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ABSTRACT  

Using concepts arising in control variates, we propose es-
timating gradients using Monte Carlo data from a single 
design point.  Our goal is to create a statistically efficient 
estimator that is easy to implement, with no analysis within 
the simulation oracle and no unknown algorithm parame-
ters.  We compare a simple version of the proposed method 
to finite differences and simultaneous perturbation, assum-
ing first and second-order linear logic models and response 
surfaces.  Results of the analysis indicate that  the  pro-
posed gradient estimator is unbiased with variance that is 
inversely related to the variance of the assumed input 
model.  Compared to the only existing single design-point 
method, the proposed gradient estimator is advantageous in 
that its variance is not dependent on the magnitude of the 
response surface at the design point of interest and also de-
creases as the simulation run length increases.   

1 INTRODUCTION  

1.1 Problem Statement 

Given a real-valued function : qg →� �  and a design 
point 0x , we address the problem of providing an estimate 
of the gradient of g  at 0x ,  

( )
0

g x x x∇ = . 

In a single dimension (q = 1) the gradient is the derivative 
of g  at 0x , which is defined as 
 

 ( ) ( )0 0

0
lim

g x g x
δ

δ
δ→

+ −
. (1) 

 
 We refer to x  as input-model parameters and define 
the performance measure of interest θ  as  ( )g x θ= .  For 
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some stochastic models closed-form solutions of θ  are 
available and gradients can be obtained analytically.  The 
usual stochastic simulation context, however, is that only 
estimates of g  are observable by means of a stochastic 
oracle, which is assumed to be a simulation model.  In this 
context, gradients cannot be calculated using analytic or 
numerical methods.  Instead, gradient-estimation methods 
must be used.   

1.2 Background & Objective 

Much work has been done in developing gradient-
estimation methods, which are used in stochastic optimiza-
tion, stochastic root-finding, sensitivity analysis, and input-
model uncertainty.  These methods can be categorized 
based on (1) whether they use information from within the 
simulation oracle in deriving the estimators and (2) the to-
tal number of design points observed.    
 Methods relying solely on information that can be out-
put from the simulation oracle, so no knowledge of the un-
derlying model is used in deriving the gradient estimators, 
are referred to as indirect methods.  Finite differences, si-
multaneous perturbation, response surface methods, and 
frequency domain are classified as indirect methods.  Di-
rect methods, such as infinitesimal perturbation analysis 
and likelihood ratios, use information from within the 
simulation oracle.  (Fu 2005) 
 For some gradient-estimation methods, the number of 
design points in which users are required to observe in-
creases with the dimensionality of the problem.  Spall’s 
(1992) simultaneous perturbation method, however,  can es-
timate gradients in any number of dimensions using data ob-
tained from only one or two design points.  Infinitesimal per-
turbation analysis and likelihood ratios are other examples of 
methods in which the number of design points observed 
does not increase with the dimensionality of the problem.  
 We present an indirect gradient-estimation method that 
is based on concepts from the control-variates variance-
reduction method and uses data from a single design point.  
We compare a simple version of the proposed method with 
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finite differences and simultaneous perturbation.  Using re-
sults derived from an assumed second-order linear model, 
we illustrate that the statistical performance of the pro-
posed method appears to be competitive with that of exist-
ing methods. We then discuss future work, with an end ob-
jective of developing a gradient-estimation method that can 
be completely automated, requiring no user-input.   

1.3 Assumptions 

We make the following assumptions regarding the gradi-
ent-estimation problem:   

 
1. The function g  is continuous and differentiable 

everywhere.   
2. The oracle used for obtaining estimates of ( )g x  

is a black-box in that information inside the oracle 
is not considered.   

3. The oracle provides data that can be used to ob-
tain consistent estimators for both the unknown 
performance measure θ  and the known design 
point 0x . 

 
 Under assumption 3, problems for which users wish to 
estimate the gradient of one performance measure with re-
spect to another performance measure (instead of an input 
parameter) are also considered.  Input-model parameters 
can be viewed as a subset of the performance measures in 
which the expected value is controllable.   
 We refer to a call to the oracle at a given design point 

0x  as “obtaining an observation” and define the simulation 
run length, n, to be the total number of calls made to the 
oracle across all design points.   

1.4 Criteria for Comparing Methods 

Only indirect gradient-estimation methods are considered.  
The criterion for evaluating methods is the sum of the gen-
eralized mean squared errors across all q dimensions,  

( ) ( ) ( )( )2

0 0
1

ˆ1 E
q

i i
i

n g x g x
=

⎛ ⎞
+ ⋅ ∇ − ∇⎜ ⎟

⎝ ⎠
∑ , 

where ( )0
ˆ

ig x∇  is the estimate of the ith component of 
( )0g x∇ .  The costs of specifying algorithm parameters 

and the costs of changing the values of input parameters to 
observe multiple design points are also considered. 

1.5 Organization 

The remainder of this paper is organized as follows:  Sec-
tion 2 discusses the finite differences and simultaneous 
perturbation gradient-estimation methods, and Section 3 
introduces a simple version of the proposed gradient-
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estimation method.  In Section 4 we present a model that is 
used for analyzing and comparing methods.  Section 5 fur-
ther discusses simultaneous perturbation focusing on its 
statistical properties when the method is evaluated condi-
tionally.  Conclusions and plans future work are contained 
in Section 6. 

2 EXISTING METHODS 

We review two variations of finite differences and two 
variations of simultaneous perturbation.  Here we ignore 
frequency-domain and response-surface methods.  Refer to 
Schruben and Cogliano (1981) for further details on the 
frequency-domain method.   

2.1 Finite Differences 

Finite differences (FD) is based on the definition of the de-
rivative of g  at 0x .  The forward finite differences (FFD) 
estimator for single dimensions is  
 

 ( ) ( ) ( )0 0
0

ˆ ˆ
ˆ

g x g x
g x

δ
δ

+ −
′ = , (2) 

 
where delta δ  represents the perturbation in the input pa-
rameter, which must be chosen by the user.  (L'Ecuyer 
1991) An alternative is the central differences estimator 
(FCD), which in single dimension is  
 

 ( ) ( ) ( )0 0
0

ˆ ˆ
ˆ

2
g x g x

g x
δ δ

δ
+ − −

′ = . (3) 

 
There is a third FD estimator, finite backward differences, 
with properties similar to that of FFD.   
 In multiple dimensions FD requires users to specify 
the perturbation amount iδ  for 1,2, ,i q= K .  The thi com-
ponent of the q-dimensional FCD gradient estimator is  

 

 ( ) ( ) ( )0 0
0

ˆ ˆ
ˆ

2
i i

i
i

g x g x
g x

δ δ
δ

+ − −
′ = , (4) 

 
where  iδ  is the vector with iδ  as the ith component and 
zeros elsewhere.   
 Because FD perturbs input-model parameters one at a 
time, in q dimensions FFD requires users to obtain obser-
vations from q+1 design points and FCD requires 2q de-
sign points. 

2.2 Simultaneous Perturbation 

Spall (1992) modified finite differences to reduce the num-
ber of design points required in higher dimensions.  There 

http://www2.lib.purdue.edu:2207/citation.cfm?id=304281&dl=GUIDE&coll=GUIDE&CFID=73437595&CFTOKEN=40777110
http://www2.lib.purdue.edu:2207/citation.cfm?id=304281&dl=GUIDE&coll=GUIDE&CFID=73437595&CFTOKEN=40777110
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are two versions of the simultaneous perturbation method.  
The first allows users to estimate gradients in any number 
of q dimensions with two design points.  The second re-
quires only one design point.   

2.2.1 Two Design-Point Version 

The two design-point version of simultaneous perturbation 
(SP2) is similar to finite differences in that users are re-
quired to specify a vector of input-parameter perturbations 
δ , one perturbation for each dimension.  However, instead 
of perturbing only one parameter at a time, all input pa-
rameters are perturbed simultaneously sampling pairs of 
opposing vertices at random.   
 The ith component of this q-dimensional gradient es-
timator is  

( ) ( ) ( )0 0
0

ˆ ˆ
ˆ

2i
i i

g x g x
g x

δ δ
δ

+ Λ − − Λ
′ =

Λ
, 

where iδ  is the perturbation for the ith dimension, Λ  is a 
vector containing the signs ( 1± ) of the perturbations for 
each dimension, and iΛ  is the sign of the perturbation in 
the ith dimension.  Unlike δ , which is user-specified, Λ  
is randomly generated, requiring no user input.  The sign 
vector is typically generated as a Bernoulli(1/2) random 
variable taking on values {+1,-1} instead of {0,1}.  Xiong 
et al. (2002) have also investigated deterministic sequences 
for choosing  Λ .   

SP2 requires users to obtain observations from design 
points 0x δ± Λ , rather than 2q design points as is required 
by FCD.   

2.2.2 Single Design-Point Version 

The ith  component of the q-dimensional gradient estimator 
for the single design-point version of simultaneous pertur-
bation (SP1) is 

( ) ( )0
0

ˆ
ˆi

i i

g x
g x

δ
δ

+ Λ
′ =

Λ
. 

Like SP2, the SP1 randomly generates the signs of the per-
turbations Λ  for each dimension.   
 SP1 requires users to obtain observations from design 
point 0x δ+ Λ  to estimate the gradient at 0x  so in some 
contexts it may be important to consider the default input-
parameter values.   
 If the default input-parameter values are assumed to be 

0x , then this method would not be classified as a single 
design-point method because it would require the user to 
run the simulation with input-parameter setting 0x δ+ Λ .  
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Considering the default input-parameter settings is usually 
irrelevant in simulation experiments.  For physical experi-
ments, however, assumptions about the default values may 
be important. 

3 PROPOSED METHOD 

We obtain observations from the oracle at a single design 
point 0x .  Recall that in Section 1.3 we assume that in ad-
dition to estimating the performance measure 0θ , users can 
also obtain estimates  of the input parameters 0x .  

 Let  0̂ jθ  be the jth batch estimate of 0θ  based on a 

batch size of m and 0
ˆ

jX  be the jth batch estimate of 0x  
based on a batch size of m for 1,2, ,j k= K , where k m⋅  is 
equal to the simulation run length n.  Refer to Law and 
Kelton (2000) for details on batch statistics. 
 First consider a one-dimensional problem.  In this case 
the proposed gradient estimator is  

 

 ( )
� ( )
� ( )

( )( )
( )

0 0
0 0 1

0 2
0

0
1

ˆˆˆ ˆCov ,
ˆ

ˆVar ˆ

k

j j
j

k

j
j

X XX
g x

X X X

θ θθ
=

=

− −
′ = =

−

∑

∑
, (5) 

where  

0
1

1 ˆ
k

j
j

X X
k =

= ∑   

and  

0
1

1 ˆ
k

j
jk

θ θ
=

= ∑ . 

The basis for using (5) as a gradient estimator is that, when 
the conditional relationship between 0̂ jθ  and 0

ˆ
jX  is linear, 

then 
 

 0 0 0 1 0
ˆ ˆ ˆE |j j jX Xθ γ γ⎡ ⎤ = +⎣ ⎦ . (6) 

 
Assuming that  0̂ jθ  and 0

ˆ
jX  are unbiased estimators of  

0θ  and 0x , the unconditional expectation of 0̂ jθ  is then 
 
 

0
ˆ 0 0 0 1

ˆ ˆE E |j jX X xθ γ γ⎡ ⎤⎡ ⎤ = +⎣ ⎦⎣ ⎦ . (7) 

 
Differentiating (7) with respect to x  yields 1γ , which is 
estimated via least squares.   
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Lavenberg and Welch (1981) show that the condi-
tional linear model in (6) is correct when 0̂ jθ  and 0

ˆ
jX  

have a bivariate normal distribution.  For most estimators, 
when the raw output data is batched into k  batches of 
length m , as m → ∞  ( )0 0

ˆ ˆ,j jXθ  have a bivariate normal 

distribution with means ( )0 0
ˆ ˆ,j jXθ , variances  

2 2

, X
m m
θσ σ⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

,  

and correlation ρ .   

3.1.1 Connection to Control Variates 

The proposed method for estimating ( )0g x′  is similar to 
the control-variates variance-reduction method.  The objec-
tive of control variates, however, is to reduce the variance 
of the estimate of 0θ , not to estimate ( )0g x′ .  Linear con-
trol variates assume that 

( )0 0 0 1 0 0
ˆ ˆ ˆE |j j jX X xθ θ α⎡ ⎤ = + −⎣ ⎦ , 

which is a centered linear model.  (Law and Kelton 2000)   
 Assuming a centered model implies that the expected 
value of the input parameter is known.  In this model 

1
α  is 

the optimal control-variate weight, which is usually esti-
mated with   

� ( )
� ( )

0 0
1

0

ˆ ˆCov ,
ˆ

ˆVar

X

X

θ
α = . 

So the estimator for 1α  is equivalent to our gradient esti-
mator,  1̂γ .  This can also be shown by converting the cen-
tered model parameters ( 0 1,α α ) to the uncentered model 
parameters ( 0 1,γ γ )   

0 0 1

1 1

xα γ α
α γ

= +

=
. 

Refer to Tamhane and Dunlop (2000) for details on con-
version between centered and uncentered linear models. 
 We do not assume that the expected values of the input 
parameters are known, which is why we do not use a cen-
tered model.   One benefit of the proposed method is that it 
can be used to estimate gradients with respect to variables 
with unknown expected values.  Consider the case, for ex-
ample, where one wishes to estimate the gradient of one 
performance measure with respect to another performance 
measure, rather than an input-model parameter. 
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3.2 Higher-Dimensional Problems 

The proposed method can be extended to estimate gradi-
ents in multiple dimensions.  For such problems we fit in-
dividual linear models  

0 ,0 ,1
ˆ ˆ ˆE |j ij i i ijX Xθ γ γ⎡ ⎤ = +⎣ ⎦ , 

for ( )1,2, ,i q= K  and estimate ,1iγ , the ith component of 
the q-dimensional gradient, with  

( )
� ( )
� ( )

( )( )
( )

0
0 1

0 2

1

ˆˆˆ ˆCov ,
ˆ

ˆVar ˆ

k

ij j
i j

i k
i

ij
j

X XX
g x

X X X

θ θθ
=

=

− −
′ = =

−

∑

∑
, 

where ˆ
ijX  is the jth batch estimate of the ith input parame-

ter based on a batch size of m.   
 An alternative to fitting individual linear models 
would be to fit a combined linear model,  

0 1 2 0
1

ˆ ˆ ˆ ˆ ˆE | , , ,
q

j j j qj i ij
i

X X X Xθ γ γ
=

⎡ ⎤ = +⎣ ⎦ ∑K , 

and estimate iγ  for 1,2, ,i q= K .  This an area of future 
research discussed in Section 6. 

3.3 Advantages 

The proposed method is an indirect method so it is gener-
ally applicable across simulation models and can be used 
to estimate q -dimensional gradients using data from a sin-
gle design point.   

The only method parameter that users are required to 
specify is the number of batches k , which can be chosen 
and adjusted after the data have been collected.  If users 
change decisions about how to batch the data, they are not 
required to run the experiment again.  This is not the case 
with FD or SP where users must specify the input parame-
ter perturbations δ  in advance.  Choosing the number of 
batches affects only the analysis of the experiment, 
whereas choosing the input perturbations changes the ex-
perimental design.     

3.4 Drawbacks and Considerations 

The proposed method cannot be used for estimating gradi-
ents with respect to quantities that have zero or extremely 
little variance at a given design point.  This situation com-
monly arises when users want to estimate gradients with 
respect to logic-model parameters rather than input-model 
parameters.  See Figure 1. 
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( )0 0Input Model Logic Model ˆ ˆ,G U X Y Xθ→ → → → → →

Figure 1: Process of Obtaining Estimates Through a Simu-
lation Oracle 

 
 Figure 1 illustrates the process of obtaining estimates 
of 0θ  and 0x  through a simulation oracle.  This process 
begins with a random number generator, G, which is used 
to obtain Uniform(0,1) random numbers, U.  Input models 
are then used to generate input observations X.  The input 
observations are then converted to output observations, Y, 
via a logic model.  Finally, output observations are used to 
obtain the desired estimates ( )0 0

ˆ ˆ, Xθ .   

 Logic model parameters are not generated and hence 
have no variance at a given design point 0x .  Consider the 
case, for example, where users wish to obtain the gradient 
of a performance measure with respect to the buffer size 
(assuming that the buffer size is continuous), which is a 
logic-model parameter.  At a given design point, the num-
ber of buffer positions is deterministic.  In such a case, the 
proposed gradient estimator introduced in (5) is undefined.   

4 MODEL AND ANALYSIS 

To compare the proposed method with FD and SP we con-
struct a stochastic model.  We have one input-parameter, 
X , with input model  

( )2
0 , XN x σ .   (8) 

Let hX  denote the hth observation of X  for 1,2, ,h n= K .  
We assume a second-order linear logic model with additive 
error hε ,  

2
0 1 2h h h hX Xθ β β β ε= + + + ,   (9) 

where ( )2~ 0,h N εε σ .  We also assume that hX ’s and 

hε ’s are independent and identically distributed and that 

hX  and hε  are independent of each other for 1,2, ,h n= K .  
This implies that the hθ ’s are also independent and identi-
cally distributed. 
 Assuming input model (8) and logic model (9), the re-
sponse surface, defined as 

( ) ( )0
ˆE hg x θ= ,  

where ĥθ  estimates θ , is implied to be 

( ) ( )2 2
0 0 1 0 2 0 Xg x x xβ β β σ= + + + . 
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Recall that the objective is to estimate  

0

dg
dx x x=

, 

which is  

1 2 02 xβ β+ . 

4.1 First-Order Model Results 

We analyze the bias and the variance of the gradient esti-
mators for the proposed method, FFD, FCD, SP2, and SP1 
for the assumed stochastic model where 2 0β = . Table 1 
contains results for this analysis.   
 

Table 1: First-Order Model Results 
 

Method 
 

Bias Variance 

Proposed 0 ( )
2

23 Xk
εσ

σ−
 

FFD 0 
2 2 2

1
2

X

n
εβ σ σ

δ
+  

FCD 0 
2 2 2

1
2

X

n
εβ σ σ

δ
+  

SP2 0 
2 2 2

1
2

X

n
εβ σ σ

δ
+  

SP1 0 ( ) 2 2 2 2
0 1

2
Xg x

n
εβ σ σ

δ δ
⎛ ⎞ ++⎜ ⎟
⎝ ⎠

 

 
All of the gradient estimation methods yield unbiased es-
timates for the assumed first-order model so we consider 
only variance.   
 The variance term for the proposed method is in-
versely related to the number of batches k so, assuming 
that the number of batches used increases proportionally 
with the simulation run length n,  variance decreases as n 
increases.  The variance of the proposed estimator differs 
from that of the other estimators in that it does not depend 
on 1β  and is inversely related to 2

Xσ .   
 The variance is the same for the FFD, FCD, and SP2 
gradient estimators.  Variance for the SP1 estimator not 
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only depends on 1β , but also on ( )0g x .  Furthermore, it is 
not decreasing as n increases. 

For a fixed n, the variance of the proposed method is 
minimized by choosing k = n.   For all other methods vari-
ance is minimized by choosing δ  to be as large as possi-
ble.  Thus, δ  can always be chosen such that the variance 
of the estimators for the other methods is lower than that of 
the proposed method.   

4.2 Variance Reduction 

The results obtained in Table 1 are derived assuming that 
observations from the input model are independent and 
identically distributed.  Common random numbers could 
be used for FFD, FCD, and  SP2, which would result in 
these methods having zero variance.  Antithetic variates 
could be used for the proposed method, which would result 
in the proposed estimator having zero variance.   

4.3 Second-Order Model Results 

We now analyze the bias and the variance of the gradient 
estimators for the proposed method, FFD, FCD, SP2, and 
SP1 for the assumed stochastic model for an arbitrary 2β .  
Table 2 contains results for this analysis.   
 

Table 2: Second-Order Model Results 
 

Method 
 

Bias Variance 

Proposed 0 ( )
( )2 4

2 2
2

1 21
3

X

X

m
k m ε

β σ
σ

σ
⎛ ⎞−

+⎜ ⎟− ⎝ ⎠
 

 
FFD 

 
2β δ  ( ) ( )( )2 2

0 0
2

2 x x
n

θ θσ δ σ
δ

+ +
 

 
FCD 

 
0 ( ) ( )2 2

0 0
22

x x
n

θ θσ δ σ δ
δ

+ + −
 

SP2 0 ( ) ( )2 2

22
x x

n
θ θσ δ σ δ

δ
+ + −

 

SP1 0 

( )( ) ( )( )

( )
( ) ( )

2 2
0 0

2

2 2 2
1 2 0 1 2 0

2 2
0 0

2

2
4 4

2

g x g x

x x

x x
n

θ θ

δ δ
δ

β β β β

σ δ σ δ
δ

+ + −

− + +

+ + −
+
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The variance of the FFD, FCD, SP2, and SP1 estima-
tors is a function of ( )2 xθσ , which is 

 

( )2 2 2 4 2 2 2
2 2 1 2 14 2X X X Xx x εβ β σ β σ β σ β σ σ+ + + + . 

 
 All of the gradient estimation methods except FFD  
yield unbiased gradient estimates for the second-order 
model.  Results for the variance of the estimators are simi-
lar to that of the first-order model.  The variance for the es-
timator of proposed method, however, is dependent on 2β , 
whereas in the first-order model variance was not depend-
ent on the response-surface coefficients.   

Because bias for FFD is directly related to δ , there is 
a tradeoff between choosing delta small enough to reduce 
bias and large enough to reduce variance.   

5 CONDITIONAL SIMULTANEOUS 
PERTURBATION 

Both SP2 and SP1 require users to sample the signs of the 
input parameter perturbations Λ  randomly.  Statistical per-
formance of the SP2 and SP1 estimators is then evaluated 
across multiple realizations of  Λ .  (Spall 1992, 1997) 
 Evaluating the performance in this manner, both the 
SP2 and SP1 estimators are unbiased, as shown in Tables 1 
and 2.  Such an evaluation is useful when these methods 
are used within a stochastic approximation algorithm, 
which was the context in which these methods were origi-
nally developed.  Stochastic approximation is an iterative 
process where users make multiple replications at each 
point.  This type of analysis, however, may not be as useful 
for the stand-alone gradient estimation problem.   
 Evaluating the performance across multiple realiza-
tions of Λ  implies that users must use more than one or 
two design points to obtain unbiased estimates.  Both SP2 
and SP1 will observe 2q  design points as the number of 
realizations increases, where as FCD only observes 2q  de-
sign points.  Therefore, in the stand-alone gradient estima-
tion problem, it needs to be determined whether SP2 and 
SP1 are truly two design-point and one design-point meth-
ods, respectively, or whether the number of design points 
required is determined by the number of realizations users 
perform.    
 Using the model presented in Section 4, we analyze 
the performance of both SP2 and SP1 conditional on a 
given set of signs λΛ = , requiring that users observe only 
two design points for conditional SP2 (CSP2) and one de-
sign point for conditional SP1 (CSP1).    
 Table 3 lists the bias and the variance of the CSP2 and 
CSP1 estimators for a first-order model ( 2 0β = ). 
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Table 3: CSP2 and CSP1 Results 
 

Method 
 

Bias Variance 

CSP2 0 
2 2 2

1
2

X

n
εβ σ σ

δ
+  

CSP1 0 1 0xβ β
λδ
+  ( )2 2 2

1
2

X

n
εβ σ σ

δ
+

 

 
The results listed in Table 3 show that the variance of 

CSP2 is equivalent to that of SP2.   CSP2 is unbiased for 
one-dimensional problem because the estimators are 
equivalent for both 1Λ = +  and 1Λ = − .  For higher-
dimensional, first-order problems, CSP2 is biased.  Extend-
ing the model presented in Section 4 such that the number 
of inputs is q > 1, the logic model would then be 

0 1, ,
1

q

h i h i h
i

Xθ β β ε
=

= + +∑ , 

for 1,2, ,i q= K , and the response surface is 

( )0 0 1, 0
1

q

i i
i

g x xβ β
=

= +∑ , 

which is a linear first-order model with gradient  

( )1,1 1,2 1,, , , qβ β βK . 

The bias for the ith component of the CSP2 estimator is 

1,

1,

 
q

l l l

l i i
l i

β λ δ
λ δ=

≠

∑ . 

 Recall from the results in Table 1 that both the FFD 
and FCD estimators are unbiased for linear first-order re-
sponse surfaces.   

Unlike SP1, CSP1 is biased even for a one-
dimensional problem.  The variance of CSP1, however, is 
lower than it is for SP1, but the mean squared error, which 
is the sum of squared bias and the variance, is equivalent 
for SP1 and CSP1.    

6 CONCLUSIONS AND FUTURE WORK 

We compared a simplistic version of the proposed method 
to existing methods assuming first and second-order linear 
logic models and respective first and second-order implied 
response surfaces.  Results of the analysis indicate that  the  
proposed gradient estimator is unbiased with variance in-
versely related to 2

Xσ .   
396
 Compared to the only existing single design-point 
method, SP1, the proposed gradient estimator is advanta-
geous in that its variance is not dependent on the magni-
tude of the response surface at the design point of interest 

( )0g x  and it is decreasing as the simulation run length n 
increases.  
 We also analyzed the statistical performance of SP 
conditional on the sign vector Λ  for a first-order linear 
model.  Results indicate CSP1 is biased and that CSP2 is 
biased for problems with dimensionality greater than one.   

Future work for extending the proposed method in-
cludes: 

 
1. investigating conditions under which it is better to 

a combined model, rather than individual models 
to estimate the regression coefficients 

2. developing an algorithm to automate the proposed 
method without any user-input 

3. developing a sequential method for choosing the 
magnitude of the perturbations in the input pa-
rameters such that the proposed method can be 
used in cases where the input-model parameters 
have zero variance. 
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