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ABSTRACT 

We present a hyper-interaction platform which integrates 
several newly developed techniques, including motion 
classification, a motion reaction control mechanism and a 
high precision 3-D model of the International Space Sta-
tion. The goal is to build an interaction platform for train-
ers to navigate in a virtual reality. The platform can be ap-
plied to customized mission training. The system 
integrated visualization environment, underlying 3-D 
model, and a human body tracking mechanism. The track-
ing system will be extended to 3-D coordination recon-
struction and thus behaviors of users can be precisely iden-
tified. These navigation parameters are used in controlling 
navigation in the 3-D virtual environment. Another impor-
tant issue of this system is to define a model for motion re-
action. The definition of reaction can be applied to avatars 
or to the virtual environment. These integrated technolo-
gies can also be used in other virtual reality environments. 

1 INTRODUCTION 

Human motion tracking was developed in the past few 
years. The MARG sensors were used to develop a system 
which can embed skeleton into a virtual environment 
(Barchmann et al. 2001). Instead of using sensors, video-
based tracking strategy was proposed (Luo et al. 2002, Si-
gal et al., 2004). Typically, the tracking involves matching 
objects in consecutive frames using pixels, points, lines, 
and blobs, based on their motion, shape, and other visual 
information (Leung et al. 1995, Shio et al. 1991, Polana et 
al. 1994). The difficulty of video-based approach is on how 
to deal with incomplete motion such as occlusion or bad 
viewing angle. Another difficulty is due to variations of 
light sources. Since sensors are expensive in general, 
video-based approach is usually used in commercial appli-
cations. We have developed a tracking system that can re-
construct 3-D coordinates of markers on a human skeleton. 
Since we got the serial 3-D coordinates, the motion types 
can be classified. We propose an approach for unit motion 
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classification which is based on Neural Networks. As long 
as the type of unit motion is identified, these types would 
be the training parameters of Back-propagation Neural 
Networks. The Back-propagation Neural Networks should 
understand human motion pattern according to the combi-
nation of the unit motions.  As long as the human motion is 
identified, a set of pre-defined reactions is applied to the 
motion on a 3-D environment, and they are used as the in-
put parameter of a simulated model. The simulative speci-
fication can be developed based on particular missions, 
such as moving objects or performing tasks in the 3-D 
space. The particular platform that we use is a high preci-
sion model of Russia Space Station. We hope that, from 
motion detection, tracking to understanding, motion reac-
tion can be considered as an interesting research topic. 

We built a studio that has a surrounding background 
(270 degrees) with black color. Light sources are placed on 
the floor and on the ceiling to stabilize lighting parameters 
for video tracking. Two cameras are used for calibration of 
tracking points on a special designed suit. A back-
projected screen and a projector are equipped such that the 
3-D model can be rendered on the screen without interfer-
ing (i.e., shadowing) by the actors in the studio. 

2 MOTION TRACKING  

A tracking system that can reconstruct 3-D coordinates of 
markers on a human skeleton. The tracking process in-
volves four steps of computation, which are discussed in 
turn in the remainder of the paper: 

 
1. Initialization and video camera synchronization. 
2. Background and track points separation. 
3. Track points identification. 
4. Skeleton reconstruction on background video. 

2.1 Initialization and video camera synchronization 

The background need to be separated from track points in 
order to identify track points. An initial video background 
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can be obtained from a video segment of 30 to 60 frames, 
where moving objects are removed and holes are inpainted. 
We use a fast image inpainting algorithm which relies on a 
diffusion kernel. In addition, since we use two video cam-
eras for 3D coordinate reconstruction, the two cameras 
needs to be synchronized. Our strategy requires the player 
to stand steady for at least 2 seconds. A variation threshold 
for video changes is set to tell the steady situation. Thus, in 
the first step, the player need to move around for a few sec-
onds, stand steady for 2 seconds, then our system start to 
update background variation for tracking the skeleton. 

2.2 Background and track points separation 

Since light sources to track points are quite difficult to stay 
stable, it is necessary to update  the background dynami-
cally in order to obtain a better separation between back-
ground and track points. Assuming that Bk(x, y) and Bk+1(x, 
y) are values of point (x, y) on the kth and the k+1th frames, 
respectively. and that, Ik(x, y) is the value of point (x, y) on 
the coming kth frame, we use:  

 
[ ]

[ ]
⎪
⎪
⎩

⎪
⎪
⎨

⎧

∉
=−+

∈
=−+

=+

pointobject   ),( if      
01.0  ,  ),(),(),(

pointobject   ),( if      
1  ,  ),(),(),(

),(1

yxI
yxIyxByxB

yxI
yxIyxByxB

yxB

k

kkk

k

kkk

k ββ

αα

 

This strategy works if small variation of light source 
occurs on background. However, if the variation is too 
large, the background should be reconstructed. After that, 
we use median filter to exclude isolated points. Also, we 
use two morphology operators (erosion and dilation) to 
perform the close operation. The close operation is able to 
eliminate small blocks.  

2.3 The identification of track points 

The most challenging issue of multiple object tracking is to 
identify each and all objects. We maintain a track point ar-
ray to store properties (location and color information) of 
all track points. To get TP property, we use seed filling al-
gorithm on the original video for basic color segmentation. 
Boundaries of track points are roughly computed, to obtain 
the center of each track point. Each record in the track 
point array contains a location of the center and the HSI 
color information. To precisely track each point, two issues 
need to be solved. Track points moves in a direction which 
is hard to predict; and, track points can be cloaked (occlu-
sion). To solve the first problem, prediction and searching 
mechanisms are used. The second problem can be partially 
solved with multiple cameras. However, it is possible to 
solve the second problem using a unique color for each 
track point and searching in a range of movement. A sam-
ple predication mechanism which computes the average 
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movement vector of each track point in the latest 30 frames 
is used. If the prediction of track point matches (within a 
small threshold of center location), the corresponding track 
point is updated in the array. Otherwise, the system 
searches the track points in a small boundary (eight direc-
tions to speed up computation). Track point properties are 
updated if there is a match. Otherwise, we count the track 
point as miss detection. When a miss detection occurs, we 
keep the miss detected track point in a track point queue. In 
the next iteration, track points are searched against the 
queue with a higher priority. The search focuses on the 
color of track points. Our preliminary experience shows 
that, with the setup of our environment, the miss detection 
rate is tolerable.  

2.4 Skeleton reconstruction on background video 

After the track points are identified, we need to map them 
to a skeleton which represents a human body. The seg-
ments of skeleton includes torso, upper arms and legs, and 
lower arms and legs. The mapping process is performed as 
soon as all TPs are identified in the first run. Since TPs are 
tracked with unique IDs, remapping to skeleton is thus not 
necessary. The mapping strategy takes a simple heuristic 
rule assuming that the player is not upside down or doing a 
handspring (i.e., flip):  

 
1. Compute the fulcrum of 12 track points based on 

the initial posture, set fulcrum to be the pelvis.   
2. Follow the vertical line up to find spine, neck, and 

head. A horizontal threshold of a few pixels is 
used in case that the 4 track points of human body 
are not aligned vertically. 

3. Split the rest 8 TPs in the skeleton to left and 
right, according to the 4 track points mapped in 
the above step. Following the pelvis to find lower 
arms and legs, and following the neck to find up-
per arms and legs. Spatial relations of TPs are 
used as the heuristic.  

4. Do the same for the right hand side track points. 
 
 

 
Only the track points that be captured by the front 

camera are used to identify the track points. However, to 
reconstruct 3D coordinates for all track points, it is neces-
sary to use the side camera (along the x-axis to the left of 

Figure 1: Coordinates and Front and Side Cameras
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the box in figure 1). To restore 3D coordinates, we use the 
following strategy: 

 
1. For each of the track points on both cameras, find 

the differences of coordinates on y-axis. 
2. Minimizing the differences to align TPs on y-axis 

using dynamic programming. 
3. Take the x-coordinates from the front camera and 

the z-coordinates from the side camera. 
 
After the 3D coordinates are computed, it is necessary 

to perform a projection of the coordinates to 2D space. One 
may argue that it is not necessary for 3D coordinate recon-
struction and projection, and using 2D coordinates is 
enough. However, to make the interaction realistic, 3D in-
formation is necessary. For instance, the player must fell 
that a punch is indeed located on an object in the video by 
moving forward his arm. In addition, if virtual reality ava-
tar is used, 3D coordinate is required. After the projected 
2D coordinates are obtained, we map the skeleton onto a 
scenario video. The scenario video follows MPEG-2, with 
an important extension allows a hyper jump among video 
segments. Hyper jump tags are embedded in the user de-
fined data section of standard MPEG-2 video clips. The 
scenario video can be a pre-recorded video game or a train-
ing video for customers. For performance consideration, 
only a small section of video is stored in memory to speed 
up accessing time.  

3 MOTION CLASSIFICATION  

Next work is motion analysis, since we got 3-D coordi-
nates of tracking points that were obtained from 2 or more 
cameras. In order to identify what motion the actor(s) per-
form, we use approximation strategy based on Dynamic 
Programming.  A human motion specification can be rep-
resented as 9 motion vectors with regards to the 9 tracking 
points on a skeleton. For each tracking point, multiple vec-
tors are used. We segment the motion of the human body 
into unit motions, and each unit motion has 200 frames. 
For example, if a human motion has 820 frames, then it 
would be divided into 5 unit motions. Suppose that each 
human unit motion data is a time successive data S consist-
ing n elements, the serial data can be presented as follows: 

 
S = S1, S2, S3,…,Si…. Sn 

Here, S expresses a motion data of a certain segment of a 
human  body. The difference between Si and Si+1 is consid-
ered as the value of vector v’i. Since human motion data is 
3D time serial data, each element Si can be express as 
space coordinates Si=(xi, yi, zi). Then the vector v’i is given 
as follows: 

1111 ))(),(),(( ++++ −=−−−= iiiiiiiii SSzzyyxxv  
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The vectors of S can be expressed as follows: 

 
 ),....,,....,( )1()1(21 −+= nSiSSiSSS vvvvvV  

 
where 

SV  is the set of vectors, all the feature trajectories 
with each segment of human body can be represented. 
Each motion vector is represented by a pair of angles as 
shown as Figure 2. Angle α is in between the projection of 
motion vector 

1Sv  on the XZ-plane and the X-axis. Angle β 
is between the motion vector and its projection. An angle 
has a value between 0° and 360° (inclusive).  

 

 
Figure 2: Definition of Motion Vectors 

 
Instead of using precise coordinates in the motion 

identification computation, we use an approximation ap-
proach which only computes the rough location of each 
motion vector. For each angle (α or β), we define an Angle 
Code (AC)  as: 

  
AC = floor(Angle / n) 

 

where Angle can be α or β and floor is the floor function. 
The parameter n can be set to 45. As such, Angle Codes 
are between 0 and 7. It is possible to set n = 22.5. Thus, 
Angle Codes are values between 0 and 15. In our tracking 
procedure, since the length of a motion vector is short in 
general, coordinates of tracking points may not reflect the 
actions precisely. Using an approximation approach, on the 
other hand, can reduce the computational cost in our work. 
For the ith motion vector, α and β are represented by a pair 
of Angle Codes Ci = (ACαj, ACβj). We can classify the mo-
tion types according the serial Angle Codes. We should re-
construct the feature space which stores the serial data of 
Angle Codes be parsed and translated from the different 
kinds of standard motions. Assume that each unit motion 
has its own serial Angle Codes Cj = (ACαj, ACβj), which 
stores in the feature space, thus we can compare the serial 
Angle Codes Csj of the new unit motion with the Csi via 
the first level classifier of neural network. After the first 
level classifier, we can find the similar Unit Motion 
Types(UMT) for each unit motion as in the following 
equation: 
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β 
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UMTi=f1(Angle Codes Cs) , (1 ≤ i ≤ m) 
 

Since the similar types of each unit motions can be 
recognized via f1, a motion representation can be Motion = 
{ (UMT1), (UMT2), …, (UMTm) }. m is the amount of unit 
motions. The representation of motions can be used in the 
second level of the neural network model.  A trained neural 
network can be used as the mapping function from a mo-
tion representation to a motion classification code (MCC) 

MCCj = f2 (Motionx) 

where j is between 1 and the maximum number of motion 
code to be classified, and x is assumed to be the maximum 
number of possible motions. The mapping, f2, decides the 
MCC via the second level classifier. We propose a three-
level classification mechanism using a neural network.  
As soon as a motion classification code, MCCj, is classi-
fied by the second level classification mechanism, a series 
of MCCs may represent a continuous motion. However, 
similar continuous motions may have different durations. 
Therefore, a motion window is defined as an ordered list of 
motion control codes, with a variable number of MCCs. 
Figure 3 illustrates the two-level architecture.  Each motion 
window starts at a motion control code. Thus, the number 
of motions windows (i.e., n) is equal to the number of mo-
tions in an action. A third level classifier, f3, takes as input 
a motion window, and returns a motion signature (i.e., 
MSk) as in the following equation: 

MSk = f3 (MWk), where 1 ≦ k ≦ n 

 Motion signatures are be used to trigger reactions, 
which we discuss in the next section. 

4 MOTION REACTION AND CONTROL 

Motion reaction can be defined in two types. The first is 
changing the camera view of a virtual reality browser, by 
rendering the 3-D model (represented in VRML or the 
like) from different viewing angles. This type of reaction 
depends on the movement of a trainer. Thus, the definition 
 

 

579
of motions should deal with the movement of a trainer in 
the studio. Yet, the movement specification should con-
sider the limited space in the studio. Special posture of the 
trainer is recognized as a particular movement. The second 
type of reaction includes changing objects in the 3-D 
model, such as moving an object or assembling an object 
in the space station. In addition, the second type of reaction 
may include the reaction of other avatars in the 3-D scene, 
if the system is implemented on a shared Web-based VR 
environment. From motion detection, motion tracking, mo-
tion understanding, to motion reaction, the pioneer per-
spective of this research project is to investigate how a vir-
tual environment (including its avatars) should react with 
respect to a particular motion identified by the system. 

 For the two types of reactions controls (i.e., changing 
camera view and changing avatars), we implement them in 
the Virtools environment as the following: 

Control Camera View (MRACamera) 
1. Create a target camera 
2. Set camera position and viewing angle 
3. Attach camera position to an avatar 

Control Avatars (MRA Avatar) 

1. Create a database record by importing the avatar and 
3-D model resources. 

2. Load the avatar and 3-D model into the Virtools 
environment. 

3. Add animations to the avatar. 
4. Initiate keyboard controller (using motion control) 

and connect character control to animations 
After motion signatures are identified by the back-

propagation neural network, each motion signature is asso-
ciated with a list of motion reaction animations (i.e., 
MRACamera and MRAAvatar). The animations rely on the 
above two types of controls in the Virtools. In addition, it 
may be necessary to have additional object transformations 
(or to add additional objects) in the 3-D scene, if the mis-
sion specifications have such a requirement. 
  
Figure 3: Motion Windows of Variable Time Slots 
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4.1  Reaction Resolution 

To identify what reactions should be applied to each mo-
tion signature, a resolution mechanism is used. Since each 
motion signature contains a variable number of motion 
control codes, it is possible to have two or more signatures 
that share a list of same control codes. In addition, since 
each motion signature is associated with a list of motion 
reaction animations, different signatures should share reac-
tion animations in overlapped time slots. Thus, a mecha-
nism to resolve the difference of reaction animations with 
respect to different motion signatures is necessary. Figure 
4 illustrates a list of motion reaction animations for each 
motion signature. Each MSx at time slot x has a list of mo-
tion reaction animations MRAT x, t. Assuming that a motion 
reaction animation, MRAT x, t , has a control type T, where 
T represents Avatar or Camera. The two subscripts, x and t, 
represents the indices of motion signatures and the index of 
time slots. For the two types of controls, different strate-
gies are used to deduce the reactions.  

The first equation in Figure 4 indicates that for the 
MRA with type Camera, the deduced motion reaction an-
imations (DMRA) takes the average camera movements. 
That is, a DMRA refers to all camera motions up to a cur-
rent time slot t (i.e., x’≦x≦t), by taking the average camera 
coordinates in a 3D space. This strategy allows a continu-
ous motion to consider snapshots taken in current time slot, 
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as well as a few slots before. The deduced motion reaction 
animations results in a smooth camera movement. The 
second equation is for the Avatar type of animations. It is 
necessary to consider multiple avatars which response to a 
motion signature. For new avatar, a new animation associ-
ated with the avatar is started. However, the animation of 
avatars started in previous time slots continues. The com-
putation of DMRA is dynamic. That is, at each time slot t, 
due to each motion signature, a list of reaction behavior is 
sent to the reaction controller (to be discussed). Thus, the 
dynamic reaction results in a smooth motion.  

4.2  Rendezvous Communication Control 

A rendezvous control is a mechanism which allows two 
processors to meet at a certain time point, where the two 
processors complete certain tasks by their own before the 
rendezvous happen. We use two servers. The tracking 
server and the VR rendering server are synchronized in 
real-time. Figure 5 illustrates different entities of the ren-
dezvous communication control. 

As soon as a motion signature (MS) is identified, the 
MS is kept in a motion signature queue, which is con-
trolled by the tracking server. An action controller in the 
tracking server synchronizes with a reaction controller in 
the VR rendering server, by the rendezvous communica-
tion control mechanism. The mechanism decides where the 
two controllers will meet. 
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Figure 4: Resolution of Motion Reaction Animations 
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Figure 5: Rendezvous Communication Control 

 
As soon as the controllers meet, the action controller 

sends a motion message to the reaction controller, which 
interacts with a motion reaction classifier to identify how 
to trigger avatars in the 3D VR environment via control 
messages (CMs). The activation of avatars and rendering 
of 3D scenes consume heavy computation. Thus, the reac-
tion controller needs to wait till the computation is com-
plete in order to move to the next step. Similarly, the action 
controller needs to wait till the next motion signature is 
identified. The two controllers rendezvous. Thus, reactions 
in the 3D environment are synchronized with the motions 
by the actor. 

5 MISSION SPECIFICATION AND CONTROL 

A mission specification is defined as a series of actions that 
a trainer needs to accomplish by using the system. The 
specification may include some check points, which is 
used as the base of an assessment model. Mission assess-
ment can be maintained in a database for the analysis of 
individual training performance. The specification and 
simulation model are designed by domain experts. A mis-
sion specification can be defined as a list of events. Each 
event is associated with a location in the 3D space and a set 
of actions: 

Motion Signature Queue 

MS1 MS2 

Rendezvous 

CM

Control Message Queue 

Motion Reac-
tion Classifier 

Reaction 
Controller 

Action 
Controller 
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Missionm = (Event1, Event2, Event3, …, Eventx) 
= ((Location1, {A11, A12, …, A1i}), 

 (Location2, {A21, A22, …, A2j}),…, 
(Locationx, {Ax1, Ax2, …, Axk}) 

 
The order of actions within a mission can be defined in 

any topology. Thus, each action is associated with a prede-
cessor and a successor, except the last and the first action. 
Actions can be performed in sequential or parallel, as sug-
gested by the topology, which is designed by using a 
graphical user interface. The assessment of a mission in-
cludes an evaluation function which takes two parameters 
as input: an event in the mission and an event performed 
by the trainer. Comparison of coordinates can be asserted 
into the evaluation function as a check point (critical mis-
sion-based) or quantitative outcome (overall performance). 
Comparison of actions in each location can be accom-
plished by two factors: a detailed movement of the trainer, 
and the reaction from the avatar. Mission specifications as 
well as the assessments for each trainer are maintained in a 
mission database. An analytical model based on the out-
come of assessment can be used by a high ranking officer 
to evaluate individual trainers.  

We implement a video studio and its software systems. 
The software systems run on two computers respectively in 
a LAN. Figure 6 shows the studio, the interactive module, 
and example of the 3D model of Russia/International 
Space Station. 

6 CONCLUSION 

This paper investigates the fundamental techniques 
and application of building a 3-D virtual environment, as 
an interaction platform. It proposes the platform and its 
underlying technology for cosmonaut mission training in 
the Virtual International Space Station. The system shows 
research collaboration results that we have accomplished in 
the past few years. 

 

 

   
(a) The Video Studio with an Actor (b) Interaction with a 3D Stick Figure (c) Snapshot of Space Station 

 
Figure 6: Implementation of the System and Studio 
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The system use existing tracking techniques, with a new 
interesting issue in motion reaction control. The software 
is implemented on two computers with a rendezvous con-
trol mechanism to adjust speed of reactions. Our experi-
ence encourages us to further enhance the collaboration to 
include the interior model of the space station. We hope 
that, motion reaction will be an important issue in addi-
tion to detection, tracking, and understanding in video 
technology. 
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