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ABSTRACT 

In customer-driven design of systems or products, one has 
performance targets in mind and would like to identify sys-
tem design parameters that yield the target performance 
vector. Since most simulation models predict performance 
given design parameter values, this identification must be 
done iteratively through an optimization search procedure. 
In some cases it would be preferable to find design pa-
rameter values directly via an explicit inverse model. Re-
gression and other forms of approximation 'metamodels' 
provide estimates of simulation model outputs as a func-
tion of design parameters.  It is possible to design fitting 
experiments (DOE’s) that allow simultaneous fitting of 
both forward and inverse metamodels.  This paper dis-
cusses the potential for this strategy and shows a simple 
two-phase DOE strategy using a maxi-min measure of 
DOE quality. 

1 INTRODUCTION 

Simulation has become an indispensable tool in the design 
of new products and process, permitting the examination of 
performance at relatively low cost and risk.  Although 
simulation models are used for design, in most cases they 
were built for analysis.  That is, they predict performance 
given a set of design parameter values.  One might prefer 
that a design tool would work in reverse:  given a set of 
performance targets, generate a set of design parameter 
values that provide that performance.  Inverse methods 
have recently become the focus of entire journals in engi-
neering design (Taylor and Francis 2006). 

The inverse design approach is also supported by the 
design approach advocated in Design for Six Sigma meth-
odology (Ginn, Streibel and Varner 2004). This Japanese 
Quality Function Deployment (QFD) methodology was de-
scribed by Hauser and Clausing (1988) to an American au-
dience, and has become a popular tool for customer-driven 
design.  The role of engineering models in the QFD setting 
has been described by Ramaswamy and Ulrich (1994) and 
Aungst, Barton and Wilson (2003).  The fundamental con-
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cept is that customer-driven design requires an understand-
ing of the propagation of customer needs through technical 
specifications to design parameters.  These design choices 
propagate through to affect choices for manufacturing 
processes and management. 

Figure 1 shows a simplified representation of the QFD 
mapping as represented through the four house model.  The 
mapping moves from left-to-right, from a point in cus-
tomer needs space to a point in performance specification 
space to a point in product design parameter space to a 
point in manufacturing design parameter space to a point in 
manufacturing control space.  These five spaces (six in 
Aungst, Barton and Wilson 2003) are linked by qualitative 
maps represented by the four houses.  In the axiomatic de-
sign approach of Suh (1998) the houses are replaced by 
matrices representing linear transformations, although lin-
ear maps are not practical generally. 
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Figure 1: QFD Four House Mapping Representation 
 
The main focus of simulation software is on houses 2 -

4.  For example, one can simulate a service process (House 
2) or a manufacturing control strategy (House 4).  The 
mapping representations are typically referred to as houses 
because interactions between variables are represented 
qualitatively in a triangular ‘roof’ attached to the square.  
This structure is illustrated in Figure 2, which provides a 
more detailed representation.  QFD typically represents re-
lationships qualitatively, with the strength of the relation-
ship between a performance specification and a design pa-
rameter appearing in the corresponding cell.   

This figure also shows that engineering simulation 
models typically map from design parameters to perform-
ance metrics, the opposite direction of customer-driven de-
sign.  This provides the motivation for this research:  to 



Barton 

 
provide quantitative maps from performance specifications 
to design parameter values.  The method builds on the 
metamodeling strategy employed by simulationists to de-
velop fast-running surrogates for the original simulation 
models.  The term was coined by Kleijnen (1975) and has 
been a frequent focus of simulation methodology (see 
Porta Nova and Wilson 1989, Barton 1992, 1998, and Klei-
jnen and van Beers 2004 for example).  Under certain con-
ditions, the experimental data collected to fit forward 
metamodels can be used in reverse, to fit inverse meta-
models that can be used for customer-driven design. 

 

 
Figure 2: Details for House 2 

 
The next section of this paper describes the metamod-

eling activity and provides some notation.  The inverse is-
sues are illustrated next for a semiconductor manufacturing 
simulation (Morrice et al. 2005).  The overall strategy for 
building inverse metamodels is described next, along with 
issues and existing work, and provides a simple two-phase 
strategy for finding experiment designs that are maxi-min 
in both domain and range spaces.  The next section pre-
sents a comparison of the properties of a traditional maxi-
min design with a two-phase forward-inverse maxi-min 
design on two examples.  The final section identifies key 
issues in using forward-inverse metamodels. 

2 METAMODELING STRATEGY 

If we represent the output of the simulation model as the 
random vector Y, then the performance measures (to be 
checked against specifications) are generally statistical 
functions of Y, often the expected value.  In this common 
case, the input-output relations of interest are represented 
by the vector-valued function f: 

 
 f(x) = E(Y), (1) 
 
where x is the k-dimensional deterministic vector of design 
parameters and Y is the p-dimensional random vector of 
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simulation outputs. Using an N-row DOE matrix X, row i 
of which is a vector of design parameter values used in the 
ith original model run, and a matrix Y, each row of which 
corresponds to a run and each column to a particular com-
ponent of the output performance vector, a (vector-valued) 
approximation model mf is fitted.  The objective is to have 
mf(x) ≈ f(x) for any x in the prediction region Rx.  The runs 
used to fit mf(x) are restricted to a space Cx.  Often Rx = Cx.   

Metamodels often use the standard multiple regression 
model.  The standard multiple regression model captures 
the following underlying relation: 
 
 f(x) = Σβqφq(x) + ε, ε ~ i.i.d. N(0, σ2). (2) 
 

The response function is modeled as a linear combina-
tion of r functions of the k input variables (q = 0, ..., r) plus 
an intercept, with additive, independent homogeneous 
Gaussian perturbations.  For a first order polynomial 
model, r = k, φq(x) = xq, and φ0(x) = 1.  For general multiple 
regression, there are no restrictions on the form of the φq 
functions.  For example, φq(x) = x5

2,  φq(x) = ln(x3), φq(x) = 
1/x4 are candidate functions for multiple regression models.  
The coefficients βq and random perturbations represented 
by ε are unknown and are estimated using least-squares or 
other methods. 

The multiple regression metamodel that is constructed 
assuming a true response of the form shown in Equation 
(2) is mf(x) = φ(x)'b.  Note that φ, x and b are vectors, and 
in this case, mf(x) is a scalar.  For the standard multiple re-
gression model there is a single response.  When there are 
multiple responses, the fitting process can be extended by 
fitting multiple regression models, one for each response.  
The b vector is calculated using an existing set of (X, y) 
data, where xij is the value of the jth design parameter (j = 1, 
2, ..., k) in the ith run of the system (i = 1, 2, ..., N).  Let xi 
denote the vector of values for the ith run. Finally, yi is the 
(univariate) value of the response in the ith run of the sys-
tem.  Then the least-squares equations can be written in 
matrix form as 
 
 b = (D'D)-1D'y, (3) 
 
where D is the N x r matrix whose (i, q)th entry is the value 
of φq(xi).  The matrix D is called the design matrix which is 
often represented by the letter X in the design of experi-
ments literature.  We avoid this notation (and avoid the use 
of the index j for its columns) due to the obvious confusion 
with the matrix of design parameter values used in the fit-
ting runs.  Even for a first-order (linear) polynomial regres-
sion, D and X are not the same; D is augmented with an 
initial column of ones for the intercept term. 

Of course, for many simulation situations, the assump-
tion ε ~ i.i.d. N(0, σ2) does not hold.  In many cases this is 
because the variance increases with the mean. In some 
cases it is by deliberate intent, through the use of common 
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and antithetic random numbers, for example.  In this case 
one has ε ~ N(ΣY, σ2), where ΣY is the variance-covariance 
matrix for the ε values.  The vector β can then be estimated 
using weighted least squares with W = (ΣY

 ) -1: 
 

 b = (D'WD)-1D'Wy. (4) 
 

Alternatively, it is sometimes possible to identify a trans-
formation of the response that produces approximately 
i.i.d. error. See for example Kleijnen (1987), Cheng, Klei-
jnen, and Melas (2000), and Chapter 3 of Montgomery 
(2001). 

3 DESIGNING INVENTORY POLICY AT 
FREESCALE 

Douglas Morrice and his coauthors described the use of 
simulation to study job release policy and its impact on in-
ventory and on-time delivery at Freescale Semiconductor, 
Inc. (Morrice et al. 2005).  Figure 3 shows a simplified rep-
resentation of the operation. 

 

Figure 3:  Manufacturing Operations at Freescale 
 
Die inventory levels were used to control job release 

rates into the front end fab, through the variable MaxDieQ.  
The front end fab processing time was random, but might 
be improved by investment in additional equipment to re-
duce front-end lead time (FELT).  Two key performance 
measures are the (log transform of) fraction of on-time job 
completions to finished inventory (TFOTD) and the cost 
associated with inventory and equipment (COST).  In our 
notation, we consider this example to have two design pa-
rameters, x1 = MaxDieQ and x2 = FELT, and two perform-
ance parameters, y1 = TFOTD and y2 = COST. 

For this example, an inverse model would allow us to 
explore the cost/on-time-delivery performance space, and 
choose a Pareto-optimal operating condition.  The inverse 
metamodel would provide the values of die inventory level 
and reduction in front-end lead time needed to achieve the 
performance and cost objectives.  For the description here, 
we constructed a quadratic approximation for the TFOTD 
response based on data in Morrice et al. (2005) and con-
structed a simple cost function with a cost for lead time re-
duction of about thirty times the inventory cost savings 
over the range of design parameter values that were con-
sidered. 
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4 BUILDING INVERSE METAMODELS 

Both the simulation models and their approximating meta-
models map in the forward direction.  That is, we have 
maps y = f(x) and y ≈ mf(x) but the customer-driven design 
paradigm requires the map x = f -1(ydesired).  Under certain 
conditions, the same set of run matrices (X, Y) used to es-
timate mf can be used as (Y, X) to fit mf -1, giving the map x 
≈ mf -1(ydesired). 

The challenge is to design the set of experimental runs 
X so that (Y, X) provides a good set of data for fitting the 
inverse metamodel.  The design used for fitting the forward 
metamodel does not necessarily place points appropriately 
for fitting the inverse model.  Consider the comparison be-
tween Figures 4 and 5.  Figure 4 shows a 7 x 7 factorial 
grid in x-space, and Figure 5 the corresponding image in y-
space, based on the Freescale response functions.  Design 
parameters are scaled to +/-1.  While the design points are 
evenly spaced in x-space, they are clumped together in the 
lower right in y-space, when the most interesting region to 
explore will be to the right, where there is less focus. 

Figure 4:  Factorial Grid of Design Points in x-Space 
 

Figure 5:  Image of Figure 5 Points in y-Space 
 
The overall strategy for choosing the run conditions 

will be to seek a set of points that result in good designs 
both in x-space and y-space.  The fundamental steps are: 
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1. Construct a pilot design in x-space (with good 
properties in that space), 

2. Conduct those simulations to fit a pilot meta-
model, a pilot inverse metamodel, or both, 

3. One or both pilot metamodel(s) then are used to 
guide the choice of subsequent design points to 
balance the experiment design quality in both 
spaces.   

 
Such strategies can be two-phase, with one additional 

augmenting design in step 3, or fully sequential, with the 
metamodel(s) updated after each new experiment design 
point is chosen and run.  In the latter case, steps 2 and 3 are 
iterated with each new experiment design point  Multiple-
phase strategies between these two extremes are also pos-
sible. 

In addition to the number of phases, the specific 
method depends on the metric for design quality.  For re-
gression metamodels, alphabetic optimality measures such 
as those discussed in Silvey (1980) make sense.  These de-
pend on the structure of the matrix D in x-space and its 
counterpart in y-space.  Two-phase design methods for D- 
optimality are described in Barton, Meckesheimer and 
Simpson (2000, 2001) and Barton (2005). 

There are other approaches to optimal design that ad-
dress the quality of the metamodel approximation, but do 
not focus solely on the information matrix D'D or its in-
verse.  These can be used with other metamodel types.  
Some other commonly used measures of design goodness 
are described in Barton (2005).   

This paper focuses on one such measure, the so-called 
maxi-min experiment designs (Johnson, Moore, and Yl-
visaker 1990).  The maxi-min criterion maximizes the 
minimum distance between any two points (sets of run 
conditions) in the experiment design space.  These designs 
are useful when the metamodel is not a standard regres-
sion, and/or when the design region is irregular.  Keeping 
design points far apart is particularly important for spatial 
correlation models (see Sacks et al. 1989 and Salagame 
and Barton 1997).  The maxi-min strategy for combined 
forward-inverse designs is proposed below: 

 
1. Use N0 ≥ Nmin maxi-min (in terms of x) first phase 

forward model runs (XMmx) to generate image 
points in y-space (Y 1).  Nmin is the minimum 
number of runs required to fit the chosen meta-
model type. 

2. Scale X and Y to +/-1 for each coordinate.  Keep 
this scaling through the rest of the process. 

3. Fit the phase 1 forward metamodel, mf1. 
4. In second phase, select N – N0 design points 

(XMmxy) that are maxi-min both in terms of X (di-
rect calculation) and Y (by computing the dis-
tances for candidate image points Y 2 using mf1).  

5. Evaluate the models at XMmxy to get the true Y 2 . 
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6. Fit the final forward metamodel (mf) with {XMmx, 
Y 1} U {XMmxy, Y 2}. 

7. Fit the final inverse metamodel (mf-1) with {Y 1, 
XMmx} U {Y 2, XMmxy}, for y in Y 1 and y in Y 2 sat-
isfying y є Cy. 

 
The scaling in step 2 is important to allow comparabil-

ity of the maxi-min design objective in x-space and y-
space.  It implies that two points a distance d apart in x-
space are assessed the same figure of merit as two points d 
units apart in y-space.  Without this scaling, some other 
method would be required to simultaneously optimize the 
x-space and y-space designs.  Wong (1999) reviews multi-
objective methods for optimal experiment design.  Ap-
proaches include i) creating an overall objective that is a 
weighted sum of the individual measures, ii) developing a 
utility function of more complex form, iii) creating a re-
lated ‘desirability’ function (del Castillo, Montgomery, and 
McCarville 1996; Kim and Lin 2000), or iv) framing one 
measure as the objective and the others as constraints. 

5 MAXI-MIN DESIGN FOR TWO EXAMPLES 

The maxi-min strategy described in Section 4 is applied to 
two examples in this section:  the Freescale model de-
scribed in Section 3, and the network routing example de-
scribed in Barton (2005).  Figure 6 shows the maxi-min 
design in x-space for a 20-point experiment, with 10 points 
used in the first-phase design.  These are coded in blue.  
Four of the first-phase points were chosen as the extreme 
points of the design region, and the remaining six chosen 
as maxi-min in x-space.  The ten second-phase points 
maximize the minimum distance from each other and from 
the ten first-phase points, and are coded in light red.   

Figure 7 shows the corresponding y-space points, with 
first-phase points in blue and second-phase points in light 
red.  No points are close together, except for two points in 
the lower left, which were constructed in the first-phase, 
using just the x-space maxi-min criterion.  Compare the 
quality of this design with the x- and y-space designs of 
Figures 8 and 9, respectively, which were constructed us-
ing the maxi-min criterion applied only to the x-space 
measures.  While the x-space design appears slightly better 
than that in Figure 6, the y-space design is significantly 
worse, with three pairs of closely spaced design points 
along the bottom of the design region. 

Maxi-min design qualities are summarized in Table 1, 
both for the Freescale example and the network design ex-
ample in Barton (2005).  The two-phase design strategy is 
labeled “Maxi-Min x, x+y.” It provides much better maxi-
min measures in y-space than the standard maxi-min design 
based solely on x-space measures.  Further, focusing solely 
on the y-space distances in the second phase does not pro-
vide much better maxi-min values in y-space for these ex-
amples, while the x-space performance is noticeably worse. 
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Figure 6:  Two-Phase Maxi-Min Design in x-Space 
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Figure 7:  Two-Phase Maxi-Min Design in y-Space 
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Figure 8:  Maxi-Min (on x only) in x-Space 
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Figure 9:  Maxi-Min (on x only) in y-Space 

 
Table 1: Two-Phase Maxi-Min Design Quality 

Example Design Strategy Min x Min y 
Maxi-Min x 0.41 0.05 

Maxi-Min x, x+y 0.29 0.29 Freescale 
Maxi-Min x, y 0.22 0.30 
Maxi-Min x 0.38 0.08 

Maxi-Min x, x+y 0.14 0.14 Network Design 
Maxi-Min x, y - - 

6 CONCLUSIONS 

Customer-driven design suggests a need for simulation 
models that move from performance specification to the 
design parameter values that will generate that perform-
ance.  Engineering simulation models operate in the wrong 
direction for this, but the mechanism for constructing 
metamodels can be applied equally well for fitting inverse 
maps.  It is important to design the fitting experiment with 
this purpose in mind, however, since the optimal design for 
fitting the forward model can be far from optimal for fit-
ting an approximation to the inverse map. 

The simple two-phase maxi-min strategy described in 
Section 4 is effective for constructing designs that have 
good properties in both x- and y-space.  The quality of the 
second-phase points will depend on the quality of the first-
phase metamodel, and so it is important to choose an ap-
propriate metamodel type and to make simulation run 
length long enough to minimize errors in the fitted meta-
model. 

Many issues remain in developing a generally applica-
ble methodology for constructing inverse metamodels.  
These issues include defining the design variables, per-
formance measures and experimental region so that the 
map is invertible, dealing with irregular design regions, 
and handling statistical issues in fitting (inverse) metamod-
els with errors-in-variables data.  Some of these issues 
were discussed in more detail in Barton (2005). 
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