
Proceedings of the 2006 Winter Simulation Conference 
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol and R. M. Fujimoto, eds. 
 
 
 

THE IMPACT OF ORDINAL ON RESPONSE SURFACE METHODOLOGY 
 
 

Sara Jian Oon 
 

Raffles Junior College 
10 Bishan Street 21, Singapore 574013 

 Loo Hay Lee 
 

Department of Industrial and Systems Engineering 
National University of Singapore 

10 Kent Ridge Crescent, Singapore 119260 
   
   

 

ABSTRACT 

Traditionally, Response Surface Methodology (RSM) is 
cardinal in nature. Ordinal optimization was only intro-
duced recently. Since ordinal optimization has been proven 
to be successful in certain applications, this paper aims to 
investigate whether ordinal optimization improves RSM by 
developing ordinal RSM and comparing it with cardinal 
RSM in terms of efficiency, accuracy and consistency. As-
suming that the performances of systems can be expressed 
as functions of their parameters, both ordinal and cardinal 
RSM are simulated for several simple multivariable 
mathematical functions and the effectiveness of ordinal 
RSM evaluated. It was found that ordinal does not always 
improve RSM, especially in functions which exhibit a 
large gradient change over a small region. 

1 INTRODUCTION 

In this paper we investigate how ordinal optimization im-
proves RSM. Ordinal optimization was proposed by Ho et 
al. (1992). It involves the use of the ranking of noisy per-
formance estimates instead of the actual performance, 
which can be difficult to determine. Also, ordinal optimiza-
tion aims to find a subset in which “good enough” designs 
are contained with high probability, instead of trying to ob-
tain one true maximum, which will be difficult in the pres-
ence of large noise.  
 RSM, invented by Box and Wilson (1951), is a collec-
tion of mathematical and statistical techniques for empirical 
model building. By careful design of experiments, the objec-
tive is to optimize a response (output variable) which is in-
fluenced by several independent variables (input variables). 
An experiment is a series of tests, called runs, in which 
changes are made in the input variables in order to identify 
the reasons for changes in the output response (Montgomery 
& Runger 1994). RSM involves two basic concepts: 

 
(1) the choice of the approximate model, and  
(2) the plan of experiments where the response has to be 

evaluated. 
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 In combinatorially explosive stochastic optimization 
problems, RSM provides a major advantage by mapping 
the response surface over a particular region of interest. 
Hence, it is easier to select operating conditions to achieve 
desired specifications and optimize the response (Box 1987 
and Myers 2002). This enables a designer to efficiently al-
locate resources for detailed analyses and improvements of 
these potential solutions. 
 Conventionally, cardinal optimization is used in RSM, 
where the actual performances are used in the evaluation of 
experimental responses. Due to the presence of large noise, 
the actual performances cannot be determined confidently, 
resulting in inaccuracy in subsequent steps. In ordinal op-
timization, the relative ranks of the responses are used in-
stead. The relative orders of the responses can be deter-
mined with more accuracy; hence the desired region in 
which the optimum can be mapped more accurately and 
the latter obtained more efficiently. In fact, it has been in-
vestigated that ordinal comparison does exhibit much bet-
ter convergence property than value estimation (Dai 1996, 
Xie 1997, and Dai and Chen 1997,Lee et. al. 1999). More-
over, accurate performances take a long time to obtain, 
whereas the relative order of performance estimates can be 
determined within a shorter time. 

Ordinal optimization has been applied successfully to 
many situations, such as the 10-node network (Patsis et al. 
1997), rare event simulations (Ho and Larson 1995) and 
apparel manufacturing system (Lee et. al. 2000). Hence, 
we have decided to incorporate ordinal optimization into 
RSM to see if RSM can be improved by this modification. 
 While it has been widely argued and acknowledged 
that ordinal optimization is preferred to cardinal optimiza-
tion, this paper concentrates on integrating the concept of 
ordinal optimization in the RSM. We call this new method 
Ordinal RSM . We compare the two RSMs based on effi-
ciency, accuracy and consistency as these are the key fac-
tors that designers are concerned with, primarily because 
finding a good design in a short time will lead to better re-
source allocation.  
 In Section 2, we will discuss the general RSM and the 
development of the ordinal RSM. In Section 3, we will 
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demonstrate how to implement the RSM experiments, and 
the numerical results will be summarized in Section 4. Fi-
nally Section 5 concludes the findings. 

2 RESPONSE SURFACE METHODOLOGY 

2.1 Cardinal RSM 

In any complex stochastic system, the performance can 
conceptually be given by J(θ) where J is the expected per-
formance measure and θ are the system design parameters 
which may be continuous, discrete, combinatorial or even 
symbolic. A general problem of stochastic optimization 
can be defined as: 

 
[ ]),()(min ξθθ

θ
LEJ ≡

Θ∈
, 

 
where Θ, the search space, is an arbitrary, huge, structure-
less but finite set; θ is the system design parameter vector; 
J is the performance criterion which is the expectation of 
L, the sample performance, as a function of  θ and ξ, a ran-
dom vector that represents uncertain factors in the system . 
 The first step of RSM is to find a suitable approxima-
tion for the function L. The most common forms are low-
order polynomials but can be generalized with the inclu-
sion of any mathematical operator (e.g. trigonometric func-
tions). Once an approximate model is obtained, the good-
ness-of-fit determines if the solution is satisfactory. If this 
is not the case, the process is restarted and further experi-
ments are made. In this paper, we do not conduct physical 
experiments, as the focus lies more in the second step; 
therefore an assumed function is used to carry out the sec-
ond step. 
 In the second step, the function is modeled mathemati-
cally in an attempt to hunt for the optimum response. The 
method of steepest ascent (or descent) can be used. It is a 
procedure for moving sequentially along the path of steep-
est ascent, in the direction of the maximum increase in the 
response. This is based on the assumption that within a 
small region or in a region far from the optimum, a first-
degree model can be approximated (Montgomery & 
Runger 1994). For a relatively small region of the response 
surface, the contours of the function can be taken to be 
parallel and hence the direction of steepest ascent would be 
directly perpendicular to the contours. Experiments are 
conducted on this path until the response no longer in-
creases. At every point, a linear regression analysis is per-
formed on the data, and the gradient is calculated, as the 
step size has to be proportional to the regression coeffi-
cient.  
 For this stage, we have chosen to adopt a modified 
version of the central composite design (CCD). CCDs tra-
ditionally involve 1 central point, 2N factorial points and 
2N axial points, where N is the number of parameters. In 
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our experiments, the axial points have been eliminated as 
the step sizes are relatively small; hence the factorial points 
are sufficient to maintain an adequate level of accuracy. 
 Another limitation is the presence of local maxima in 
some systems. This has to be overcome by restarting using 
different input values to see whether the same optimum is 
reached. However, this is not the focus of this paper and 
will not be addressed in the subsequent sections. Our aim 
is to compare how close the values obtained by the two 
methods are to an optimum, especially if they locate one of 
the same height, and also the number of steps needed to 
reach the point close of the optimum. The question of local 
and global optimums can be addressed in future studies. 

Figure 1: Contours of a Response Surface for Which RSM 
is Used to Locate the Maximum. 
 
Outline of the Typical RSM 

 
Step 1: Letting n=0, the initial central point is denoted by 

x0 where x0 is a vector 
Step 2: Let the δxn be the chosen distance between the 

central and factorial points, such that the factorial 
points are denoted by xn±δxn.  

Step 3: Evaluate the responses on all the design points. 
Step 4: Calculate the gradient, ΔFn, of the response sur-

face in the vicinity of the central point.  
Step 5: Finding the next central value, xn+1, 

n
n

F

n
F

nxnx λ
Δ

Δ
±=+1 , 

 where λn represents the step size. 
Step 6: Let n=n+1, and repeat steps 2 to 5 as many times 

as is required to obtain a point near to the opti-
mum point. As the process is repeated, the step 
sizes and δxn values are decreased by taking δxn = 
δx0/n and λn = λ0/n This is because as the central 
point approaches the desired region, maintaining 
those original values would lead to lower preci-
sion. Moreover, a maximum/minimum point is 
characterized by greater curvature and a first-
order model is only applicable to a very small re-
gion.  
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2.2 Ordinal RSM 

While cardinal values have traditionally been used for the 
calculation of the gradient, the ordinals of the responses are 
less subjective to the effect of noise. Hence, in the presence 
of noise, it is possible that the calculation of the gradient 
using ordinal will cause a faster convergence of the RSM. 
 Slight modifications have to be made to the algorithm 
for a typical RSM above for ordinal optimization: 

 
Step 3: Instead of calculating the responses at the design 

points, the responses at the points are given ranks 
(i.e. 1, 2, 3,…).  

Step 4:  The gradient is calculated using the relative ranks 
instead of the actual responses. (i.e. Replace ΔFn 
with Δ(Rank).) 

3 COMPARISON OF CARDINAL AND ORDINAL 
RSM 

We can assume that the performance of a system can be 
expressed as a function of its parameters, and hence predict 
the values for set parameters and hence carry out RSM on 
the system. The response is defined as the function value 
with the inclusion of noise. In an actual experiment, the 
function is not known, and performances have to be deter-
mined experimentally. In this case, as we are trying to 
compare cardinal and ordinal RSM in general, several 
functions are used so that a generalization can be formu-
lated.  

RSM is simulated on Microsoft Excel Spreadsheets. 
This allows the noise level to be adjusted and the values to 
be calculated easily and this is done electronically. The 
function can also be modified with minimal hassle. 
 
Both cardinal and ordinal RSM are run for 4 different sim-
ple 2 dimensional mathematical functions: 
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with different starting points, step sizes, δx0, δy0 values and 
noise levels. In each function, the number of steps needed 
to first reach a point in the vicinity of the optimum is tabu-
lated. The mean number of steps taken by each form of 
RSM is found and compared to determine, for each func-
tion and noise level, which form of RSM requires fewer 
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steps. The comparison is carried out in terms of consis-
tency, accuracy (the distance from the optimum) and effi-
ciency (the number of steps taken).  
 
Table 1: Summary of Starting Points Tested for Each 
Function 

Function Starting 
points tested 

F1 
F2 
F3 

(0,0), (5,5), 
(-5,5), (5,-5), 
(-5,-5) 

F4 (425,425), 
(450,450), 
(400,450), 
(450,400), 
(400,400) 

 
 The λ0, δx0, and δy0 values tested are 5 and 10. 
 For each particular case, a value of “ noise” is added 
on to the function. The noise follows  a normal cumulative 
distribution, with a mean of 0 and a standard deviation 
which is a percentage of λ0. The chosen percentages are 
0%, 20%, 50% and 80%.  

4 RESULTS AND DISCUSSION 

The comparison of cardinal and ordinal RSM can be done 
in a few ways. The 90% confidence interval of each of 
these sets of values is calculated and used to assess the 
consistency of the RSM, as seen in the next section. 
 A graph can also be plotted of the distance between 
the (xn, yn) values and the optimum with successive runs to 
demonstrate the convergence property of the RSM. The 
faster the points approach the optimum point, the steeper 
the gradient of the graph, and the better the convergence. 
This is used to test for the efficiency and accuracy of the 
RSM. However, the graph only shows the convergence for 
a particular condition, and cannot be used to evaluate the 
general trend for the function.  
 The response surface can also be mapped out using the 
software, Origin 7.5. This is used for further analysis of the 
function and the desired optimum region. 
 
Results 
 
 The following are the functions tested and the results 
of the RSM performed on them. 

 

(1) 2)2(2)1(),(1 ++−= yxyxF  
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Table 1: Summary of Results for F1 
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Figure 2: Convergence Graph for F1 When Start Point = 
(0,0), Step Size, δx, δy = 5, Noise = 0% 
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Figure 3: Convergence Graph for F1 When Start Point = 
(0,0), Step Size, δx, δy = 5, Noise = 80% 

90% Confidence Interval for  number of steps to reach ≤  1 
unit away from optimum 

Coefficient 
of noise as 
percentage 
of step size 

0% 20% 50% 80% 

Cardinal 
RSM 

4.1 ± 0.5 4.8 ± 0.8 8 ± 3 18 ± 14 

Ordinal 
RSM 

4 ± 1 6 ± 1 15 ± 10 33 ± 18 
40
 
Figure 4: Surface Plot for F1. 

 
The two methods are comparable when the noise is low, 
reaching the optimum in about the same number of steps, 
though cardinal RSM seems to exhibit a more consistent 
convergence as step sizes and starting points are varied. As 
the degree of noise was increased up to a moderate level 
(50%), it was seen that cardinal RSM emerged as the pre-
ferred choice.. When the noise is very large (80%), the 
function does not seem to converge at all. This may be due 
to the fact that the step size decreases too quickly.  
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Table 2: Summary of Results for F2 

90% Confidence Interval for  number of steps to reach ≤  1 
unit away from optimum 

Coefficient 
of noise as 
percentage 
of step size 

0% 20% 50% 80% 

Cardinal 
RSM 

10 ± 2 12 ± 4 14 ± 6 15 ± 8 

Ordinal 
RSM 

8 ± 2 9 ± 2 12 ± 4 18 ± 9 
9
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igure 5: Convergence Graph for F2 When Start Point =  
-5, -5), Step Size, δx, δy = 10, Noise = 0% 
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igure 6: Convergence Graph for F2 When Start Point =  
-5, -5), Step Size, δx, δy = 10, Noise = 80% 

Figure 7: Surface Plot for F2. 
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On the whole, Table 2 shows that the ordinal RSM for F2 
performs better when the noise is small, but it worsens 
when the noise increases. This is because for ordinal RSM, 
there are only a few choices for the values of gradient. In 
general, although the orders of designs are more robust 
compared to the value of designs, a swap in ranks may 
cause a big change in gradient.   
 
(3) Branin Function  
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Table 3: Summary of Results for F2 

90% Confidence Interval for  number of steps to reach ≤  1 
unit away from optimum 

Coefficient 
of noise as 
percentage 
of step size 

0% 20% 50% 80% 

Cardinal 
RSM 

6.7 ± 0.9 7 ± 1 7 ± 1 8 ± 1 

Ordinal 
RSM 

5 ± 1 5 ± 1 6 ± 1 6 ± 1 
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Figure 8: Convergence Graph for F3 When Start Point = 
(0,0), Step Size = 10 δx, δy = 5, Noise = 0% 
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Figure 9: Convergence Graph for F3 When Start Point = 
(0,0), Step Size = 10 δx, δy = 5, Noise = 80% 

 
Figure 10: Surface Plot for F3. 

 
This is a function which contains multiple peaks. When 
RSM was run, the different peaks were located depending 
on the starting point and the step size. Hence the number of 
steps for the RSM to obtain a point close to the optimum 
can be for any of the peaks, as they are of equal height. 
Likewise, the distance measured from the optimum is 
taken from the optimum that the RSM seems to be con-
verging towards. 
 This case is unlike the previous two as the function 
exhibits good convergence property and the performance is 
not significantly affected by the presence of noise, regard-
less of the latter’s extent. Both forms of RSM converge 
well and perform consistently. At all degrees of noise, or-
dinal RSM performs marginally better, but the differences 
in their performances are very small and hence can be 
deemed to be the same. This is because the magnitudes of 
the responses can get quite large at only a short distance 
from the minimum point (though not as large as those in 
(2)), such that randomness does not produce a marked 
change, in both the cardinal values and the ranks.  

 

 

411
(4) Schwefel’s problem: 
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Table 4: Summary of Results for F4 
90% Confidence Interval for  number of steps to reach ≤  1 

unit away from optimum 
Coefficient 
of noise as 
percentage 
of step size 

0% 20% 50% 80% 

Cardinal 
RSM 

4.9 ± 0.9 7 ± 2 19 ± 6 23 ± 7 

Ordinal 
RSM 

7 ± 2 17 ± 2 46 ± 14 79 ± 12 
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Figure 11: Convergence Graph for F4 When Start Point = 
(400,450), Step Size, δx, δy = 10, noise = 0% 
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Figure 12: Convergence Graph for F4 When Start Point = 
(400,450), Step Size, δx, δy = 10, Noise = 80% 
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Figure 13: Surface Plot for F4. 

 
The performance of this function can be seen to be greatly 
affected by noise. In the presence of large noise, there are 
instances where the RSM never approaches the optimum 
value. In all cases, cardinal produces better results than or-
dinal RSM. This is because the function is a combination 
of algebraic and trigonometric parts, and trigonometric 
functions tend to display a large change for a small change 
in the variable. This is exacerbated by the multiplication of 
the algebraic part, such that the curvature of the surface is 
large, and neither method is effective in the presence of 
moderate or large noise. Cardinal RSM still has an edge 
over ordinal RSM as the gradient calculated using the ex-
act values is a better estimation of the extent of the curva-
ture as compared to that of ordinal RSM, which is more in-
accurate due to the limited choice of gradients. 

5 CONCLUSION 

In many functions, cardinal RSM is still the preferred 
choice, especially where the response surface has a signifi-
cant curvature over a small region. This is because while 
the responses can take on any values, the ranks are limited 
to 1, 2, 3, 4, 5. Hence, the gradient calculated is not accu-
rate. Also, in these experimental runs, ordinal RSM seems 
to work only when the noise is not large, hence differing 
from ordinal optimization, which is less affected by noise. 
We think that there is still room for improvement for ordi-
nal RSM. An important possibility for future research 
would be to look at how to use the ordinal information to 
estimate the gradient.   

The RSMs that we employed in this experiment were 
quite fundamental,  and there were a lot of factors that we 
had not considered. Future work could be carried out to  
look at how these factors (e.g. choice of stopping rule and 
the step size chosen) will affect the performance of RSM. 
Since this is a largely empirical study aiming to explore the 
potential of ordinal RSM, there may be no general conclu-
sion to make, which can only be reached after further 
study.  
412
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