to American-style option pricing. We apply a 
randomized optimization algorithm called Model Refer-
ence Adaptive Search (MRAS) to pricing American-style 
options by parameterizing the early exercise boundary. 
Numerical results are provided for pricing American-style 
call and put options written on underlying assets following 
geometric Brownian motion and Merton jump-diffusion 
processes. The results from the MRAS algorithm are also 
compared with the Cross-Entropy (CE) method. 

1 INTRODUCTION 

Pricing American options is a challenging problem in fi-
nancial engineering, due to the early exercise features. Be-
cause of the complexity of the underlying dynamics, ana-
lytical models for option pricing entail many restrictive 
assumptions. Indeed, there is no analytical solution for the 
valuation of an American option on a single dividend-
paying asset in the standard Black-Scholes framework. A 
number of simulation-based approaches have been devel-
oped to price American options since the 1990s. In contrast 
to traditional finite difference and lattice methods such as 
binomial trees, which often only handle limited number of 
uncertainty sources and become impractical in situations 
where there are multiple factors, Monte Carlo simulation 
methods are more widely applicable, because they can 
manage complicated derivatives with more state variables.  

We classify these algorithms into three main catego-
ries. The first class casts the problem in a stochastic dy-
namic programming framework and employs a backwards 
induction algorithm. At each early exercise date, the payoff 
from immediate exercise is compared to the holding value, 
i.e., the conditional expectation from keeping the deriva-
tive alive. However, computing this conditional expecta-
tion can become computationally prohibitive as the dimen-
sion of the problem increases, and the next-stage value 
function is calculated over its entire asset space domain. 
Tilley (1993) first applied a bundling technique to ap-
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proximate the holding values at early exercise points in an 
arbitrage-free setting. Improvements on Tilley’s methods 
include Carriere (1996), who used a spline local regression 
technique to approximate the conditional expectations and 
find the optimal stopping in finite discrete time; and Long-
staff and Schwartz (2001), who used least-square regres-
sion to provide a direct estimate of the conditional expecta-
tion function in high-dimensional setting. Laprise et al. 
(2006) applied secant and tangent interpolations to con-
struct a piecewise linear approximation of the value func-
tion, estimating the American-style derivative by pricing a 
portfolio of European options at varying strike prices.  

The second class of algorithms characterizes the opti-
mal early exercise policies directly rather than using dy-
namic programming. Grant et al. (1996, 1997) identified 
the optimal critical price, i.e., the price below (above) 
which it is optimal to exercise for American put (call), us-
ing the backward recursive technique of dynamic pro-
gramming, and incorporated this early exercise feature into 
Monte Carlo simulation. Fu and Hu (1995) cast the Ameri-
can option pricing problem as an optimization problem of 
maximizing the expected payoff with respect to the early 
exercise thresholds. They incorporated the gradient esti-
mates into an iterative stochastic approximation algorithm 
and obtained sensitivities of the option value with respect 
to various parameters of the pricing model (see also Fu et 
al. 2000). Fu et al. (2001) introduced another way to solve 
this optimization problem using the simultaneous perturba-
tion stochastic approximation (SPSA) approach proposed 
by Spall (1992).  

The third class of algorithms is based on obtaining up-
per and lower bounds from simulated paths and backwards 
recursion. Broadie and Glasserman (1997) proposed a 
method based on simulated nonrecombining trees, where 
both bounds converge to the true price as computational 
effort increases. Broadie and Glasserman (2004) presented 
a stochastic mesh method for pricing high-dimensional 
American options with a finite number of exercise dates. 
The computational effort of this mesh algorithm is linear in 
its dependence on the number of exercise dates, in contrast 
to the exponential dependence for the random tree method.  
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In this paper, we apply a randomized algorithm called 
Model Reference Adaptive Search (MRAS) for pricing 
American options by solving an optimization problem in 
the spirit to the second class of algorithms discussed above. 
We compare MRAS results with those computed from per-
turbation analysis stochastic approximation (PASA) and 
SPSA, as described in Fu et al. (2001).  

MRAS was proposed by Hu et al. (2005, 2006). The 
main idea of this approach is similar to that of the Cross-
Entropy (CE) method (Rubinstein and Kroese 2004), 
which has been successfully applied to a wide range of 
combinatorial optimization and rare-event estimation prob-
lems. In contrast to instance-based methods such as simu-
lated annealing (Aarts and Korst 1989), threshold accep-
tance (Dueck and Scheur 1990), genetic algorithm (GA) 
(Srinivas and Patnaik 1994) and tabu search (Glover 1990), 
where the new candidate solutions generated in the next 
iteration depend directly on solution or the ‘population’ of 
solutions from previous step, both MRAS and CE fall in 
the category of model-based search algorithms, which con-
struct a random sequence of solutions via an intermediate 
parameterized probabilistic model that is updated from the 
previous solutions in such a way that the search will con-
centrate in the regions containing high quality solutions, 
and usually involve the following two iterative phases: 

 
1. Generate candidate solutions (random data sam-

ples, vectors, trajectories, etc.) according to a 
specified random mechanism, e.g., a parameter-
ized probability distribution. 

2. Update the parameters of the random mechanism, 
typically parameters of pdfs, on the basis of the 
data collected in the previous step, to produce a 
“better” sample of candidate solutions in the next 
iteration. 

 
The obtained parameters tend to coincide with the pa-

rameters that minimize variance in most cases, such that 
the outcome converges probabilistically to the optimal or 
near-optimal solution (see Fu et al. 2006).  

This paper is organized as follows. The problem set-
ting is described in Section 2. The MRAS algorithm ap-
plied to American-style option pricing is described in Sec-
tion 3, and in Section 4, it is implemented in pricing 
American-style call and put options written on underlying 
assets following geometric Brownian motion and Merton 
jump diffusion model. The results from the MRAS algo-
rithm are compared with the CE method as well. Finally 
we offer some conclusions based on the numerical results 
in Section 5. 

2 PROBLEM SETTING 

We consider the American option pricing problem as a 
maximization problem and apply optimization techniques 
to parameterize the early exercise boundary. The value of 
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an American call option written on a dividend-paying sin-
gle stock with finite early exercise dates can be written as 
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1{ }: indicator function, 
K: strike price, 
r: risk free rate, 
T: maturity, 
n: number of exercise opportunities, including at maturity, 
Si*: early exercise threshold at exercise date ti. 
Si: stock price at exercise date ti, 
L: net present value of the option payoff.  

The first term on the right side is the payoff of early 
exercise, and the second term is the payoff without early 
exercise, i.e., the payoff at the time of maturity. Through-
out, we assume options are not exercisable at time 0. Simi-
larly, the American put option can be written with payoff  
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We use S* = (S1*,…,Sn*) to denote the set of critical 

prices. Once we find estimates for the thresholds at all ex-
ercise points through optimization, we obtain the value of 
the option through a forward simulation starting from time 
0. The procedure simultaneously optimizes all parameters 
iteratively, and no dynamic programming is involved. In 
addition, this flexible value function can handle pure-jump 
and jump-diffusion processes, which can sometimes be 
problematic for the most popular pricing methods, such as 
partial differential equation methods, binomial trees, and 
other lattice methods. In the following numerical exam-
ples, we consider the underlying asset following two sto-
chastic processes – geometric Brownian motion and the 
jump diffusion model from Merton (1976).  

3 ALGORITHM DESCRIPTION 

MRAS is an adaptive algorithm equipped with a random 
mechanism and a reference model, working with a family 
of parameterized distributions on the solution space. The 
basic idea is to assign more weight to the solutions that 
have better performance at each step. Kullback-Leibler 
(KL) divergence is a natural “distance” measure between 
two probability distributions. At each iteration, samples are 
generated according to the distribution that has the mini-
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mum KL-divergence with respect to the reference model 
from the previous iteration, and the parameters of the next 
distribution are updated based on those samples in a way 
so that the distribution possesses the minimum KL-
divergence with respect to the current reference model.    

The main difference between MRAS and CE is that 
CE method uses a single optimal (importance sampling) 
distribution focused on the set of optimal solutions (i.e., 
zero variance) to guide the updating of parameters, while 
the MRAS uses a sequence of intermediate reference dis-
tributions to direct its parameter updating associated with 
the family of parameterized distributions during the search 
process. We will compare the results from MRAS with 
those from CE method in the following sections.  

The MRAS method also resembles another model-
based method: the estimation of distribution algorithms 
(EDAs). EDAs were introduced in the field of evolutionary 
computation by Mühlenbein and Paaβ (1996). Problem-
specific interactions among the variables of individuals are 
taken into consideration, and the interrelations are ex-
pressed explicitly through the joint probability distribution 
associated with the individuals of variables selected at each 
generation. A new population is generated by sampling the 
probability distribution, which is estimated from a database 
containing selected individuals of the previous generation. 
Larranaga et al. (1999) and Paul and Iba (2002) give re-
views of implementing EDA approaches using various un-
derlying probabilistic models. However, the estimation of 
the joint probability distribution associated with the se-
lected samples is a bottleneck of this method, because it is 
often computationally burdensome to calculate. In contrast, 
MRAS uses the sequence of reference models implicitly to 
guide the parameter updating procedure, and there is no 
need to calculate them explicitly; therefore MRAS over-
comes the most difficult obstacle of EDAs.  

Hu et al. (2006) demonstrate the global convergence 
of MRAS for a class of parameterized probability distribu-
tions called the Natural Exponential Family, which in-
cludes the multivariate normal distribution used in all of 
our numerical experiments, where we assume the estimated 
parameters are multivariate-normally distributed with p.d.f.  
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where μk is the mean vector and ∑k the covariance matrix 
at iteration k, and the parameters are updated as 
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where U(·) is a continuous and strictly positive increasing 
function used to ensure positive values.  

For pricing American-style put options, the critical 
price increases as time approaches maturity, and the criti-
cal price at maturity is the strike price K. We generate the 
critical price increments at the exercise dates from a trun-
cated multivariate normal distribution with given parame-
ters using the acceptance-rejection method. For all incre-
ments except at the first exercisable date, we accept 
positive values and rule out negative ones. In addition, we 
only accept those samples in which the critical price at the 
last exercise date before maturity is less than the strike 
price K, the critical price at maturity. Similarly, for the call 
options, we accept samples that give negative increments 
at the exercisable dates except the first date, and satisfy the 
constraint that the threshold at the last exercise date before 
maturity is larger than the strike price K. 

To avoid the (possible) premature convergence to a 
degenerate distribution and result in a sub-optimal solution, 
we applied a dynamic smoothing scheme as described in 
Kroese et al. (2004) instead of a fixed scheme. Define 
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and the smoothed parameter updating procedure is 
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where k is the iteration number, β is a smoothing constant, 
and q is an integer. The implemented MRAS algorithm is 
as follows: 
 
Algorithm MRAS 

1. Initialize: quantile parameter ρ0, initial sample 
size N0, the multivariate normal distribution pa-
rameters μ0 and Σ0. Specify smoothing parameter 
β and q, sample size control parameter α, thresh-
old increase parameter ε, and a continuous and 
strictly increasing positive function U (·). Set k=0. 

2. Repeat until a specified stopping rule is satisfied: 
(a) Generate Nk i.i.d. samples 

k
N

k
k

SS *)(,...,*)( 1  from 
the )ˆ,ˆ( kkN Σμ distribution. 

(b) Find the sample (1 - ρk)-quantile γk+1(ρk, Nk) 
of the samples {L(Si*)}k, i = 1,…,Nk.  

(c) If k = 0 or εγργ +≥+ kkkk N ),(1 , then 
     Set kkkkkkkk NNN ←←← ++++ 1111 ,),,( ρρργγ . 
    Else, find the largest ),0( kρρ ∈  such that   
      εγργ +≥+ kkk N ),(1 . 
     If such a ρ  exists, then set  
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       kkkkkk NNN ←←← ++++ 1111 ,),,( ρρργγ . 
      Else set kkkkkk NN αρργγ ←←← +++ 111 ,,  

(d) Update the distribution parameters μk+1 and 
∑k+1 according to Equations (4) and (5).  

(e) Smooth the parameters via Equations (6), (7), 
and (8).  

(f) Set k ← k+1. 
 
 

kμ̂ and kΣ̂ are the parameters after smoothing the μk+1 and 
∑k+1 originally computed from the samples. Step (c) calcu-
late the non-decreasing threshold kγ , the sample size Nk, 
and threshold sample selection parameter ρk. If Nk is too 
small, the algorithm may fail to converge and result in poor 
quality solutions. Similarly, too large a value of ρk tends to 
use both the “good” and “bad” samples to update the prob-
abilistic model, which slows down the convergence proc-
ess. Therefore, Nk and ρk are dynamically adjusted, adap-
tively increasing and decreasing, respectively, where α is 
the rate of sample size increase. A small positive number ε 
is selected to ensure that }{ kγ  is non-decreasing in the up-
date procedure. At each iteration k, if the new quantile γk+1 
is large enough ( εγργ +≥+ kkkk N ),(1 ), then we use this 
quantile as the new threshold and use the current sample 
size and ρk in the next iteration. Otherwise, it indicates that 
either ρk is too large or Nk is too small. First we try to find 
a smaller kρρ <  such that the new sample )1( ρ− quantile 

satisfies the above inequality. If such a ρ  exists, then we 
decrease the kρ  value and keep Nk unchanged in the next 

iteration. If no such ρ  exists, then we increase the sample 

size by rate α, while kρ  and kγ  remain unchanged. After 

we find 1+kρ , Nk+1, and 1+kγ , only those candidate solu-
tions that have better performances than the new threshold 
will be used in the next iteration.  

4 NUMERICAL RESULTS 

In this section we present numerical results from the 
MRAS algorithm for both American-style call and put op-
tions, and compare them with the CE method. All the op-
tions in our numerical experiments have a finite number of 
early exercise opportunities, and are sometimes termed 
Bermudan derivatives. The stopping criteria at iteration k 
is 1) cov_max < 1.0, or 2) γk = γk-1 = γk-2, or 3) Nk > Nmax, 
where the cov_max is the maximal element in the covari-
ance matrix of the multivariate normal distribution model 
and measures the convergence quality. For each test case, 
we use the following parameters: ρ0 = 0.5, N0 = 100, α = 2, 
ε = 10-3, Nmax = 1000, U(x) := exp(0.1x), and smoothing 
parameters β = 0.8 and q = 5. The random number genera-
714
tor is taken from L’Ecuyer et al. (2002). The experiments 
were implemented with Matlab on a Pentium 4 1.5GHz 
computer. 

The variables to be optimized are the critical prices 
{Si*}, which we obtain by optimizing over the critical 
price increments {Xi} ~ N(μk, Σk) at each exercise date, 
given a starting point S0*. For an option with n exercise 
dates, we have the following n-1 critical prices (the critical 
price at the last exercise date, the maturity, is known): 

 
S1* = S0* + X1; 
S2* = S1* + X2; 
…. 
Sn-1* = Sn-2* + Xn-1. 

 
Therefore, the initial conditions for simulation include 

the selection of S0*, the initial mean vector μ0, and initial 
variance-covariance matrix ∑0. We set the initial covari-
ance between parameters to be 0, and the initial variance is 
the same for all Xi, i.e., ∑0 is a diagonal matrix. The 
MRAS algorithm is not sensitive to the choice of initial 
mean and covariance matrix, provided that the initial sam-
pling variance is chosen large enough.  

4.1 Geometric Brownian Motion Model  

We first apply MRAS algorithm to price the call option. 
We assume the underlying stock price follows geometric 
Brownian motion:  

 
 dWSdtSrdS ttt σδ +−= )( ,     (9)
  
where Wt is a standard Brownian motion process, δ is the 
dividend yield, and σ is the volatility. This leads to the dis-
crete form used in the simulation:  

 
ZttrSS ttt Δ+Δ−−=Δ+ σσδ )2/exp(( 2 , Z~N(0,1) (10)   

 
Table 1 illustrates the price estimates and their 95% 

confidence intervals based on 1,000,000 replications with 
obtained parameters of early exercise boundary from simu-
lation, for a 3-year (T = 3) Bermudan call option with r = 
0.05, σ = 0.2, δ = 0.04 and K=100, exercisable every 0.5yr 
(n = 6). We study the performance of MRAS for different 
initial condition settings: μ0 = [-5, -5, -5, -5, -5] for S0* = 
130, 140, 150, 160, 170, and 180, μ0 = [-4, -4, -4, -4, -4] 
for S0* = 120, and μ0 = [-2, -2, -2, -2, -2] for S0* = 110, 
that are bounded by the lower limit of the critical price at 
maturity. The diagonal (variance) of ∑0 is 100 for all cases. 
The options considered here include in-the-money (S0 = 
110, 140), at-the-money (S0 = 100), and out-of-the-money 
(S0 = 60, 90). Results from MRAS are compared with  
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Table 1: Bermudan Call Option Prices on Asset under Geometric Brownian Motion 
S0 = 60 S0 = 90 S0 = 100 S0 = 110 S0 = 140 Method S0* Price C.I. Price C.I. Price C.I. Price C.I. Price C.I. 

110 0.87 0.01 8.64 0.03 13.56 0.04 19.52 0.04 42.32 0.06 
120 0.87 0.01 8.64 0.03 13.56 0.04 19.52 0.04 42.32 0.06 
130 0.86 0.01 8.65 0.03 13.57 0.03 19.52 0.04 42.33 0.06 
140 0.87 0.02 8.64 0.03 13.56 0.03 19.52 0.04 42.28 0.09 
150 0.88 0.02 8.64 0.04 13.57 0.04 19.52 0.04 42.33 0.06 
160 0.87 0.01 8.65 0.03 13.56 0.04 19.51 0.04 42.33 0.06 
170 0.87 0.01 8.64 0.03 13.56 0.04 19.52 0.04 42.32 0.06 

MRAS 

180 0.87 0.01 8.65 0.03 13.57 0.04 19.52 0.04 42.32 0.06 
SPSA 13.69 0.04 
PASA 13.65 0.04 

DP 
  

13.33 0.04 
  

Secant 0.88 8.63 13.56 19.53 42.29 
Tangent 0.87 8.63 13.55 19.53 42.29 

Eur 

 

0.87 8.55 13.37 19.18 40.74 

 
those from SPSA, PASA, and sequential dynamic pro-
gramming (DP) algorithms presented in Fu et al. (2001). 
We also compare them with the outcomes from secant 
and tangent methods described in Laprise et al. (2006); 
moreover, the corresponding European call option prices 
are given in the last row of the table.  

Our experiments indicate that MRAS algorithm pro-
vides an accurate and efficient way to price American call 
options. It converges to the optimal value within 10 itera-
tions, and the convergence is independent of the initial 
conditions. We achieve a cov_max less than 10 in all 
cases. The results are consistent with the findings of other 
approaches to similar accuracy, and the 95% confidence 
interval is about 5% of the price. The price for S0 = 60 is 
close to the European call price, because it is deep out-of-
the-money and the possibility of exercise is very small.  

Table 2 displays the thresholds for S0 = K = 100 at t = 
0.5, 1.0, 1.5, 2.0, and 2.5. The deviation between the ob-
tained optimal prices for various initial settings is rela-
tively small. It is important to note that this is an at-the-
money American call option example, where the fluctua-
tion is expected to be large. Results from other scenarios 
suggest an even smaller critical price region dependence 
on S0*.  

 
Table 2 Thresholds of Bermudan Call Option 

Method S0* t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5 
110 155.05 153.74 151.36 148.20 140.69 
120 153.35 151.69 148.50 146.70 133.22 
130 158.55 155.40 150.46 144.04 132.96 
140 157.06 151.27 148.67 143.94 130.80 
150 153.77 152.64 149.59 144.47 126.46 
160 158.04 154.36 147.74 145.58 129.43 
170 162.47 156.70 152.65 148.91 136.35 

MRAS 

180 157.11 150.56 147.60 144.28 132.88 
Secant 158.43 154.06 148.68 141.70  
Tangent 158.42 154.05 148.67 141.70  
715
 
Table 3 shows the price of a 3-year (T = 3) American 

put option with r = 0.05, σ = 0.2, δ = 0, K = 100, and n = 
6. μ0 = [5, 5, 5, 5, 5] for S0* = 30, 40, 50, 60, and 70, μ0 = 
[4, 4, 4, 4, 4] for S0* = 80, and μ0 = [2, 2, 2, 2, 2] for S0* 
=30, according to the upper limit of the critical price at 
maturity. The diagonal (variance) of ∑0 is 100. Like the 
example of American call option, various scenarios of in-
the-money (S0 = 60, 90), at-the-money (S0 = 100), and 
out-of-the-money (S0 = 100, 140) are examined. The re-
sults from secant and tangent methods of Laprise et al. 
(2006) are listed for comparison. Analogous to Table 2, 
Table 4 presents the threshold estimates for at-the-money 
put option for each choice of S0*.  

The MRAS algorithm consistently finds the maxi-
mum values regardless of the initial choices, indicating 
that the true global optimum is reached in each case. The 
algorithm approaches the optimal value within 15 itera-
tions for most cases. We also find the threshold bounds 
for the put options are tighter than for the calls, as shown 
in Table 4.  

4.2 Merton Jump Diffusion Model 

The jump-diffusion process is appealing, because it al-
lows price discontinuities, but the presence of random 
jumps complicates the valuation of the American put op-
tion. The Merton (1976) jump diffusion model is written 
as follows: 

 
))2/()2/exp(( )(

1
2

0
2 ∑ Δ

=Δ+ −+Δ+Δ−−= tN
j jttt ZZttrSS γγσσδ , (11) 

 
where Zj ~ N(0,1) i.i.d., N(Δt) ~ Poisson (λΔt) is the num-
ber of jumps within time Δt , the jump sizes are i.i.d. log-
normally distributed: LN(-γ2/2, γ2), λ is the jump fre-
quency, and γ is the jump volatility.  
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Table 3: Bermudan Put Option Prices on Asset under Geo-
metric Brownian Motion (95% C.I. half-width ≈ 0.01-0.06) 

Method S0* S0=60 S0=90 S0=100 S0=110 S0=140 

30 37.31 12.96 8.39 5.52 1.51 
40 37.48 12.95 8.39 5.52 1.48 
50 37.51 12.91 8.40 5.52 1.52 
60 37.52 12.95 8.39 5.52 1.51 
70 37.52 12.94 8.39 5.50 1.51 
80 37.52 12.95 8.43 5.52 1.51 

MRAS 

90 37.53 12.97 8.45 5.49 1.53 
Secant 37.55 12.91 8.45 5.50 1.50 

Tangent 37.55 12.91 8.45 5.50 1.50 
European 27.97 10.24 7.00 4.71 1.37 

 
Table 4: Thresholds of Bermudan Put Option 

Method S0* t=0.5 t=1.0 t=1.5 t=2.0 t=2.5 
30 81.87 84.29 86.63 88.54 90.64 
40 81.50 84.38 87.62 88.86 90.22 
50 83.63 85.27 85.87 86.89 89.02 
60 80.30 83.38 84.78 86.07 89.61 
70 83.86 85.31 87.83 88.37 90.33 
80 80.57 81.99 84.49 88.07 89.19 

MRAS 

90 81.60 82.29 85.06 86.65 89.00 
Secant  83.06 84.02 85.32 87.20  

Tangent  83.06 84.3 85.32 87.20  
 

Table 5: Bermudan Put Option Prices on Asset under Mer-
ton Jump-Diffusion (95% C.I. half-width ≈ 0.02-0.04) 

Method S0* n = 2 n = 3 n = 4 n = 6 

30 8.56 8.65 8.62 8.73 
40 8.56 8.65 8.63 8.72 
50 8.57 8.64 8.63 8.73 
60 8.57 8.66 8.63 8.71 
70 8.57 8.63 8.63 8.73 
80 8.58 8.65 8.62 8.71 

MRAS 

90 8.58 8.65 8.63 8.73 
SPSA 8.49 8.62 8.70 

DP 8.57 8.88 8.73  

Secant 8.61 8.69 8.73 8.77 
Tagent 

 

8.61 8.68 8.72 8.76 
 

Table 5 shows the results of applying the MRAS algorithm 
to a six-month (T = 0.5yr) put option written on a single 
stock modeled by the jump-diffusion model without divi-
dend (δ = 0), and r = 0.1, σ = 0.2828, λ = 2, γ = 0.2, S0 = K 
= 100. The European price (n = 1) for this example is 
8.393. After obtaining the early exercise thresholds, we es-
timate the option price using 50,000 simulation replica-
tions. The MRAS algorithm is run for 20 different seeds, 
giving a 95% confidence half width within 0.02 - 0.04. The 
table also includes prices obtained using other algorithms, 
including SPSA, DP, and Secant/Tangent interpolation 
methods. The MRAS prices results are closest to the se-
cant/tangent algorithm prices, and the values are between 
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those from SPSA and DP when n is small (n = 2, 3) and 
they are more consistent as n increases. Moreover, the Se-
cant method provides the upper bound for the results. The 
MRAS algorithm converges to the optimal value within 20 
iterations regardless of the initial choice of S0*. 

4.3 Comparison between MRAS and CE Methods 

Both MRAS and CE are model-based methods, which start 
with a parameterized probability distribution on the solu-
tion space and update the parameters at each iteration to-
wards a ‘better’ solution. In MRAS, a sequence of refer-
ence distributions is adopted, and the minimum KL-
divergence is achieved between the next step distribution 
and the current reference model, whereas in CE a single 
optimal importance sampling distribution is used, and the 
KL-divergence measures the distance between the optimal 
distribution and the family of parameterized distributions. 
The CE algorithm works as follows: 

 
------------------------------------------------------------------ 
Algorithm CE 
1. Initialize: Specify quantile parameter ρ and sam-

ple size N. Initialize parameters of the probabilis-
tic model (multivariate normal distribution) μ0 and 
Σ0. Set k=0. 

2. Repeat until a specified stopping rule is satisfied: 
(a) Generate N i.i.d. samples X 1, …, XN from the 

)ˆ,ˆ( kkN Σμ distribution. 
(b) Select the ρN best performing (elite) samples, 

and let I be the indices of the ρN best per-
forming samples.  

(c) Update the parameters as: 
∑
∈

+ =
Ii

ik X
Nρ

μ 1
1

, and 

T
ki

Ii
kik XX

N
)()(1

111 +
∈

++ −−=Σ ∑ μμ
ρ

 

(d) Smooth by using Equation (6), (7) and (8).  
(e) Set k ← k+1. 

------------------------------------------------------------------ 
 
In the CE method, a fixed number (ρN) of best per-

forming samples is selected at each iteration, where ρ and 
N remain constant. For MRAS, we study the sensitivity on 
the choice of initial ρ using a Bermudan put option written 
on a single asset following geometric Brownian motion, 
and model parameters K = 100, T = 3.0, N = 6, r = 0.05, δ 
= 0, σ = 0.2, S0* = [35, 40, 45, 50, 55], and initial covari-
ance matrix with 100 on the diagonal, 0 otherwise.  

Figure 1 displays the evolution of the early exercise 
thresholds for CE and MRAS as a function of the selection 
parameter ρ, where the value indicated is the initial value 
for a decreasing sequence in MRAS, e.g., for ρ = 0.8, ρk 
decreases from 0.8 down to 0.11 at the terminating point. 
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Amercan Put Option Pricing by CE (ρ=0.2)
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Amercan Put Option Pricing by CE (ρ=0.5)
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Amercan Put Option Pricing by CE (ρ=0.8) 
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Amercan Put Option Pricing by MRAS (ρ0=0.2)
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Amercan Put Option Pricing by MRAS (ρ0=0.5) 
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Amercan Put Option Pricing by MRAS (ρ0=0.8)
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Figure 1: Evolution of Optimized Early Exercise Thresholds (Critical Prices) and MRAS Estimated Quantiles. 
 

For MRAS, the sequence of (1- ρk) quantiles is also 

plotted (scale shown on the right side). For ρ = 0.2, we 
found CE converges more smoothly, whereas MRAS con-
verges slightly faster. For ρ = 0.5, MRAS approaches the 
optimal value much quicker than CE, reaching near opti-
mality by iteration 5, whereas it takes about 20 iterations 
for CE. For ρ = 0.8, CE hasn’t converged even after 200 
iterations, whereas MRAS reaches the optimum within 20 
iterations, despite the large initial value of ρ. These results 
indicate that ρ assumes a critical role in the optimization 
process of the CE method. Unlike MRAS, where the con-
vergence of the sequence of reference models to an optimal 
distribution model is guaranteed, the convergence of the 
sequence in CE relies on the quantile parameter ρ, which 
must be chosen sufficiently small. In contrast, the MRAS 
algorithm is relatively insensitive to the choice of initial 
quantile parameter and sample size.  

5 CONCLUSIONS 

We applied the MRAS algorithm to price American-style 
options written on underlying assets following geometric 
Brownian motion and jump-diffusion processes. MRAS 
optimizes the early exercise thresholds simultaneously by 
iterative updates via a reference model. In our simulation 
experiments, the global maximum is consistently found for 
varying initial condition settings. We demonstrate its accu-
racy and efficiency and also compare its performance with 
the CE method. We conclude that MRAS is a flexible and 
useful randomized optimization algorithm.  
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Future work includes an extensive numerical study on 
the choice of parameters and extending the application of 
MRAS to a wider range of test problems.  
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