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ABSTRACT

This paper considers the problem that arises when a vehicle

carrying nuclear material is detected approaching a border

crossing. As quickly as possible, and with automation

we wish to identify which vehicle among all those in the

area is likely to be carrying the source. We show that if

the border crossing area has technology for tracking the

position of vehicles, we can correlate observed movements

with observed changes in levels of detected radiation—

for as the vehicle carrying the material gets closer to the

detector, the stronger will be the detected radiation. We use

a simulation model that captures the stop-and-go dynamics

of a border crossing area to evaluate our ideas, and find a

highly successful technique that tracks which vehicles move

just when detected radiation changes, coupled with fitting

radiation intensity/distance observations to an inverse-square

law. This method almost always isolates the sought vehicle

just as soon as the minimum number of data observations

is obtained.

1 INTRODUCTION

The Department of Homeland Security has a heightened

awareness of the threat that nuclear material might be ille-

gally brought into this country. An industry has grown up

around the problem of detecting radiation that is consistent

with material that might be used by terrorists (Labov 2004).

We focus on the problem of detecting such material at

border crossings. The state of the practice now is to employ

a high quality detector, configured to raise an alarm when

a threshold becomes high enough. Human responders are

sent out with lower-grade hand-held detectors to isolate the

vehicle carrying the material. Effective response then de-

pends on the presence and timely reaction by border patrol

officers on site. We seek to better automate the isolation

procedure, and quickly identify which vehicle is carrying

radioactive material. Our key insight is that by correlating

observed changes in detection levels with observed changes
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in vehicle position, we can identify vehicles whose move-

ments are consistent with changes in radiation detection. We

say that approaches based on this observation use motion

correlation.

In our approach we take advantage of the structure of

large border crossings, where vehicles queue up in lanes that

are more or less straight. As the occupants of each vehicle

at the head of the lane are always stopped and questioned,

a vehicle in queue engages in a number of start and stop

maneuvers before reaching the head. We assume the use

of technology capable of tracking vehicles as they move

through the lanes. It is well within the capability of video

surveillance systems today to track a vehicle under these

circumstances and to detect and report times at which it

moves (Jiao, Wu, Wu, Chang, and Wang 2006, Gardner and

Lawton 1996). RFID is another technology that could do

this. At the entrance to the crossing area, drivers would be

given customs forms embedded with very cheap RFID tags;

and detectors could be deployed along the lanes to detect

the passing of vehicles. By correlating measured position

data with measured radiation data, we can identity those

vehicles that have almost always moved when the detection

levels changed, and those that have almost always been

stationary when the levels did not change.

Physics dictates that the detected intensity of a radioac-

tive source decrease in inverse proportion to the square of

the distance between source and detector. Even though

we don’t know what the source radiation level is, we can

measure the distance a vehicle moves, correlate that with

changes in detected radiation, and fit an inverse-squared

model to the observed data. Intuition suggests that the

model fitting error will distinguish the vehicle carrying the

source from others; we use model-fit error to differentiate

between vehicles whose movement are largely temporally

correlated with changes in detection level.

We consider three ways of determining the source-

carrying vehicle, and compare these on the basis of their

ability to identify that vehicle, and the speed at which it is

identified. We find that use of model fitting error is partic-
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ularly effective. We use a movement monitoring system to

correlate observed vehicle motion with observed changes in

radiation level, filtering vehicles based on highly correlated

changes in position and detected radiation. Among filtered

vehicles we use model fitting to identity the one that best

describes the inverse-squared law. In all the experiments

we conducted, this technique almost immediately identifies

the source-carrying vehicle.

2 MODEL

We model the border crossing approach area as a set of

straight, parallel lanes. Entering the area a vehicle joins a

queue in one of the lanes. The vehicle at the head of the

queue experiences a service time, to account for the delay

due to a border crossing official interviewing its occupants.

Our model accounts for the fact that vehicles in real queues

do not move forward simultaneously when the head vehicle

leaves. The queue is modeled as a sequence of cells;

vehicles move from cell to cell in a time-stepped fashion.

Each time-step, for each lane, if a vehicle is at the head of

the lane, we cause it to vacate its cell with probability ph.

Visiting each cell once per time-step, moving from front to

back, if the cell in front of a vehicle is empty, the vehicle

moves forward into the empty cell with probability pf . If

the very last cell is found to be empty, a new vehicle is

introduced there with probability pa. In this model it is

possible for a number of queued vehicles to move forward

“simultaneously” as if in lock-step, but also possible that

some may not. In our experiments we run traffic through

the border area for many time-steps, and then introduce a

source-bearing vehicle (SV ) into the entry cell of one of

the lanes. As SV moves forward we consider how quickly

each detection mechanism studied identifies SV ’s location.

In this model lanes act independently of each other,

although all share the same parameters ph, pf , and pa. We

assume that at each time-step we can observe the positions

of all vehicles, sample the detected radiation at all the

detectors we employ, and time-stamp all these measures

from a common clock or synchronized clocks.

We suppose there is a detector at the side of the line

of front cells; one of our techniques assumes that there is a

second detector at the far side of the line of front cells. We

suppose that radiation detection readings are taken periodi-

cally, and are time-stamped. We suppose that a surveillance

or tracking system can trace a vehicle’s movement through

a lane, providing a series of positions, each time-stamped

with a clock that is synchronized with that of the detectors.

We model radiation detection in accordance with an

inverse law, plus Poisson noise (Knoll 2000). If the radioac-

tive source has intensity S, we suppose that the detected
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level at detector D1 is

s1 = c
S

dα
1

+ N (1)

where c is a constant of proportionality, d1 is the Euclidean

distance between source and detector D1, α describes the rate

of detection degradation (normally α = 2), and N is random

noise, positive, drawn from a Poisson distribution. The

noise term is included to account for detected background

radiation that is not due to the source of interest.

In this paper we assume that the noise component is

small enough compared to detected signal strength so that if

the source moves one or more cells between detector obser-

vations, the change will be detected with high probability.

Specifically, suppose that

• we must detect sources of intensity S0 or larger in

the border crossing area;

• with high probability we must detect movement of

a source of at least distance ∆y within a lane.

In the absence of background noise, the smallest change

in detected radiation occurs when the weakest source to be

detected enters the border crossing area at a point furthest

from the detector, then moves ∆y in that lane. Choosing

coordinates so that the detector is at location (0, 0) and

the furthest entry point is at (xL, yL), then we require

the detector to be sensitive enough to distinguish between

cS0/(x2

L + y2

L) + N1 and cS0/(x2

L + (yL − ∆y)2) + N2,

with high probability. This implies that the detector is close

enough to the source so that “signal” is large enough relative

to “noise” (e.g. the border crossing area is small enough)

so that the probability of observing a change (assuming

α = 2),

Pr

{

cS0

x2

L + (yL − ∆y)2
+ N2 >

cS0

x2

L + y2

L

+ N1

}

= Pr

{

N1 − N2 <
cS0

x2

L + (yL − ∆y)2
−

cS0

x2

L + y2

L

}

,

is as high as one needs. Assuming that N1 and N2 are i.i.d.

Poisson random variables, one can compute their common

parameter λ to provide the desired bound. A back-of-

the-envelope technique is to use the Chebyshev Inequality

(Larson and Shubert 1979). Applied here, it states that

Pr{N1 − N2 > kσ} ≤
1

k2
,

where σ =
√

2/λ is the standard deviation of N1 − N2.

Setting k = 10, and kσ equal to the minimal difference

in detected signal strength after a move, we can solve for

1/λ—the mean background noise—for that ensures that
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the probability of noise factors confusing detection of real

movement is less than 1%. Using this method we computed

a mean noise value that is approximately 250 times smaller

than the detected radiation of a source with strength S0 at

the furthest entry point from the detector. Future work will

consider how to deal with environments with comparatively

more significant background noise.

We also explicitly incorporate error in movement mea-

surement in our simulations. When a vehicle moves, on the

next snapshot of the movement sensors that movement will

not be detected, with probability pme.

One of the questions we consider is the degree to which

our detection mechanisms are sensitive to background noise,

and to movement measurement error.

3 SOURCE DETECTION

We now outline the three key ideas used to determine

the source location. One of these correlates movement with

changes in detected intensity, another is to use dual detectors

to constrain where the source might lie, and the third is to

use model-fitting information. We describe each in turn.

3.1 Correlating Movement and Source Changes

Recall our assumption that each time-step the positions of

all vehicles may be observed, and the detected radiation is

also observed. We detect a change in detection value with

high confidence, and so each time-step can note for each

vehicle whether it behaved as did the (unknown) source—if

the source changed position (as evidenced by a change in

detection value) did the vehicle also move? If the source

did not change, did the vehicle remain stationary?

Thus we can associate with each observed vehicle a

motion correlation counter that records the number of time-

steps in which the vehicle’s movement agreed with changes

in the source. The counter is initialized to zero when the

vehicle enters the border crossing area, and is updated during

each time-step in which the vehicle remains in the area.

Unlike the source detection mechanisms we previously

studied (Nicol, Tsang, Ammerlahn, and Johnson 2006), this

one makes no assumptions about the form or parameters of

how detected radiation declines as a function of distance.

It does however assume that the background noise is small

enough relative to signal strength that movement by the

source is with high probability detected as changes occur

in the detected radiation.

3.2 Using Dual Detectors

Reconsider Equation (1). If we have two detectors and N
is small relative to cS/dα

1
, without knowledge of c, S, or

d1 it is possible to determine a curve through the border

crossing area on which the source must lie. Ignoring N
538
we write s1d
α
1

= cS; and note that also s2d
α
2

= cS if s2

is the detected radiation level at detector D2, and d2 is the

distance between the source and D2. From the equation

s1d
α
1

= s2d
α
2

we determine (s1/s2)
1/α = (d2/d1). The

left-hand-side we can compute. As the positions of D1 and

D2 are known, the set of points (x, y) whose distances from

D1 and D2 satisfy d2/d1 = (s1/s2)
1/α form a source curve

through the border crossing area, on which the source must

lie. Figure 1 illustrates the concept. In fact, in our previous

work we showed that with three detectors we can construct

three such curves (there being three distinct pairings of

three detectors) and precisely identify the source location

as the unique intersection of those three curves. We now

are interested in isolating the source using fewer detectors,

and to determine how quickly a source can be identified

once it enters the border crossing area.

Just as in the case of one detector, when a vehicle enters

the border crossing area we initialize the correlated motion

counter to zero. If in a time-step the source is detected

to move, then we examine only vehicles in cells through

which the source curve passes, and cells that are “close” to

the source curve (e.g., cells that are within some distance

r of any point on the source curve.) We increment the

motion correlation counter only of vehicles that moved and

are close to the source curve.

3.3 Model Fitting

We can use Equation (1) to determine how well a vehicle’s

movements, temporally correlated with changes in (single)

detector measurements, obeys the assumed law. Suppose

we have n data points {(xi,mi)}, i = 1, 2, . . . , n, where

xi is the measured distance of a vehicle from the detector,

and mi is the detector reading when the vehicle is at that

position. We take care to ensure that xi 6= xj and mi 6= mj

for all i, j. If the data were to fit Equation (1) exactly and

there were no noise, then

log(mi) = log(cS) − α log(xi)

for each i. However, this cannot be explicitly checked, as

we don’t know the value cS. We can however estimate cS
with a value b. Given b and α, the residual error associated

with (xi,mi) is the difference between the value predicted

using b and α, and the value observed:

ei(b, α) = b − α log(xi) − log(mi).

A commonly used measure of the overall fit is the sum

(over all observations) of squared errors :

sse(b, α, n) =

n
∑

i=1

ei(b, α)2.



Nicol, Tsang, Ammerlahn, and Johnson

D1 D3

Approaching Vehicles

Source

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Y

(s1/s2)
1/α = (d2/d1)

△ △

Figure 1: Using Two Detectors We Can Compute a Line upon Which the Source Must Lie
When both cS and α are unknown, techniques of linear

regression(Weisberg 2005) identify estimates b̂ and α̂ that

minimize this error measure. In our previous work (Nicol,

Tsang, Ammerlahn, and Johnson 2006) we observed that

this estimator, taken over all of a vehicle’s positions up to

the border crossing, was highly effective in identifying the

source—the error associated with the source vehicle was

several orders of magnitude smaller than any other. In the

present paper we do not fit different values of α to different

vehicles—it is after all the same law of physics applying

to each—and we are interested in using model fit error

much earlier in the source vehicle’s trajectory through the

border crossing. Also, the traffic model in the earlier paper

assumed that all cells have vehicles, and that vehicles move

forward one cell in lock-step, each time-step.

For a fixed (and known) value of α, we recognize the

relationship of

sse(b, α, n) =

n
∑

i=1

(

b − (α log(xi) + log(mi))

)2

to the second central moment of the data values {(α log(xi)+
log(mi)}. We know then that the value of b which minimizes

sse(b, α) is the sample mean (Larson and Shubert 1979)

b̂ = (1/n)
n

∑

i=1

(α log(xi) + log(mi)),

and corresponding assess the fitness of a vehicle’s tra-

jectory with a normalized minimized model fit error

(1/n)sse(b̂, α, n). The normalization enables us to compare
539
the fits of vehicles with different numbers of observations.

In the absence of noise, with a correct value of α, and with

perfect position information, the error associated with the

source will be nearly 0.

3.4 Detection Algorithms

We bring the detection ideas together to form three al-

gorithms. The single-detector, model-free algorithm (SD)

assumes one detector, and does not use model-fitting infor-

mation. For each time-step we construct a set of vehicles

whose movements deviate from changes in detected inten-

sity since arriving by no more than a threshold Tmove. We

call these vehicles “suspects”, and are interested in how the

number of suspects changes in time as the source moves

through the border crossing. Ideally the number of suspects

will have shrunk to 1 before the source reaches the crossing.

The dual-detector, model-free algorithm (DD) is iden-

tical to SD, except that the motion correlation counters are

updated only for vehicles on the source curve. Like SD,

we maintain a set of suspect vehicles.

The third algorithm is constructed by bringing model-

fitting information to SD. (It could also be brought to DD,

but that turns out to be unnecessary.) We further analyze

the suspect groups defined by motion correlation, creating

for each vehicle a tuple comprised of (i) the number of

deviations of movement relative to the source, and (ii)

the normalized model-fit error based on observations from

detector D1. One tuple A is considered to dominate tuple B
if each of A’s components is no larger than the corresponding

component in B. Tuples that are not dominated by any other

are candidates for the source-carrier. In the single-detector,
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model-used (SDM) method we count the number of vehicles

with non-dominated tuples. When that figure goes to 1, we

suppose that the unique vehicle with non-dominated tuple

is the source-carrier.

4 EVALUATION

We are interested in how well different detection techniques

work, and scenario parameters that may significant impact

on that performance. Our evaluation study is built around

a simulator, whose workings have already been described.

Experimentation has shown us that the detection mechanisms

are sensitive to how many vehicles are in the border crossing

area, and how many “snapshots” are used as vehicles move

through the area. We control the number of vehicles in

the area through parameters ph and pa, respectively the

probability that at a time-step a vehicle at the head of the

line departs, and that a vacancy at the entrance to a lane is

filled by a new vehicle. We set the probability of a vehicle

moving ahead into an empty cell to be 0.8, assume ph = pa,

and vary the former parameters. By equivalencing ph and

pa we encourage a certain amount of queueing, but do not

have the arrival rate so high that a full system is ensured.

Our experiments include “slow” service with ph = 0.05,

and “fast” service with ph = 0.4. In any experiment all

servers use the same parameter.

We consider three sizes of domain—ten lanes each

twenty vehicles deep, ten lanes each ten lanes deep, and

five lanes each ten vehicles deep.

Each experiment initially “warms up” the state of the

border crossing by running 1000 time-steps, introducing

vehicles and having them move though the system. On the

1000th time-step the source is introduced. Thereafter, until

the source departs, we apply the detection algorithms. Each

time-step we identify the current set of suspect vehicles.

When (and if) that set dwindles in size to 1 vehicle we

consider to have found the source. The simulator checks to

ensure that the vehicle so identified is indeed the source,

and in no experiment run was it ever the case that the wrong

vehicle was selected.

The SD strategy employs a threshold parameter ns of the

number of time-steps in which a vehicle’s detected movement

can differ from detected changes in source intensity, and still

be in the set of suspected vehicles. In all the experiments

reported here, ns = 3.

We are interested in whether the source is isolated, how

quickly the source is isolated, and the impact that modest

degrees of noise and movement measurement error have

on detection performance. Figures 2 and 3 describe the

result. For each parameter setting we ran 100 independent

replications. Each replication we measured and stored the

size of suspect sets as a function of time since the source en-

tered the area. From these we computed mean and standard

deviations, and plot these against time, indexed against the
540
number of movements forward the source has taken (i.e.,

the size of the suspect set is measured at a time-step in

which the source vehicle moves, and the statistics are taken

from these snapshots.) We require three observations for a

model fit (in order to minimize spurious “good fits”), and

so begin the evaluation upon the third detected movement

of the source.

Figure 2 describes performance when there is no back-

ground noise, and no movement measurement error. The

high variance in suspect set size in early time-steps is a

distinctive characteristic of all the data. Even so, there are

clearly discernable trends.

• The suspect set size for the SD technique is in

the early time-steps strongly influence by both the

domain size and the vehicle arrival rate. This is

understood as reflecting how many vehicles there

are in the domain area at a time. The more there

are, the more suspects exist early on.

• The SD technique does not reliably completely

isolate the source on domains that are only 10

vehicles deep. To converge to source isolation

(as seen in the 10 × 20 domains) it needs more

observation points. This would be accomplished in

a given domain simply by taking more movement

and radiation change samples.

• While the DD technique immediately defines

smaller suspect sets and improves the chances of

isolating the source, cases exist where it has poor

performance—consider in particular the 5 × 10
case with fast service. Both SD and DD isolate

the source in fewer than 1/2 the cases.

• SDM is the star of the show. In the absence of noise

and movement error it immediately converges on the

source. Indeed, considering the cost of sensitive

detectors, there really is no point in using two

detectors if one must deploy a movement tracking

system for it anyway.

Figure 3 considers the impact of limited noise, and some

movement measurement error. The mean background noise

level was selected as described earlier, using Chebyshev’s

inequality to ensure that at least 99% of the time simple

comparison of detection levels before and after the source

moves will reveal the move. The probability that a vehicle’s

actual movement is missed on one time-step is set to 0.1. For

reference, the noise/error free data for SD is also plotted. The

take-home message of the data shown in Figure 3 has two

parts. The first is that this limited amount of background

noise and measurement error doesn’t affect SD or SDM

very much. The noise/error can keep SDM from perfectly

isolating the source on occasion; in those replications the

(random) movement error occurred to the source, causing

the “movement error” component of its tuple to be bested
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Figure 2: Source Isolation Behavior without Error in Movement Measurement and without Background Noise
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542



Nicol, Tsang, Ammerlahn, and Johnson
by another tuple. However, the model-fitting error of the

source still isolates the source.

It is interesting to note that on the larger domains the

mean size of the SD suspect size decreases slightly when we

include noise and measurement error. This is due the fact

that random movement error only decreases the size of the

suspect set. Our error model only keeps a moving vehicle

from being noticed, it does not report that a stationary

vehicle moved.

Figure 3 also records the observed frequency with which

the source vehicle was lost from the suspect set.

The overall conclusion of the our experiments is that

use of model-fitting data is a very good thing. However,

the model-free approach of SD can often isolate the source,

if enough concurrent movement and radiation change mea-

surements can be made before the source reaches the border

crossing.

5 CONCLUSIONS

This paper considers the problem of detecting and isolating

a vehicle carrying nuclear material at a border crossing. We

consider three ideas that contribute to isolation algorithms.

One is to correlate in time vehicle movements (as observed

through a visual or RFID tracking system) with observed

changes of radiation level at one (or two) detectors; another

is to use two detectors to determine a region of the domain

in which a source must lie; a third is to use simultaneous

position and detected radiation levels to fit an inverse-squared

law to observed vehicle movement, with the expectation that

the vehicle carrying the material will distinguish itself with

very low model fitting error. Using a simple simulation

that attempts to capture relevant dynamics of vehicles in

a border crossing area, we find that is it usually possible

to very quickly distinguish the vehicle carrying nuclear

material from others in the area, with a combination of the

first and third ideas.
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