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ABSTRACT

Factor screening is performed to eliminate unimportant fac-

tors so that the remaining important factors can be more

thoroughly studied in later experiments. Controlled Se-

quential Bifurcation (CSB) and Controlled Sequential Fac-

torial Design (CSFD) are two new screening methods for

discrete-event simulations. Both methods use hypothesis

testing procedures to control the Type I Error and power of

the screening results. The scenarios at which each method

is most efficient are complementary. This paper proposes

a two-stage hybrid approach to combine CSB and CSFD.

The new method usually has the same error control as CSB

and CSFD. The efficiency, on the other hand, is usually

much better than either component method.

1 INTRODUCTION

Screening experiments allow the researcher to eliminate

obviously unimportant so that more detailed investigations

can focus on the most influential ones. Many strategies

have been proposed for factor screening purpose (Trocine

and Malone 2000, 2001 and Campolongo et al. 2000).

However, most research has concentrated on designs for

physical experiments, which typical involves less than 25

factors and do not take advantage of the sequential nature of

simulation experiments. In addition, because of the high cost

of conducting physical experiments, the traditional screening

methods usually emphasize using fewest number of runs to

estimate as many effects as possible, the correctness of the

results is considered secondary.

CSB (Wan et al. 2003, 2006a) is a new group screening

method specifically designed for stochastic simulation ex-

periments. Factors are tested in groups. If the group effect

is unimportant, all factors in the group will be considered

as unimportant; if the group effect is important, the factors

in the group will be split into two smaller subgroups for

further testing. CSB is the first screening method to control

the probabilities of misclassifications. With qualified hy-
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pothesis testing procedure (Wan et al. 2006a, 2006b) at each

bifurcation step, CSB can control the Type I Error for each

factor (i.e., the probability of an unimportant factor being

classified as important) and the power at each bifurcation

step (i.e., the probability of a critical group being identified)

under heterogeneous variance conditions. Since CSB can

eliminate unimportant factors in groups, it is specifically

well suited for the cases with a large number of factors

and a small percentage of them being important. Wan et

al. (2006b) later proposed an improved version of CSB,

called CSB-X, using a fold-over design. CSB-X relaxes the

assumption of main-effects model and gives the same error

control for main effects as in CSB even when two-factor

interactions and quadratic terms exist.

Although CSB methods are attractive for many simu-

lation applications, they also have serious limitations: (1)

The methods can only screen main effects and the results

can be misleading when higher-order interactions exist; (2)

The signs of main effects are assumed to be known to

avoid effect cancellation, but this knowledge is not always

available in practice; (3) In CSB methods, simulation ob-

servations generated in previous bifurcation steps may not

be useful in the later screening stages and new observations

are usually needed at each bifurcation step; and (4) The

efficiency of CSB methods is sensitive to the index order of

factors (important factors are preferably clustered) and the

variances of the response surface. In reality, the optimal

setting is rarely achieved since prior information is often

faulty.

CSFD (Shen and Wan 2005) was proposed to overcome

these limitations of CSB. CSFD combines qualified hypoth-

esis testing procedure with a sequential traditional factorial

design to provide simultaneous Type I Error and power

control for each interested effect under heterogeneous vari-

ance conditions (the power control is stronger than CSB).

CSFD can screen any main effects and interactions without

assuming the directions of effects to be known a priori. In

addition, unlike CSB methods, it can utilize all previously

generated observations in the later screening process. In
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most cases, after the first few effects are classified, there is

enough data to classify all of the remaining effects. On the

other hand, when the number of factors is large and inter-

actions exist, CSFD would have to repeat a huge factorial

design and the simulation effort would be prohibitive.

The structure of CSB (CSB-X) and CSFD is demon-

strated in Table 1 and Table 2 respectively. Numerical

evaluation shows that there exists a complementary rela-

tionship between CSB and CSFD methods (Wan et al.

2006a, Shen and Wan 2005), i.e., the strength of CSB

methods is usually the weakness of CSFD, and vice versa.

This complementary relationship inspires us to propose a

hybrid method that combines CSB and CSFD to achieve

better efficiency. The underlying idea is to apply CSFD

to screen those likely important effects (typically a small

percentage of all effects) and CSB (CSB-X) to screen those

likely unimportant effects. Since both methods would be

conducted in their favorable configurations, the efficiency of

the screening process could be significantly improved. The

challenge is to coordinate different procedures and provide

overall error control of the screening results.

The paper is organized as follows: The underlying

response model and the objective of screening are discussed

in Section 2. Section 3 describes the proposed hybrid

method and its error control properties. Section 4 presents

empirical evaluations of the hybrid method and compares it

with the existing methods. Conclusion and future research

are discussed in Section 5.

2 MODEL DESCRIPTION

Suppose there are L factors. A general linear model including

all main effects and interactions is shown below:

Y = β0 +

L∑

i=1

βizi +
∑

i< j

βi jziz j +
∑

i< j<k

βi jkziz jzk

+ · · ·+β12···Lz1z2 . . .zL + ε.

Here β = {β1,β2, . . . ,β12···L} is the effect coefficient vector

and z = (z1,z2, . . . ,zL) stands for the deterministic level

settings. In practice, the interested effects can be any

subset of β . Heterogeneous variances are allowed and the

error term, ε , is assumed to be a Nor(0,σ2(z)) random

variable whose variance is unknown and may depend on z.

Screening experiment will classify each factor as “important”

or “unimportant”. We want to simultaneously control the

Type I Error ≤ α for those effects ≤ ∆0 (unimportant

effects), and the power ≥ γ for those effects ≥ ∆1 (critical

effects). For those effects between ∆0 and ∆1, we consider

them important but no error control will be offered for the

screening results. Here the parameters ∆0 and ∆1 are the

thresholds of importance and criticality respectively; α and

γ are user-specified error control parameters.
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Consider a typical complex simulation model with a

large number of factors, possible important interactions, and

little prior knowledge of the system. Neither CSB (CSB-

X) nor CSFD alone will be both effective and efficient.

CSB (CSB-X) cannot screen interactions and the scattered

important factors may impede the elimination of unimportant

ones in group. CSFD will require a huge factorial design;

even if the design only repeats for a few times, the number

of runs will still be too many. The proposed hybrid method

is to target this situation. The sparsity of effects principle

(Myers and Montgomery 2002) is still assumed to be valid,

namely, only a small percentage of factors are responsible

for most of the response variation; otherwise, screening

experiments would be unnecessary.

3 HYBRID SCREENING PROCEDURE

3.1 Hybrid Procedure

FF-CSB (Sanchez et al. 2005) is the first effort on the hybrid

screening approach. The structure of FF-CSB is given in

Table 3. FF-CSB still assumes main-effects response model.

In order to drop the assumption of known effect directions

in CSB, FF-CSB adds a prescreening stage in which a

saturated or nearly-saturated fractional factorial experiment

is conducted to estimate the directions and magnitudes of

the effects. All factors are then divided into positive and

negative groups and within each group factors are sorted. In

the second stage, the original CSB procedure is applied on

the “positive” and “negative” groups separately. Numerical

result shows that even with the extra effort in prescreening,

FF-CSB is generally more effective and efficient than CSB.

We extend the above hybrid strategy by integrating

the prescreening, CSB-X and CSFD procedures into one

screening method. CSB-X is used since it has superior

performance than CSB (Wan et al. 2006b). The generic

structure of the hybrid method is given in Table 4. It

consists of two phases. Phase 1 is to obtain the initial

estimates of all desired effects and all factors are explicitly

assigned into one of three groups: all factors associated

with one or more potentially important main or interaction

effects will be assigned to group IMP; the rest of the

factors, the potentially unimportant ones, will be assigned

to either group POS (positive factor) or group NEG (negative

factor). The cut-off value that divides potentially important

and unimportant effects is called the threshold of factor

assigning. The prescreening design used in Phase 1 should

be able to estimate all desired effects with a small number of

simulation runs. In Phase 2, CSFD is applied on group IMP

and CSB-X is applied on groups POS and NEG separately.

Factors in groups POS and NEG will first be sorted within

each group so that CSB-X procedure can achieve its best

efficiency.
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Table 1: Structure of CSB and CSB-X

Initialization:

Create an empty LIFO queue for groups. Add the group {1, . . . ,K} to the LIFO queue.

While queue is not empty, do

Remove: Remove a group from the queue.

Test:

Unimportant:

If the group is unimportant, then classify all factors in the group as unimportant.

Important (size=1):

If the group is important and of size 1, then classify the factor as important.

Important (size>1):

If the group is important and the size is greater than 1, then split the group into two subgroups

such that all factors in the first subgroup have smaller indices than those in the second subgroup.

Add each subgroup to the LIFO queue.

End Test

End While
Table 2: Structure of CSFD

Initialization:

Form a queue of effects of interests. Select a factorial design. Generate N = n0 replications of observations.

While queue is not empty, do

Remove: Remove an effect from the queue.

Compute: Compute sample mean and sample variance of the effect coefficient. Sample size = N.

While the effect is not classified, do

If the effect cannot be classified with the specified error control, then

Generate new replication(s). Update sample size N and sample mean.

End If

End While

End While
Table 3: Structure of FF-CSB

Initialization:

Create two empty LIFO queues for groups, NEG and POS.

Phase 1:

Conduct a saturated or nearly-saturated fractional factorial experiment and estimate β̂1, . . . , β̂k. Order

the estimates so that β̂[1] ≤ . . . ≤ β̂[z] < 0 ≤ β̂[z+1] . . . ≤ β̂[K]. Add factors {[1], . . . , [z]} to the NEG LIFO

queue, and factors {[z+1], . . . , [K]} to the POS LIFO queue.

Phase 2:

Apply CSB on two LIFO queues, NEG and POS, separately.
384
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Table 4: Structure of Hybrid Method

Initialization:

Create three empty groups: IMP, POS, and NEG.

Phase 1:

Prescreen: Select a prescreening procedure to estimate the coefficients of all effects of interest.

Divide: Assign factors related to potential important effects to group IMP; assign other factors to either

group POS or NEG based on the directions of their estimated effect coefficients.

Phase 2:

Sort: Sort factors in groups POS and NEG respectively based on estimated effect coefficients.

CSB-X: Apply CSB-X to classify factors in groups POS and NEG separately.

CSFD: Apply CSFD to classify factors in group IMP (main effects and interactions).
3.2 Error Control of Hybrid Method

Because of the stochastic nature of the response, factors

could be assigned to the wrong group. For example, impor-

tant (unimportant) factors can be assigned to unimportant

(important) groups, and positive factors can be assigned to

NEG or vice versa. No mis-assignment of factors would

affect the Type I Error control of the hybrid method since

for any effect to be classified as important, it must be tested

individually by CSB-X or CSFD in Phase 2.

However, mis-assignments of factors associated with

critical effects could seriously affect the power control of the

hybrid method. For example, if a factor associated with a

critical interaction effect is assigned to an unimportant group,

there is no chance that this interaction could be classified as

important in Phase 2 since CSB-X cannot screen interactions.

This prompts us to be conservative in the selection of the

threshold of factor assigning in Phase 1. On the other hand,

we do not want to be too conservative as well: a too small

threshold value results in that many unimportant factor are

assigned to group IMP and Phase 2 CSFD may have a

large factorial design to repeat. In the empirical evaluation,

we choose the threshold of factor assigning to be ∆0/2
rather than using the threshold of importance ∆0. We will

have more discussion of the selection the threshold in next

section.

4 EMPIRICAL EVALUATION

Numerical experiments are conducted to compare the perfor-

mance of the hybrid method to CSFD and FF-CSB. Because

of its superiority over CSB, we use CSB-X procedure in

FF-CSB and the hybrid method. Table 5 lists the experi-

ment parameters. In all cases, the presented results are the

averages of 1000 independent trials. Fractional factorial

experiments are used as prescreening procedure (Resolu-

tion III designs for main-effects models and Resolution V
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designs for second-order models). Unless stated otherwise,

only one replication is used in prescreening procedures. For

CSB-X and CSFD procedures in Phase 2, different initial

sample sizes are tried and for each case the result with the

minimal number of simulation runs required for screening

is presented for comparison. For the relationship of initial

sample size and the overall efficiency of CSB-X and CSFD,

please refer to Shen and Wan (2006).

4.1 Main-Effects Model

We first consider the main-effects cases with 200 and 500

factors respectively. For both cases, the effect coefficients

are randomly generated and the distribution of the absolute

values of effect coefficients is as follows: 2.5% of them are

equal to ∆1 = 4; 2.5% of them are uniformly distributed

on (∆0,∆1) = (2,4); 2.5% of them are equal to ∆0 = 2;

2.5% of them are uniformly distributed on (0,∆0) = (0,2);
and all others are zeros. Factors with non-zero effects are

randomly distributed. Each non-zero coefficient has equal

probability to be positive or negative.

A general method has been proposed (Shen and Wan

2005, Wan and Ankenman 2006) to construct large-scale

Resolution III factorial designs. For 200-factor and 500-

factor experiments, these designs need 256 and 512 sim-

ulation runs respectively in one replication to provide an

independent estimate for each main effect in Phase 1. The

same method is used to construct the factorial design used

in the Phase 2 CSFD procedure. The size of this factorial

design depends on how many factors are assigned to group

IMP.

Table 6 presents the average numbers of simulation

runs required by CSFD, FF-CSB, and the hybrid method

for selected scenarios. The hybrid method is the most

efficient one in all cases. The numbers in the parentheses

are the relative savings of the simulation effort by the hybrid

method compared with CSFD. When the variance is large,
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Table 5: Simulation Experiment Parameters

Parameter Value

L 50, 200, 500

∆0 2

∆1 4

α 0.05

γ 0.95

σ m∗(1 + size of the group effect)

m 0.01, 0.1, 0.3, 1

Table 6: Simulation Runs Required for Cases with Main-

Effects Model

Variance
Case Factor CSFD FF-CSB Hybrid

m = 0.01 512 392 336 (34.4%)

200- m = 0.1 559 798 371 (33.6%)

Factor m = 0.3 792 2817 475 (40.0%)

m = 1.0 1807 22523 1475 (18.4%)

m = 0.01 1024 1379 656 (35.9%)

500- m = 0.1 1304 4500 734 (43.7%)

Factor m = 0.3 1678 26986 998 (40.5%)

m = 1.0 4169 275101 4064 (2.5%)

the efficiency of the hybrid method approaches that of CSFD.

This is because with larger variances the effectiveness of

the prescreening procedure drops, which then affects the

efficiency of both CSB-X and CSFD procedures in Phase 2

of the hybrid method. The benefit of incorporating CSFD

into the hybrid method (compared with FF-CSB) becomes

more obvious when the variance increases.

Selected P(DI)’s, i.e., the percentage of times that each

effect is declared important, are presented in Table 7 for

the 200-factor case. The three methods have similar effec-

tiveness results when variance is small (m = 0.01) and all

meet the error control requirements. When variance is large,

CSFD and the hybrid method still have similar effectiveness

and the classification results are much more conservative

than the error control requirements. But FF-CSB fails to

meet the specified error control for some effects (highlighted

in Table 7).

Given ∆0/2 as the threshold of factor assigning, Ta-

bles 8 and 9 give the average numbers and percentages of

mis-assignments in Phase 1. “IMP to UNIMP” stands for as-

signing potentially important factors to unimportant groups,

and “UNIMP to IMP” stands for the opposite. “Potentially

important” means the absolute value of effect coefficient is

no less than the threshold of factor assigning. For example,

in the 500-factor case with m = 1.0, when prescreening

sample size is 1, “3.96 (9.2%)” means that in average 3.96
38
potentially important factors are assigned to unimportant

groups, which is 9.2% of the total number of potentially

important factors. We can see that when variance is not

too large, few mis-assignments happen. Furthermore, mis-

assignments of critical factors are even less likely (Table 9).

In the same case above, out of the 12 critical factors, the

average number of critical factors assigned to unimportant

groups is 0.005; and for the 13 important but not critical

factors, the number is 0.395.

Tables 8 and 9 also show that the larger the prescreening

sample size, the less mis-assignments. When there are less

mis-assignments, both the effectiveness and efficiency of

CSB-X and CSFD procedures in Phase 2 improve. The

optimal prescreening sample size is unknown. However,

since the prescreening only accounts for a small percentage

of the total simulation effort in main-effects models, if little

knowledge is known on the variance, using two or three

replications in prescreening could be a safer approach.

Table 10 shows the influence of the threshold of factor

assigning on the dividing of the factors and the efficiency

of the hybrid method. It is based on the 500-factor case

with m = 1.0. What the table does not show is that unless

the threshold is extremely large, different thresholds have

little impact on the effectiveness results. For each threshold

value, columns 2-4 give the average numbers of factors

assigned to each group in Phase 1, columns 5-6 give the

average numbers of mis-assignments, and the simulation

runs required by CSB-X and CSFD procedures in Phase

2 are given in columns 7 and 8. When the threshold is

too small, lots of unimportant factors are assigned to group

IMP; thus CSFD procedure will have a large design to

repeat and CSB-X’s ability to eliminate unimportant factors

in group would help little. If the threshold is too large,

many important factors would be assigned to unimportant

groups; this not only may result in misclassifications of

critical effects but also significantly affect the efficiency of

the CSB-X procedure. As shown in Table 10, ∆0/2 seems

to be a good choice of the threshold of factor assigning.

4.2 Second-Order Model

We now compare CSFD and the hybrid method on a 50-

factor case where second-order interactions exist. Main

effect coefficients are randomly generated in the same way

as those in main-effects models except that the percentage

of each non-zero effect category is increased from 2.5% to

5%. The probability that a second-order interaction exists

is assumed to be 0.2, if both parent factors are important;

0.05, if only one parent factor is important; and 0, if neither

parent factor is important. The probability of a non-zero

interaction coefficient being positive (or negative) is 0.5 and

the distribution of the absolute values of non-zero interaction

effects is as follows: 25% of them are equal to ∆1 = 4; 25%

of them are uniformly distributed on (∆0,∆1) = (2,4); 25%
6
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Table 7: Selected P(DI)’s of 200-Factor Case with Main-Effects Models

m = 0.1 m = 0.3 m = 1.0
Effect CSFD FF-CSB Hybrid CSFD FF-CSB Hybrid CSFD FF-CSB Hybrid

β9 = 4.0 1.000 0.974 1.000 1.000 0.957 1.000 1.000 0.955 0.990

β19 = 4.0 1.000 0.965 1.000 1.000 0.956 1.000 1.000 0.943 0.996

β63 = 4.0 1.000 0.958 1.000 1.000 0.943 1.000 1.000 0.947 0.995

β77 = −4.0 1.000 1.000 1.000 1.000 0.996 1.000 0.998 0.966 0.994

β123 = −4.0 1.000 1.000 1.000 1.000 0.991 1.000 0.999 0.955 0.998

β127 = −3.39 1.000 0.843 0.999 0.998 0.745 0.933 0.896 0.721 0.841

β71 = 3.35 1.000 0.773 0.994 0.994 0.745 0.880 0.877 0.720 0.790

β17 = 2.88 0.018 0.353 0.207 0.197 0.398 0.383 0.349 0.359 0.397

β118 = 2.74 0.000 0.233 0.011 0.025 0.325 0.176 0.203 0.285 0.232

β4 = 2.38 0.000 0.046 0.000 0.000 0.095 0.022 0.028 0.099 0.081

β25 = 2.0 0.000 0.001 0.000 0.000 0.008 0.000 0.001 0.035 0.007

β55 = 2.0 0.000 0.000 0.000 0.000 0.013 0.000 0.003 0.017 0.007

β140 = 2.0 0.000 0.025 0.000 0.000 0.051 0.000 0.000 0.024 0.000

β96 = −2.0 0.000 0.025 0.000 0.000 0.048 0.001 0.001 0.021 0.007

β144 = −2.0 0.000 0.017 0.000 0.000 0.043 0.000 0.002 0.022 0.003

β174 = 1.61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.001

β10 = 1.28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β35 = −0.88 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

β182 = −0.48 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β39 = −0.35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Simulation Runs 559 798 371 792 2817 478 1807 22294 1474

Initial Sample Size 2 6 1/2/3* 3 20 1/3/5* 6 60 1/8/10*
∗The order of the initial sample sizes is “Prescreen/CSB-X/CSFD”.
Table 8: Mis-Assignments in Phase 1 (Main-Effects Models)

Prescreening Mis-Assignment
Case Variance Factor Sample Size IMP to UNIMP UNIMP to IMP Simulation Runs

m = 0.1 1 0.00 (0.0%) 0.08 (0.0%) 371

m = 0.3 1 0.14 (0.8%) 0.32 (0.2%) 478

200-factor 1 1.23 (6.8%) 40.7 (22.4%) 1474

m = 1.0 2 0.70 (3.9%) 15.7 (6.6%) 1545

3 0.47 (2.6%) 6.76 (3.7%) 1666

m = 0.1 1 0.02 (0.0%) 0.20 (0.0%) 734

m = 0.3 1 0.77 (1.8%) 0.79 (0.2%) 998

500-factor 1 3.96 (9.2%) 119.4 (26.1%) 4064

m = 1.0 2 2.53 (5.9%) 51.8 (11.3%) 3800

3 1.92 (4.5%) 24.5 (5.4%) 4063
Table 9: Mis-Assignments of Important Factors with m = 1.0 (Main-Effects Models)

Prescreening Mis-Assignments
Case Sample Size Critical Factors Important but not Critical Factors

1 0.002 (0.04%) 0.088 (1.76%)

200-factor 2 0.000 (0.00%) 0.013 (0.26%)

3 0.000 (0.00%) 0.002 (0.04%)

1 0.005 (0.04%) 0.395 (3.29%)

500-factor 2 0.000 (0.00%) 0.099 (0.83%)

3 0.000 (0.00%) 0.026 (0.22%)
387
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Table 10: Efficiency of the Hybrid Method with Different Thresholds of Factor Assigning, 500-factor case, m = 1.0

Number of Factors Mis-Assignment Simulation Runs
Threshold IMP POS NEG IMP to UNIMP UNIMP to IMP CSFD CSB-X Total runs

0.25×∆0 304 98 98 2.77 259.7 5131.8 170.9 5814.7

0.30×∆0 269 116 115 2.96 226.5 4846.1 198.6 5556.7

0.35×∆0 238 132 130 3.13 195.9 3226.1 246.7 3984.8

0.40×∆0 209 146 145 3.23 167.9 3005.7 323.8 3841.5

0.45×∆0 182 160 159 3.80 142.1 3019.5 416.0 3947.6

0.50×∆0 158 172 170 3.96 119.4 3021.3 530.2 4063.5

0.55×∆0 137 182 180 4.63 99.0 2872.2 733.1 4117.3

0.60×∆0 119 191 190 4.84 81.7 2521.6 981.4 4015.0

0.65×∆0 103 199 198 4.06 67.8 2383.1 1328.2 4223.3

0.70×∆0 89 206 205 4.77 54.6 2368.0 1817.4 4697.4

0.75×∆0 77 213 210 5.08 44.1 2339.3 2459.9 5311.2
of them are equal to ∆0 = 2; 25% of them are uniformly

distributed on (0,∆0) = (0,2). The results presented in this

section are based on a randomly generated case where there

are 10 non-zero main effects and 11 non-zero interactions.

CSFD method and the prescreening procedure of the hybrid

method run a 250−38
V factorial design, (4096 runs in each

replication), to provide a set of independent estimates of

all main effects and second-order interactions. For details

on the construction of this design, please refer to Sanchez

and Sanchez (2005).

The effectiveness results are similar with those in main-

effects models. Table 11 shows that the advantage of the

hybrid method over CSFD is even more obvious when

second-order interactions are considered. In this 50-factor

case, the hybrid method could save more than 40% of

simulation effort compared to CSFD and the performance

is not affected by the change of variances. Compared to

the main-effects model, the second-order model requires

a much larger prescreening factorial design. For this 50-

factor case, it is 4096 runs, which is more than half of

the total simulation runs. Therefore, when the number

of factors is large and interactions exist, having more than

one replication in prescreening is not recommended. On the

other hand, the significant increase of the sample size within

one replication gives more accurate effect estimations. This

is why the percentages of mis-assignments in Table 11 are

significantly smaller than those in Tables 8 of main-effects

models. In fact, in this 50-factor case, no factors related to

critical effects are assigned to unimportant groups in any

of the 1000 trials. This improvement of effectiveness in

prescreening makes it possible for the hybrid method to

take full advantage of the strength of CSB-X and CSFD

procedures to obtain the best efficiency.
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5 CONCLUSION

The hybrid method introduced here combines prescreening,

CSB-X and CSFD to achieve better overall performance

than all its component methods in general circumstances.

The prescreening stage eliminates the requirement of prior

knowledge of the system and allows both CSB-X and CSFD

to perform in their optimal conditions. The hybrid frame-

work allows the incorporation of other screening/analysis

methods depending on the practical requirement. Future

research will concentrate on: (1) exploring a variety of

pre-screening strategies for different scenarios; (2) studying

the overall error control of the hybrid method both theoret-

ically and numerically; (3) understanding more completely

the selection of the threshold of factor assigning; (4) imple-

menting the hybrid method to practical problems; and (5)

extending the hybrid method to include more procedures.
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