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ABSTRACT

Motivated by the September 11 attacks, we are address-
ing the problem of policy analysis of supply-chain security.
Considering the potential economic and operational impacts
of inspection together with the inherent difficulty of assign-
ing a reasonable cost to an inspection failure call for a
policy analysis methodology in which stakeholders can un-
derstand the trade-offs between the diverse and potentially
conflicting objectives. To obtain this information, we used
a simulation-based methodology to characterize the set of
Pareto optimal solutions with respect to the multiple objec-
tives represented in the decision problem. Our methodology
relies on simulation and the response surface method (RSM)
to model the relationships between inspection policies and
relevant stakeholder objectives in order to construct a set of
Pareto optimal solutions. The approach is illustrated with
an application to a real-world supply chain.

1 INTRODUCTION

The terrorist attacks of September 11, 2001, have dramat-
ically changed public awareness of national security, in
particular, the vulnerability of ports and waterways in the
United States. The U.S. Coast Guard, Maritime Adminis-
tration, Transportation Security Agency (TSA), Department
of Homeland Security (DHS), and U.S. Customs and Bor-
der Protection have thus established programs designed to
reduce the vulnerability of ports and waterways (see U.S.
Custom and Border Protection 2004, Secretariat-UNCTAD
2004, U.S. Customs and Border Protection 2006), as 95 %
of U.S. international trade moves in via water (U.S. De-
partment of Transportation 1999). These new procedures,
which combine law, regulations, government intelligence,
and public-private partnership programs, can potentially alter
the landscape of the supply-chain security. The programs’
implications on the operation of global supply chains and
ultimately the nation’s economy are still largely unknown.
Clearly, excessive security costs could threaten the economic
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viability of ports and of the maritime industry (Harrald et al.
2004, Looney 2002).

While both public and private sectors acknowledge the
need for a secure transit of goods, the economic conse-
quences of increased levels of security have become an
increasing concern (Stana 2004, Harrald 2005). As a result,
businesses involved in global supply chains around the world
now face the task of enforcing security regulations set by the
U.S. federal authorities while streamlining the operations of
the supply-chain due to the drastic increase in the volume
of international commerce worldwide (World Trade Orga-
nization 2004). Supply chains are complex economic and
organizational systems, and achieving a reasonable level of
security will require a systemic policy in order to guarantee
their economic feasibility (Harrald et al. 2004).

In this context, trade-offs naturally arise as the orga-
nizations involved in the supply chain pursue different and
often conflicting goals (Reese 2003). The methods of mul-
ticriteria decision making (Soland 1979, Hwang and Yoon
1981) form a natural basis for the examination of this prob-
lem. One potential approach is to build a multiattribute
utility function (Lindley 1994) or take a cost-minimization
approach (Tulsiani, Haimes, and Li 1990). While this ap-
proach has been successful in countless applications, there
are substantial hurdles for its use in supply-chain security.
One of the most salient is the fact that assessing the un-
certainty of such rare events based on little or no empirical
observations is extremely difficult (Bier et al. 1999, Lam-
bert et al. 1994), and expert input (when available) can be
unreliable and subjective (Bier et al. 1999, Rosoff and von
Winterfeldt 2005). Another substantial hurdle is assigning
a monetary value to the consequences of an inspection or
security failure or other “surprise” events (Bier et al. 1999).
As a consequence, most risk analysis models are scenario
based (Rosoff and von Winterfeldt 2005).

An alternate approach is to characterize the trade-off
between identified objectives in supply-chain security. In
this approach, the concept of Pareto optimality (or Pareto
efficiency) arises naturally and captures those operational
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modes in which no objective can be improved without
sacrificing performance of the others (Soland 1979). The
characterization of the set of Pareto optimal solutions can be
very valuable in understanding how a private sector’s objec-
tive, such as cycle time, is affected while trying to comply
with one of the public sector’s objectives such as attaining
a certain inspection failure rate. In this approach, we must
characterize the objective functions in order to understand
the true relationship between input variables and relevant
objectives. In some limited cases, closed-form results can
be obtained for the objectives of interest. In all other situa-
tions, simulation can be used as a source of estimates as long
as the objectives are quantifiable. Furthermore, since the
scale of such systems makes simulations computationally
expensive, one can resort to so-called metamodels that can
be obtained through statistical sampling methods such as
response surface methodology (RSM) to construct approx-
imations of the system’s behavior (Giddings et al. 2001,
Srivastava et al. 1999, Shang et al. 2004).

In this paper, we consider the problem of designing in-
spection policies in a supply chain and present a simulation-
based approach that can be used to characterize the set of
Pareto optimal solutions or the corresponding Pareto ef-
ficient set. We subsequently apply this technique to the
analysis of a real-world process, in order to understand the
trade-off involved among system-wide Type I & Type II
errors, cycle times, and cycle time variance. Here system-
wide Type II errors represent public safety, while Type I
errors, cycle time, and cycle time standard deviation are
determinant to the economic viability of the supply chain.
While qualitatively our results are intuitive, we argue that
this additional knowledge—the best way to operate under
certain security levels—is vital to the decision making and
negotiation processes.

The paper is organized as follows: In Section 2 we
define the problem of trade-off analysis as a multiobjective
decision problem, and introduce our approach to construct a
Pareto efficient set and Pareto efficient frontier. In Section 3,
we describe the application of our approach to a real-world
supply chain involving a Japanese firm. Finally, in Section
4, we present our conclusions and suggest future research.

2 SIMULATION-BASED
TRADE-OFF ANALYSIS

The diverse objectives involved in implementing a security
policy in supply chains clearly motivate the formulation of
a multicriteria decision problem (Lahdelma et al. 2002).
As argued before, the difficulties involved in estimating the
probabilities of an extremely costly event make it practically
impossible to construct an adequate utility function. Our
approach calls instead for characterizing the trade-offs in
the different objectives in order to support decision-making
and negotiation among the parties involved.
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2.1 Mathematical Framework

We consider a set A of possible security policies in the
supply chain. For example, the most common security
policy seen worldwide is the use of scanning machines on
luggage (or items). In this paper, we will focus on a model
of the supply chain in which multiple two-step inspections
are placed in order to reduce the possibility of an unchecked
container reaching the end of the supply chain.

Associated to each possible security policy α ∈ A,
there is a set of supply chain performance measures

f1(α), f2(α), . . . , fm(α),

which represent the objectives of the stakeholders involved,
e.g., TYPE II errors or the time that a product is to be
delivered by the supply chain (cycle time). We assume that
the stakeholders’ objectives are advanced when functions
f1, . . . , fm are minimized. In this context, the following
definitions are useful. A security policy α ∈ A is called
Pareto optimal or Pareto efficient if for every α′ ∈ A such
that fk(α′) < fk(α) for some objective k, then there will
exist another objective i ∈ {1, 2, . . . ,m}, i 6= k, such that
fi(α) < fi(α′). Alternately, a policy α′ is said to be Pareto
dominated if there exists another policy which is better in
every performance measure, i.e., if fk(α′) < fk(α), k =
1, 2, . . . ,m.

The set of all Pareto efficient solutions, also called the
Pareto efficient set, will be denoted P(A) ⊂ A. Associated
to these solutions, we define the Pareto efficient frontier
as the set F (A) = {(f1(α), . . . , fm(α))|α ∈ P(A)}. This
set captures naturally the trade-offs involved in the system,
because it consists of the set of security policies that are better
than every other in at least one performance measure. In a
scenario in which a given level of security is to be enforced—
as a consequence of a threat or available intelligence—
the decision maker can understand how to enforce current
regulations while advancing his or her own objectives. On
the other hand—perhaps more importantly—it provides the
basis for negotiation. Therefore, our approach, outlined in
the following section, will be to characterize the set P(A)
through a combined analysis/simulation-based approach.

2.2 Characterization of the
Pareto Efficient Frontier

In general, it is difficult to characterize all the objective
functions in closed-form and sometimes it is necessary to
estimate some of these through simulation. In addition, given
the complexity of the systems being modeled, simulations
to obtain estimates of system-wide performance measures
(e.g., cycle time) can be expensive.

In our approach, we look at a continuous set of se-
curity policies, namely the percentage of items that will
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be inspected at a set of predefined points in the supply
chain. Under this working assumption, we use simulations
to sample performance of the system for a subset of the
set of policies A, and rely on the response surface method
(RSM) (Khuri and Cornell 1996) to construct a function
that imitates the behavior of the supply chain under the pre-
scribed security policy (which is also called a metamodel
or approximation architecture). The methodology of RSM
involves the follows the steps:

1. Select appropriate inputs for an objective function
and design the experiment to extract the relationship
between inputs and their corresponding objective
function values (e.g., the average cycle time in a
supply chain would be a function of inspection rates
and the data is obtained via simulation). In this case,
we already know both the input variables, which
are the levels of inspection, and their range—the
interval [0, 1].

2. Assume a form of the mathematical model with
the inputs α1, α2, ..., αn, typically a polynomial.
For instance, if a linear model is presumed for
objective i, we would propose the form

f̂i(α, β) = β0 + β1α1 + · · ·+ βnαn.

In later steps, we will try to estimate the parameters
β = (β0, β1, . . . , βn) in such a way that

f̂i(α, β) = fi(α) + εi,

where εi is white noise, for every i = 1, 2, . . . ,m.
3. Select some data points {α1, α2, . . . , αK} ⊂ A for

sampling.
4. Obtain the observations from the designed experi-

ment f ′i(α
1), . . . , f ′i(α

K) for the pre-selected data
points.

5. Estimate the parameters of the mathematical model
(metamodel) assumed using Mean Squared Error
(MSE) method. If the model fit (adjusted R2) is
low, go back to #1 to redesign the experiment for
the inputs.

6. Test the performance of the metamodel (f̂i(α)) with
estimated coefficients (e.g., β̂0, β̂1, . . . , β̂n). In our
research, we compared the Mean Squared Error
(MSE) in the observations used for constructing the
metamodel (MSE1) with the MSE obtained with
additional sampling points(MSE2). If MSE1 ≥
MSE2 then accept the metamodel to predict other
objective function values. Otherwise, go back to #1
to redesign the experiment. There MSE is obtained
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through the formula√∑K
j=1[f

′
i(αj)− f̂i(αj , β̂)]2

K

When all objective function have been obtained, it is
sometimes possible to fully characterize the Pareto effi-
cient frontier. For instance, in (Soland 1979, Wilson 1967,
Nakayama 1980) it is shown that if the objective func-
tions f1, . . . , fm are continuous and convex in the set of
possible security policies A, then there is a one to one
correspondence between the Pareto efficient set and the
set of solutions to optimization problems where the ob-
jective is a convex linear combination of the objectives.
In our approach, we use the actual values obtained for
α ∈ A =

∏n
i=1 [0, 1/K, 2/K, . . . , 1] and identify Pareto

optimal solutions with respect to this set of policies by
inspection.

In summary, the Pareto efficient set and Pareto efficient
frontier can be constructed as follows:

1. Find the set of security policies and objectives.
2. Characterize the objective function values. This

can be achieved through analysis (closed-form), or
through simulation. In the latter case, use response
surface methods to create an approximation archi-
tecture of the objective function in question, also
called metamodel.

3. Use the objective functions (or, in its case, the
corresponding approximations) to characterize the
Pareto efficient set.

4. Construct the Pareto efficient frontier that is simply
the set of objective function values associated to
the Pareto efficient set for trade-off analysis.

A similar approach has been applied successfully in
the past in different contexts (Srivastava, Hacker, and Lewis
1999, Shang, Li, and Tadikamalla 2004). The application
in the next section illustrates the approach.

3 APPLICATION TO THE CASE STUDY
SUPPLY-CHAIN MODEL

As a part of the public sector program, TSA has funded
Boeing and General Electric (GE) to develop a highly so-
phisticated explosive detection system (EDS) since 2002
and has tried to test it in the second quarter of calendar
year 2005 (McCarter 2005). This equipment will be used
as an initial inspection in a 2-step inspection procedure.

Testing of EDS equipment in real life would require
a lot of planning and a massive budget. In order for the
inspection operation to be more effective in real life, we
can combine the idea of multiple inspections, which have
been used as a common approach to increase the inspection



Sekine, Campos-Náñez, Harrald, and Abeledo
Figure 1: Container Explosive Detection System (EDS)

accuracy, and drop the possible TYPE I and TYPE II error
rates (Raouf, Jain, and Sathe 1983, Duffuaa and Al-Najjar
1995, Duffuaa and Al-Najjar 1997, Kaio and Osaki 1989,
Qi, Tang, and Sivakumar 2002).

We now apply this methodology to a real-world supply
chain. The simulation model for this process was constructed
with the input provided by the supply-chain security experts
(expert judgment) and publicly available information (e.g.,
SAIC EDS’s product information on its sales web site).

In applying our research methodology to a realistic case,
we constructed an “as-is” simulation model and identified
a set of possible inspection points. We approached this
likely supply-chain process by viewing it as a “system of
systems” (Harrald, Hugh, and vanDorp 2004) and separating
the supply chain into subsystems each containing a two-
step inspection subprocess. The two steps correspond to the
use of EDS, followed by a manual inspection to be used
only when a container has been deemed as suspicious in
the first stage. In order to achieve the objectives of both
public and private sectors, the decision maker will have to
understand the combined behavior of these subsystems and
the trade-offs that arise using different inspection policies,
consisting in this case of the inspection rates to be enforced
at each point.

The possible trade-offs between the public and pri-
vate sectors are measured by the following objective func-
tions. First, to represent the public sector’s viewpoint, we
used the probability of Type II errors—falsely accept a
hazardous container—or PFAn(α). Second, in the private
sector, the probability of Type I errors—falsely rejecting
clean containers—or PFRn(α), the average cycle time of
the containers, denoted CT(α)), and the standard deviation
of the cycle time of the containers, denoted CTSTD(α),
will be used to represent the private sector’s objectives.
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The supply-chain process modeled here consists of three
sequential processes occurring in two locations. The first
location is a firm’s warehouse, where products, which are
split into two parts, arrive on palettes (One palette can hold
half the product, therefore, two palettes are required per
product). They are inspected, packed to a container (three
palettes per container), and sealed by a local inspector.
The second location is the local port or “port of origin” of
containers where container inspection and loading would
be conducted.

First, we constructed a base model, which closely repli-
cates the statistics of this particular supply-chain, using pa-
rameters provided by experts or estimated by our team based
on experts’ observations of this particular supply chain in
Japan. The statistics and expert observation inputs used are
discussed in the following section.

3.1 Case Study Model Definition

The firm has a factory to regularly manufacture a single
product. Once a product is manufactured, it is split into two
parts and sent to the firm’s warehouse. In the warehouse,
the split-up product, which is placed on palettes, will be
inspected and loaded into a container and sealed by the
local custom personnel every Thursday. The local custom
inspector can inspect up to three containers per day, and each
container can store three palettes. The freight truck will pick
up the container and bring it to the local port. At the port’s
gate, the truck driver has to provide the container’s manifest
as well as his driver’s license. Once the truck passes the
gate, the driver will direct the truck to the container waiting
area inside of the port, unload the container, and leave. All
containers need to be physically stored in the port at least
72 hours prior to loading due to the port regulation in the
port of origin. On loading day, containers are moved from
the waiting area to the loading area by two forklifts. It will
take a day to move all containers to the loading area to
the freight ship, which arrives on Wednesdays and leaves
on Thursdays. All operations are conducted during regular
business hours (Monday through Friday, 8 am to 5 pm).
The average cycle time of the product in warehouse is ten
days though it varies from one day to twenty-one days. The
average cycle time of the container in the port of origin is
six days (five days for waiting and one day for loading).

In this supply-chain model, we identify three possible
inspection points available. The first inspection point could
be in the warehouse before local custom inspection. The
second inspection point could be at the gate of the port
of origin (see Fig. 2). The last inspection point would be
the waiting area of containers in the port of origin. At
each inspection point, products or containers are randomly
selected with αi% of the total products/containers arriving
to inspection point i, where i = 1, 2, 3, then sent to a
scanning inspection. If the product/container fails, it would
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Figure 2: Process Flow of the “As-Is” Case Study Model (Simplified)
be sent to a manual inspection. Both scanning machines
for products and containers have the same Type I/II error
rates. Manual inspection for both products and containers
is assumed to be perfect.

The objective functions of interest, which were de-
scribed in the previous section, can be characterized as
follows:

1. System-wide probability of a Type II error, which
can be computed as

PFAn(α) = E[FA3(α)/N ],

where FA3(α) is the number of Type II errors at
inspection point 3 under inspection policy α, and
N is the total number of pallets.

2. The expected value of negative failure of the con-
tainers in the system can be computed as

PFRn(α) = E

 ∑
1≤j≤3

FRj(α)/N

 ,

and N is defined as above, and FRj(α) is the
number of negative failures at inspection station j,
under policy α.

3. The expected cycle time CT(α) was approximated
through RSM using 30 policy samples with 10
replications. Standard warm-up analysis (Welch
1981) was used using 10 replications, resulting in
simulation runs of 1,000,000 days.

4. The standard deviation of the cycle time CTSTD(α)
will also be estimated using a simulation/RSM
approach with the same number of samples and
replications.
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We constructed simulation models of the supply-chain
with multiple two-step inspections using Extend 6.0 soft-
ware.

Surprisingly, there was a negligible response in CT(α)
or CTSTD(α) due to the buffer in the process itself and
the low frequency of container arrival, e.g. the system
modeled showed load factors far from critical and could
accommodate 100% inspection rates in all inspection points
without any impact to its cycle time.

3.2 A Critically Loaded System

To test our methodology on a more meaningful scenario, we
scaled the system arrival rate up to a critical value that, while
maintaining a steady-state accommodating 100% inspection
rates, would have a significant increase in its cycle time
and its corresponding variance.

To identify the critical arrival rate, we increased the
original good arrival frequency in the 100% inspection
scenario. To obtain the critical arrival rate, we assumed
infinite buffer sizes; the critical arrival rate is defined as the
largest observable arrival rate that produces average queue
sizes that are within the real process buffer capacities. In
this case, we identified a critical arrival rate of 8.39 times
of the original arrival frequency ( 3.5days

8.39 or every 0.417
day). Once the arrival frequency became greater than this
critical arrival rate, the maximum number of stocks in the
warehouse reached average values exceeding its capacity of
18 containers, and its warehouse average cycle time became
higher than 18 days with a standard deviation of 396.

Using this critical arrival rate, we randomly selected
39 inspection policies, together with two extreme policies
(no inspection at any point, 100% inspection at every in-
spection point). Ten replications were generated for each
selected inspection policy by simulation. We then used 410
simulation samples to find the meta-models of CT(α) and
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Figure 3: Pareto Efficient Frontier for the Critically Loaded
System Described in Section 3.2 for Objectives PFAn(α)
and CT(α) and PFAn and CTSTD(α)

CTSTD(α). In addition, twenty inspection policies were
randomly selected, and ten replications were also generated
in the same manner by simulation. Using these additional
200 simulation samples, we further validated the robustness
and accuracy of the metamodels of CT(α) and CTSTD(α).

3.3 Results of the Case Study Model
Under Critical Load

In general, the more one inspects in the warehouse, the
longer the cycle time and its standard deviation become, as
expected. The 3rd inspection (2nd inspection at port) has no
impact because any delay caused by the 3rd inspection would
be absorbed during the 72 hour waiting period required by
the local port authority. The probability PFAn(α) responds
nonlinearly to inspection rates; the risk levels decrease
slowly when inspection rates are relatively low, but drop
down to approximately 1/50 of the inspection free risk
level (10−7), once the average inspection rate, i.e., α =
(α1 + α2 + α3)/3, is greater than 80%.

Additionally, PFRn(α) is almost linear to inspection
rates increase because of its very structure; the more one
inspects, the more one rejects the containers with no haz-
ardous materials (system-wide Type I error). However, in
this model, perfect inspection was assumed in the manual
inspection, thus this objective function value became zero,
which indicates that it is indifferent to trade-offs. For a given
objective function value, e.g., CT(α) = CT∗, the trade-offs
were recognized in PFA3(α) and CT(α), PFA3(α) and
CTSTD(α) but not in CT(α) and CTSTD(α). For CT(α)
and CTSTD(α), the metamodels indicated the strong influ-
ence from the first inspection point (α1). However, PFA3(α)
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is symmetric in α1, α2, α3 (i.e., policies [0.3, 0.5, 0.8] and
[0.8, 0.5, 0.3] have the same PFA3).

The approximation of the cycle time CT(α) was con-
structed by the 1st order of linear combination of 1st and
2nd inspection rates using 39 randomly selected inspection
policies and two extreme inspection policies (0, 0, 0), and
(1, 1, 1). The 3rd inspection rate was removed due to the
statistical insignificance and did not add a significant ac-
curacy of the model or a better fit even for additional 20
randomly selected inspection policies, which were used to
test the robustness of the approximation of CT(α).

For CTSTD(α), the same inspection policies and pro-
cedure were taken to collect the simulation samples. The
metamodel of CTSTD(α) is a nonlinear design that uses
inspection rate α1 as its only input. This is due to the fact
that the proportion of warehouse cycle time standard devi-
ation to the total cycle time standard deviation was more
than 99% and there was very little impact from inspections
at port because of 72 hours waiting period.

Both CT(α) and CTSTD(α) metamodels had the co-
efficients to be statistically significant with a white noise,
i.e., where independent errors are normally distributed with
mean 0, and variance σ2 > 0. The influence of inspection
rates to both CT(α) and CTSTD(α) was significant, and all
coefficient estimates were proved to be statistically signifi-
cant with a 5% error level using a t-test. The metamodels
constructed through RSM for CT(α) and CTSTD(α) are
given by

ĈT (α1, α2, α3) = 11.52 + 2.22α1 + 0.19α2,

ĈTSTD(α1, α2, α3) = 1.77 ∗ 1.03α1 .

3.4 Summary of the Case Study
Model Experiments

As mentioned before, we found that the original process
could actually handle 100% inspection rate at all inspec-
tion points with no impact to either CT(α) or CTSTD(α).
However, once the system approached a critical arrival rate
we saw the impact and trade-offs from the inspection(s) on
CT(α) and CTSTD(α).

4 CONCLUSIONS

The results showed the relationship between input variables
(e.g., inspection rate at each inspection point) and objective
functions. Also, the approximations of objective functions
obtained by simulation and response surface method (RSM)
were relatively straightforward (e.g., first order model) due
to the simplified structure of the research model. For the case
study model, CT(α) and CTSTD(α) were also functions of
inspection rates yet not all inspection rates and the form of
CTSTD(α) was highly adapted the model ruling such as 72
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Figure 4: Projections of the Pareto Efficient Frontier for the Critically Loaded System Described in Section 3.2 for Objectives
PFAn(α) and CT(α) and PFAn and CTSTD(α)
hour requirement of container arrival in port prior to loading.
This shows that actual business rules drive a major impact
of the model behaviors, and for a decision maker, it would
be required to understand the impact from current business
rules and/or the robustness of Pareto optimal policies.

Our future research will focus on testing the method-
ology of other objective functions such as inspection im-
plementation cost, considering a different inspection policy
and/or assumptions (e.g., more inspection points, dynamic
hazard rate in supply-chain).
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