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ABSTRACT

We investigate the performance of a heuristic sequential pro-

cedure to compare a finite number of designs with respect to

a single standard. The goal is to identify the best design, and

if the chosen best design is not the standard, to determine

whether the chosen best design is better than the standard.

We give preferential status to the standard because there

are costs and time involved in replacing the standard. We

accomplish this goal by extending indifference-zone selec-

tion procedures. An experimental performance evaluation

demonstrates the validity and efficiency of our sequential

procedures.

1 INTRODUCTION

When evaluating alternative system designs, we are inter-

ested in selecting the best of a number of competing designs.

In this paper, we consider comparison with a standard (con-

trol), i.e., one of the designs is designated as the standard,

and the others are evaluated with respect to this standard.

The goal is to identify the best design, and if the chosen

best design is not the standard, to determine whether the

chosen best design is better than the standard. In doing

so, we would like to guarantee at least a lower bound on

the probability of correct selection whenever the selected

design satisfies the specified requirements. Let µ0 denote

the expected response of the standard design and µi denote

the expected response of design i, for i = 1,2, . . . ,k. The

response of the standard design µ0 may be known or un-

known. In the statistics literature, a problem in which µ0 is

known is called a comparison with a standard, a problem in

which µ0 is the unknown mean of a control is referred to as a

comparison with a control. Even though classical selection

procedures cannot be applied directly to perform comparison

with a standard, there has been extensive work done in this

area, for instance, Nelson and Goldsman (2001) and Kim

(2005). However, the procedure of Nelson and Goldsman

(2001) requires pre-computed critical values, which often
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requires intensive numerical integration. Nelson and Golds-

man (2001) suggest using a separate simulation experiment

to estimate the critical values needed for their procedure to

solve the problem at hand. Even though computer programs

are available to estimate those critical values, the deviation

of those critical values involves advanced mathematics. The

procedure of Kim (2005) is effective in terms of sample

size. However, it generally requires many iterations and

thus long execution time because its incremental sample

size is one.

Let µil be the lth smallest of the µi’s, so that µi1 ≤ µi2 ≤
·· · ≤ µik+1

. Our goal is to select a design with the smallest

expected response µi1 . However, in practice if the difference

between µi1 and µi2 is very small, we might not care if we

mistakenly choose design i2, whose expected response is µi2 .

The “practically significant” difference d∗ (a positive real

number) between the best and a satisfactory design is called

the indifference zone in statistical literature, and it represents

the smallest difference that we care about. In a stochastic

simulation, CS (correct selection) can never be guaranteed

with certainty. The probability of CS denoted by P(CS),

depends on sample sizes and becomes higher as sample

sizes become larger. Parameter configurations satisfying

µi2 − µi1 ≥ d∗ are said to be in the preference zone for a

correct selection; configurations satisfying µi2 − µi1 < d∗

are said to be in the indifference zone. Formally, we say a

system i is d∗-near-best if µi is within a specified amount

d∗ of the smallest mean.

The indifference-zone approach wants to select a system

i such that µi −µi1 < d∗, some literature refer to this event

as the probability of good selection (P(GS)) and use P(CS)

to indicate the event in which we select system i1. In this

paper, we do not distinguish the difference between the two

and use P(CS) to indicate the event that we select a good

design. In comparison with a standard, ideally we wish to

retain the standard when µ0 < µi1 +d∗ since there are costs

and time involved in replacing the standard design with an

alternative. However, large sample sizes are required to

achieve correct pairwise comparisons when µ0 and µi1 +d∗
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are close together. In the spirit of the indifference-zone

approach and the requirements that are discussed in Nelson

and Goldsman (2001), we regard a correct comparison with

a standard as: 1) we select design 0 when µ0 ≤ µi1 ; 2) we

select design i1 when µi1 + d∗ < µi (0 ≤ i ≤ k, i 6= i1); or

3) we select design i such that µi < µi1 +d∗ and µi < µ0.

Hence, for a d∗-near-best system to be regarded as a correct

comparison with a standard, it must be better than the

standard.

To obtain a pre-specified precision of the estimate for

a design decision, a large number of samples (simulation

replications) are often required for each design alternative. If

the number of design alternatives is large, the total simulation

run time will be significantly longer. Various schemes have

been proposed to enhance the effectiveness of simulation

experiments. Chen and Kelton (2005) show that if one or

more very good alternatives are found early in the process,

then they can be used to eliminate a greater number of

inferior designs. In this paper, we present a variation of the

comparison-with-a-standard procedure of Chen (2006).

The rest of this paper is organized as follows. In Section

2, we provide the background necessary for the proposed

procedure. In Section 3, we present our methodology and

proposed procedure for comparison with a standard. In

Section 4, we list the procedure of Kim (2005). In Section

5, we give our empirical-experimental results. In Section

6, we make some concluding remarks.

2 BACKGROUND

In this section, we introduce the necessary notation and

background:

Xi j: the independent and normally distributed obser-

vations from the jth replication or batch of the

ith design,

r: the intermediate number of replications or

batches at a particular iteration,

Ni: the total number of replications or batches for

design i,

ni: the intermediate number of replications or

batches for design i,

µi: the expected performance measure for design i,

i.e., µi = E(Xi j),
X̄i(ni): the sample mean performance measure for de-

sign i with ni samples, i.e.,
∑ni

j=1
Xi j/ni,

X̄i: the sample mean performance measure for de-

sign i shorthand for X̄i(ni),
σ2

i : the variance of the observed performance mea-

sure of design i from one replication or batch,

i.e., σ2
i = Var(Xi j),

S2
i (ni): the sample variance of design i with ni repli-

cations or batches, i.e., S2
i (ni) =

∑ni
j=1

(Xi j −
X̄i)

2/(ni −1).
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2.1 Assessing P(CS)

In order to ensure the selection procedures obtain the pre-

specified goal, we must be able to assess P(CS). In this

section, we assess P(CS) with the assumption that the true

means are known. Let φ(x) and Φ(x) denote the prob-

ability density and distribution function, respectively, of

the standard normal distribution. Let δil = µil − µi1 for

l = 2,3, . . . ,k. Then

P(CS) = P[X̄i1(Ni1) < X̄il (Nil ), for l = 2,3, . . . ,k]

= P[X̄i1(Ni1)− X̄il (Nil )+δil < δil ,

for l = 2,3, . . . ,k]

≥ Πk
l=2P[X̄i1(Ni1)− X̄il (Nil )+δil < δil ]

= Πk
l=2Φ(δil /

√

σ2
il
/Nil +σ2

i1
/Ni1).

The inequality follows from Slepian’s inequality (Tong 1980)

since the values X̄i1 − X̄il are positively correlated. The last

equality follows from the fact that the variate

Zil =
X̄i1 − X̄il +δil

√

σ2
il
/Nil +σ2

i1
/Ni1

has a N(0,1) distribution, where N(µ ,σ2) denotes the nor-

mal distribution with mean µ and variance σ2.

The simultaneous one-tailed P∗ c.i. (confidence interval)

half-widths, with design i1 as a control, are

wil = zh

√

σ2
il
/Nil +σ2

i1
/Ni1 ,

where zh is a critical value such that E(Φk−1(zh)) = P∗. By

the property of the c.i. half-width,

P[X̄il (Nil )− X̄i1(Ni1)+wil ≥ µil −µi1 ,

for l = 2,3, . . . ,k] ≥ P∗.

To achieve

P[X̄il (Nil )− X̄i1(Ni1) > 0, for l = 2,3, . . . ,k] ≥ P∗,

the sample sizes Ni should be large enough so that µil −µi1 >
wil . Note that the half-width wil depends on the sample

sizes.

The sample sizes determined by traditional indifference-

zone selection procedures achieve wil ≤ d∗ for l =
2,3, . . . ,k. Without loss of generality, assume µi1 + d∗ ≤
µi2 ≤ . . . ≤ µik . Let di = max(d∗,µi − µi1) for designs

1 ≤ i ≤ k. The indifference-zone selection procedures that

take into account the difference of sample means attempt to

achieve wil ≤ dil for l = 2,3, . . . ,k. This sample size alloca-
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tion rule establishes the efficiency aspect of the procedure,

see Section 3.2.

Since the true means are unknown, Rinott (1978) de-

rives the required sample sizes based on the LFC (least

favorable configuration), i.e., µi1 + d∗ = µi2 = . . . = µik .

Consequently, Rinott’s procedure is conservative, i.e., it

often obtains higher than required P(CS) with larger than

necessary sample sizes. Chen and Kelton (2005) approxi-

mate the difference of true means by the difference of sample

means, which can significantly improve the efficiency of

selection procedures. However, the procedure does not

guarantee P(CS) ≥ P∗. It is known that indifference-zone

selection procedures also guarantee that the coverage of mul-

tiple comparisons with the best (MCB) c.i. with probability

at least P∗; see Section 3.3.

2.2 Comparison-with-a-Standard Via All-Pairwise

Comparisons

Standard indifference-zone selection procedures will ensure

P[select design i1] ≥ P∗ whenever µi1 ≤ µi −d∗,∀i 6= i1.
(1)

Comparison-with-a-standard procedures ensure

P[select design 0] ≥ P∗ whenever µ0 ≤ µi1 ; (2)

and (1). Our goals are achieved if Equations (1) and (2)

hold individually.

The sample size allocation strategy is to ensure both

the Type I (i.e., rejecting the null hypothesis when in fact it

is true) and Type II (i.e., concluding that the null hypothesis

is true when in fact it is false) errors are equal to or less than

a specified amount; see Section 3.1. The allocated sample

sizes are large enough so that the P = 1− (1−P∗)/k c.i.

half-width between designs 0 and i 6= 0 woi ≤ d∗/2. Recall

that the half-width w0i depends on the variance of designs

0 and i and the sample sizes. Consequently, the procedure

will eliminate the standard design only when X̄0 > X̄i +woi

and woi ≤ d∗/2 (i.e., the procedure has concluded with

high confidence that µ0 > µi). Furthermore, if woi ≤ d∗/2
and X̄0 ≤ X̄i + woi, we will remove design i from further

simulation (i.e., the procedure has concluded with high

confidence that µ0 ≤ µi). The procedure, denoted as CAPC,

is as follows.

Comparison-with-a-Standard Via All-Pairwise

Comparisons CAPC:

1. Specify an initial sample size n0, an indifference-

zone parameter d∗, and a confidence level P∗.

2. Initialize the set I to include all k + 1 designs.

Simulate n0 replications or batches for each design

i∈ I. Set the iteration number l = 0, and r = N0,l =
36
N1,l = · · · = Nk,l = n0, where Ni,l is the sample

size allocated for design i at the lth iteration. Set

P = 1− (1−P∗)/k.

3. Perform all pairwise comparisons and remove in-

ferior design j 6= 0, i.e., X̄ j > X̄i + wi j for some

i ∈ I, from I. Remove the standard design 0
when X̄0 > X̄i +wi0 +d∗/2; or X̄0 > X̄i +wi0 and

wi0 ≤ d∗/2. Here wi j is the one-tailed P c.i. half-

width.

4. If wi j < d∗ and X̄ j > X̄i, remove design j 6= 0 from

I. If wi0 ≤ d∗/2 and X̄0 ≤ X̄i +wi0 for some i ∈ I,

remove design i from I.

5. If there is only one element (or the pre-determined

number of best designs) in I, go to step 9.

6. Compute the critical value ht =
√

2tP,r−1.

7. Let X̄b,l = mini∈I X̄i,l and let U(X̄b,l) denote the

upper one-tailed P∗ confidence limit of µb at the

lth iteration. If |I| = 2 and 0 ∈ I, for all i ∈ I, set

d̂i,l = max(d∗/2, X̄i,l −U(X̄b,l)). Otherwise, set

d̂i,l = max(d∗, X̄i,l −U(X̄b,l)). Compute

δi,l+1 = d((htSi(r)/d̂i,l)
2− r)+e.

Here (x)+ denotes max(0,x).
8. Set l = l + 1. If δi,l = 0, set δi,l = 1. Set

the incremental sample size at the lth iteration

δl = mini∈I δi,l +1 and set r = r +δl . For ∀i ∈ I,

simulate additional δl samples, set Ni,l = r. Go to

step 3.

9. If the standard design is in I, return the values 0
and X̄0(N0). Otherwise, return the values b and

X̄b(Nb), where X̄b(Nb) = min X̄i(Ni), 1 ≤ i ≤ k and

i was not eliminated by all pairwise comparisons.

If µ0 ≤ µi for 1≤ i ≤ k and d∗ is significant large, there

is only (1−P∗)/k probability that the standard design is

eliminated by mistake when compared with some alternative

design i. Consequently, P[design 0 is selected] ≥ P∗. On

the other hand, if µi1 +d∗ ≤ µi for all i 6= i1, then P[design

i is selected] ≤ (1−P∗)/k for some i 6= i1. Note that the

CAPC procedure also guarantees that the selected design b

having µb < µi1 +d∗ with high confidence (i.e., the event

µb < µi1 +d∗ is true 100P∗% of the times).

If the sample sizes are large enough so that the one-tailed

P CI half-width w0i ≤ d∗/2, then the precision of pairwise

comparison between designs 0 and i can be guaranteed; see

Section 3.1. To avoid allocating larger than necessary sam-

ple sizes, the procedure sets d̂i,l = max(d∗/2, X̄i,l −U(X̄b,l))

when |I| = 2 and 0 ∈ I. If d̂i,l ≤ d∗/2, the allocated sam-

ple sizes should be large enough to achieve w0i ≤ d∗/2.

The procedure then removes the standard design from fur-

ther simulation when X̄0 > X̄i + w0i; otherwise, the pro-

cedure removes the competing alternative. However, if

d̂i,l > d∗/2, the allocated sample sizes probably are not
2
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large enough to achieve w0i ≤ d∗/2. To reduce the number

of iterations without increasing the probability of elimi-

nating the standard design by mistake, if woi > d∗/2, the

procedure removes the standard design from further sim-

ulation only when X̄0 > X̄i + w0i + d∗/2. If µ0 ≤ µi, then

P[X̄0 > X̄i +w0i] ≤ 1−P. However, if the number of itera-

tions is large, the event X̄0 > X̄i +w0i is likely to occur. That

is, the probability of committing a Type I error increases

as the number of comparison increases. The amount d∗/2
is added to reduce the chance of wrongly eliminating the

standard (i.e., committing a Type I error).

3 METHODOLOGIES

Like most ranking and selection procedures, the proposed

comparison-with-a-standard procedure also requires the in-

put data to be independent and identically distributed (i.i.d.)

normal. However, the variance can be different across de-

signs. Many performance measures of interest are taken

over some average of a sample path or a batch of samples.

Thus, many applications tend to have a normally distributed

simulation output. Users can use batch means (see Law

and Kelton 2000) to obtain samples that are essentially i.i.d.

normal if the nonnormality of the samples is a concern.

3.1 Two-Sample Tests

The conventional statistic for determining the significance

of a difference of means is by null hypothesis test. It is

known that the random variable Yi = X̄i(Ni)− X̄b(Nb) (i 6= b)

has approximately a t distribution with fi :

(S2
i (Ni)/Ni +S2

b(Nb)/Nb)
2

(S2
i (Ni)/Ni)2/(Ni −1)+(S2

b(Nb)/Nb)2/(Nb −1)
(3)

d.f. (degrees of freedom); see Law and Kelton (2000) for

detail. Furthermore, if Ni = Nb = r, it is fairly safe to ap-

proximate the value of X̄i(r)− X̄b(r) with a t distribution

with r− 1 d.f.; see Scheffé (1970) for further discussion.

Chen (2004) derives an indifference-zone selection proce-

dure based on this principle.

Suppose the sample sizes are n0 and nb for designs 0
and b, respectively. The test at confidence level 1−α of

H0 : µ0 ≤ µb against the alternative H1 : µ0 > µb is based

on the test statistic

T =
X̄0− X̄b

√

S2
0/n0 +S2

b/nb

.

The acceptance region for this test is T ≤ t1−α, f , where

t1−α, f is the 1−α quantile of the t distribution with f d.f.

If µ0 − µb ≥ d∗, the probability of committing a Type II
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error β is

P[X̄0− X̄b ≤ t1−α, f

√

S2
0/n0 +S2

b/nb].

We have

P[
(X̄0− X̄b)−d∗

√

S2
0/n0 +S2

b/nb

≤
t1−α, f

√

S2
0/n0 +S2

b/nb −d∗

√

S2
0/n0 +S2

b/nb

]

≤ F(t1−α, f −
d∗

√

S2
0/n0 +S2

b/nb

),

where F is the cdf (cumulative distribution function) of the

t distribution with f d.f. Thus, the probability that the test

statistic falls in the acceptance region is

β ≤ F(t1−α, f −
d∗

√

S2
0/n0 +S2

b/nb

).

For fixed d∗ and α , β can be evaluated as a function of

sample sizes n0 and nb. For more detail, see Rice (1995).

Suppose we want to limit the probability of β , the sample

sizes n0 and nb should be large enough such that

t1−α, f −
d∗

√

S2
0/n0 +σ2

b /nb

= tβ , f .

If we choose α = β < 0.5, then

2t1−α, f =
d∗

√

S2
0/n0 +σ2

b /nb

.

Hence, the sample sizes should be large enough such that

the one-tailed 1−α c.i. half-width

w = t1−α, f

√

S2
0/n0 +σ2

b /nb = d∗/2.

3.2 Improving the Efficiency

Branke et al. (2005) evaluate ranking and selection proce-

dures with the following aspects:

• Efficiency: The mean evidence for correct selection

as a function of the mean number of samples.

• Controllability: The ease of setting a procedure’s

parameters to achieve a targeted evidence level (as

opposed to a potentially conservative guarantee that

the targeted evidence level is exceeded).
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• Robustness: The dependency of a procedure’s ef-

fectiveness on the underlying problem character-

istics.

• Sensitivity: The effect of the parameters on the

mean number of samples needed.

Another performance measure of selection procedures

is the execution time, especially the runtime of ranking

and selection (as opposed to the runtime of generating

samples). Many samples can be generated simultaneously

when deploying ranking and selection in a parallel and

distributed environment; see Chen (2005). Furthermore,

the runtime of ranking and selection is correlated with the

number of iterations. For sequential procedures to work

efficiently, a good incremental sample size must be used.

With a small incremental sample size, the procedure needs

to iterate the computation steps many times. On the other

hand, with a large incremental sample size, we are putting

too much confidence on the mean and variance estimators

of early iterations and can result in waste of computation

time to obtain an unnecessarily high confidence level of

non-critical designs.

We develop a new strategy to calculate the incremental

size dynamically at each iteration to further improve the

efficiency of the procedure. The procedure in Section 2.2

uses the same incremental sample size for each design at

each iteration to reduce computation effort of performing

pairwise comparisons and computing the critical constant

ht . However, the number of iterations may be greater than

desired in certain situations; for example, when the true

means are monotone increasing or decreasing. We propose

to compute the incremental sample size for each design by

δi,l+1 = d((htSi(Ni,l)/d̂i,l)
2−Ni,l)

+/2e.

Thus, the sequential procedure allocates incremental sam-

ple sizes aggressively at earlier iterations and become less

aggressive as the procedure proceeds and brings us closer

to the optimal solution. This way we will be able to re-

duce the number of iterations without the risk of putting

too much resources to simulate non-critical designs. Chen

and Kelton (2005) show that this incremental sample size

allocation strategy has good properties, i.e., the ratios of

allocated samples are close to that of Optimal Computing

Budget Allocation of Chen et al. (2000).

With this sample size increment strategy, the allocated

sample sizes for the surviving designs are likely to be

different. Consequently, we need to compute the d.f. f by

(3) for each pairwise comparison. Furthermore, the critical

value ht =
√

2tP,r−1 will be conservatively computed with

r = mini∈I Ni,l at iteration l. The modified procedure is

denoted CAPC2 in the remainder of the paper.
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3.3 Inference from the Comparison-with-a-Standard

Procedure

Multiple comparisons provide simultaneous confidence in-

tervals on selected differences among the designs. It is

known that indifference-zone selection procedures also guar-

antee that the coverage of MCB c.i. with probability at least

P∗. These c.i.’s bound the differences between the perfor-

mance of each design and the best of the others with a

prespecified confidence level.

Since there are k+1 designs under consideration, in the

following discussion wi j is the one-tailed P = 1−(1−P∗)/k

c.i. half-width. The multiple comparison with the best

confidence intervals are

P[µi −min
j 6=i

µ j ∈

[max
j 6=i

(X̄i − X̄ j −wi j)
−,max

j 6=i
(X̄i − X̄ j +wi j)

+],∀i] ≥ P∗.

Here (x)− denotes min(0,x). We follow the discussion of

Nakayama (1997) to construct MCB intervals. Define the

events

E = {µi −µi1 ≤ X̄i − X̄i1 +wii1 ,∀i 6= i1},

EL = {µi −min
j 6=i

µ j ≥ max
j 6=i

(X̄i − X̄ j −wi j)
−,∀i},

EU = {µi −min
j 6=i

µ j ≤ max
j 6=i

(X̄i − X̄ j +wi j)
+,∀i},

ET = {µi −min
j 6=i

µ j ∈

[max
j 6=i

(X̄i − X̄ j −wi j)
−,max

j 6=i
(X̄i − X̄ j +wi j)

+],∀i}.

Note that E is the event that the upper one-tailed confidence

intervals for Multiple Comparisons with a control, with the

control being design i1, contain all of the true differences

µi −µi1 . Since P[µi −µi1 ≤ X̄i − X̄i1 +wii1 ] ≥ P ∀i, P[E] ≥
P∗. Now, following an argument developed by Edwards and

Hsu (1983), we have that E ⊂ EL∩EU , which will establish

the result P[ET ] ≥ P∗. First we prove that E ⊂ EL:

E ⊂ {µi1 −µ j ≥ X̄i1 − X̄ j −wi1 j,∀ j 6= i1}
⊂ {µi1 −µi2 ≥ X̄i1 − X̄ j −wi1 j,∀ j 6= i1}
⊂ {µi −µi2 ≥ max

j 6=i
(X̄i − X̄ j −wi j)

−,∀i}

⊂ {µi −min
j 6=i

µ j ≥ max
j 6=i

(X̄i − X̄ j −wi j)
−,∀i},

where the second step follows since µi1 − µi2 ≥ µi1 − µ j

for all j 6= i1 and the third step follows since µi −µi2 ≥ 0
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for all i 6= i1 and (x)− ≤ 0. Now we show E ⊂ EU .

E ⊂ {µi −µi1 ≤ max
j 6=i

(X̄i − X̄ j +wi j),∀i 6= i1}

⊂ {µi −min
j 6=i

µ j ≤ max
j 6=i

(X̄i − X̄ j +wi j)
+,∀i},

where the first step follows since max j 6=i(X̄i − X̄ j +wi j) ≥
X̄i − X̄i1 +wii1 for all i 6= i1 and the last step follows since

µi1 −min j 6=i1 µ j ≤ 0 and (x)+ ≥ 0. Hence, E ⊂ EL ∩EU ,

and the proof is complete. See Edwards and Hsu (1983),

Nelson and Matejcik (1995), and Nakayama (1997) for more

details on multiple comparisons.

Traditional indifference-zone selection procedures

achieve wi j ≤ d∗ and the MCB c.i. is simplified to

ET = {µi −min
j 6=i

µ j ∈

[(X̄i −min
j 6=i

X̄ j −d∗)−,(X̄i −min
j 6=i

X̄ j +d∗)+],∀i}.

However, these tight c.i.’s come at a cost. Our procedure

takes into account the differences of sample means, hence,

the c.i. half-width wii1 is around max(d∗,µi −µi1) instead

of d∗.

4 Fully Sequential Procedure of Kim (2005)

We compare the performance of our procedures with the

FSP procedure of Kim (2005) in our empirical experiments.

The FSP procedure is as follows.

1. Setup: Based on the input parameters: confidence

level P∗, indifference-zone parameter d∗ and first-

stage sample size n0 ≥ 2. Calculate η and c as

described below in Constants.

2. Initialization: Let I = {0,1,2, . . . ,k} be the set

of designs still in contention. Obtain n0 ob-

servations Xi j, j = 1,2, . . . ,n0, from each design

i = 0,1,2, . . . ,k. For all i 6= l, i, l = 0,1,2, · · · ,k
compute S2

il , the sample variance of the difference

between design i and design l, and let

ail =
η(n0−1)S2

il

Dil

and λil =
Dil

2c

where

Dil =

{

d∗/2, if i = 0 or l = 0
d∗, otherwise.

3. Screening: For each i 6= l, i ∈ I, and l ∈ I,

if

r
∑

j=1

(Xi j −Xl j) < max{0,−ail +λilr},
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then eliminate i from I, where

Xq j =

{

Xq j +d∗/2, if q = 0
Xq j, otherwise.

4. Stopping Rule: If |I|= 1, then stop and select the

design whose index is in I as the best. Here |I|
is the cardinality of the set I. Otherwise, take one

additional observational observation Xi,r+1 from

each design i ∈ I and set r = r +1.

5. Constants: The constant c may be any nonnegative

integer. The constant η is the solution to the

equation

c
∑

l=1

(−1)l+1(1− 1

2
I(l = c))×

(1+
2η(2c− l)l

c
)
−(n0−1)

2 = β , (4)

where I is the indicator function and β is selected

so that the overall confidence is P∗. When designs

are simulated independently, the procedure sets

β = 1− (P∗)1/k. When common random numbers

(CRN) are used, the procedure sets β = (1−P∗)/k.

Both FSP and CAPC procedures perform all-pairwise

comparisons to eliminate inferior designs early in the it-

erations. However, the FSP procedure eliminates inferior

designs based on whether the partial sum is within the con-

tinuation region and is valid regardless of the indifference

amount. On the other hand, the CAPC procedure elimi-

nates inferior designs based on the two-sample-t tests and

achieves the statistical guarantee only when the indifference

amount d∗ is reasonably significant, say larger than 10% of

the standard error of the difference between the performance

measures.

The FSP procedure is efficient in terms of sample

sizes. However, a long runtime is required because the

incremental sample size is one. The CAPC procedure

determines the incremental sample sizes dynamically based

on the underlying designs and are very effective in terms

of the number of iterations.

5 EMPIRICAL EXPERIMENTS

In this section, we present some empirical results. Instead of

using stochastic systems simulation examples, which offer

less control over the factors that affect the performance of

a procedure, we use various normally distributed random

variables to represent the systems. In order to compare our

comparison-with-a-standard procedures with other known

procedures, we use similar experimental designs of Kim

(2005). We chose the first-stage sample size to be n0 = 10.
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The number of designs under consideration is k = 5. The

indifference zone, d∗, was set to d∗ = 1/
√

n0 and we set

the variance of the best design (either design 0 or 1) to one.

In this setting, d∗ is the standard deviation of the first-stage

sample mean of the best design. The minimal P(CS) of P∗

is set to 0.95. The LFC, equal means configuration (EMC),

and the monotonic increasing means (MIM) configurations

were used; see Table 1 for the corresponding values. The

variance of non-best designs are either monotonic increasing

or monotonic decreasing; see Table 2 for the configuration.

The minimum P(CS) should occur at the LFC and EMC

configurations. In the EMC, a CS means retaining the

standard, while in the LFC it means selecting design 1. The

MIM configuration is to demonstrate the effectiveness of

the procedures in eliminating inferior designs, whose X̄i is

far in excess of X̄b, at early iterations.

5.1 Experiments of Comparisons with a Control

In this experiment, the true mean of the standard µ0 is

unknown and needs to be simulated with alternative designs.

The results are based on 10000 independent simulation

runs. For comparison, we include the average sample sizes

allocated by NG (Nelson and Goldsman 2001) and FSP

(Kim 2005).

Table 3 lists the results of experiment 1 where design 0

is the best. The NG, FSP, CAPC, and CAPC2 rows list the

average sample size of the corresponding procedures. The

Iteration row lists the average number of iterations. The

Stdev row lists the standard deviation of the average sample

sizes. The P̂(CS) row lists the proportion of correction

selection of these 10000 simulation runs. Even though the

P̂(CS)’s of NG and FSP are not listed here, all P̂(CS)’s are

greater than the specified nominal level of 0.95. Procedure

NG is conservative, thus, it allocates large sample sizes

and achieves high P(CS). Furthermore, NG is developed

based on the LFC, thus, it allocates roughly the same

samples under the MIM and the EMC (LFC) configurations.

All other procedures take into account the information of

sample means and allocate less samples under the MIM

configuration. Even though CAPC and CAPC2 generally

allocates more samples than FSP, the number of iterations

is significantly smaller.

The average number of iterations of CAPC and CAPC2

under EMC with increasing variance is 63 and 11, respec-

tively. On the other hand, the average number of iterations

of FSP under the same setting will be greater than 364

(≈ 2239/6−10). Therefore, FSP generally requires much

longer execution time than CAPC and CAPC2. CAPC and

CAPC2 determine the incremental sample size dynamically

and are very efficient in terms of the number of iterations.

Table 4 lists the results of experiment 2 where design

1 is the best. The observed P̂(CS) of CAPC under the LFC

with increasing variance is 0.9469 and the observed P̂(CS)
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of CAPC2 under the LFC with increasing and decreasing

variance are 0.9465 and 0.9493, respectively. Even though

these P̂(CS) are below the nominal value of 0.95, they are

close to the nominal value. We believe this is because of

the stochastic nature of the experiment and an indication of

the controllability of these procedures. All other P̂(CS)’s

are greater than the nominal value. Again, CAPC and

CAPC2 requires slightly larger sample sizes to achieve

the required precision when compared with FSP. CAPC2

generally requires smaller sample sizes and smaller number

of iterations when compared with CAPC.

5.2 Experiments of Comparisons with a Standard

In this experiment, we assume the true mean of the stan-

dard µ0 is known and does not need to be simulated with

alternative designs. Consequently, the variance of the stan-

dard σ2
0 = 0. In every other respect the experiments were

conducted as described above. Tables 5 and 6 list the ex-

perimental results. In general all procedures allocate less

samples when the true mean of the standard is known since

they don’t allocate any samples for the standard. These re-

sults are generally similar to those experiments when the true

mean of the standard is unknown. The observed P̂(CS) of

CAPC and CAPC2 under the EMC with increasing variance

respectively are 0.9482 and 0.9490 just below the nominal

value of 0.95. All other P̂(CS) are higher than the nominal

value. In the EMC setting, the standard design is incorrectly

eliminated at the initial iteration most of the times, hence,

we recommend using a larger initial sample size, for ex-

ample n0 ≥ 20. When design 0 is the best, CAPC allocates

less samples and achieves lower P̂(CS) when compared with

the µ0 is unknown cases. On the other hand, when design

1 is the best CAPC and CAPC2 generally achieve higher

P̂(CS) with smaller sample sizes when compared with the

µ0 is unknown cases. In general, CAPC2 allocates smaller

sample sizes and requires a smaller number of iterations

than CAPC.

6 CONCLUSIONS

We have presented a sequential procedure for comparison

with a standard based on the procedure of Chen (2006). Our

procedures allow for unequal variances across designs and

known or unknown expected performance of the standard.

The procedure incorporates all pairwise comparisons to

eliminate inferior designs at each iteration, which may reduce

the overall computational effort. The procedure is robust

to minor departure of the normality assumption. Further-

more, these procedures are derived based on the Bonferroni

inequality, so one can use common random numbers to

increase the P(CS) without any further assumptions. How-

ever, Nelson and Goldsman (2001) point out that it may be

counterproductive to use CRN to perform comparison with
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Table 1: Mean Configuration

Best Model µ0 µ1 µ2 µ3 µ4 µ5

Design 0 EMC 0 0 0 0 0 0

MIM −d∗ 0 d∗ 2d∗ 3d∗ 4d∗

Design 1 LFC 0 −d∗ 0 0 0 0

MIM 0 −d∗ 0 d∗ 2d∗ 3d∗

Table 2: Variance Configuration

Best Model µ0 µ1 µ2 µ3 µ4 µ5

Design Increase 1 1+d∗ 1+2d∗ 1+3d∗ 1+4d∗ 1+5d∗

0 Decrease 1 1

1+d∗
1

1+2d∗
1

1+3d∗
1

1+4d∗
1

1+5d∗

Design Increase 1+d∗ 1 1+d∗ 1+2d∗ 1+3d∗ 1+4d∗

1 Decrease 1

1+d∗
1 1

1+d∗
1

1+2d∗
1

1+3d∗
1

1+4d∗
Table 3: P(CS) and Sample Sizes When Design 0 is the

Best

Procedure MIM MIM EMC EMC

Type Increas Decreas Increas Decreas

NG 4615 1623 4618 1603

FSP 599 360 2239 867

CAPC 777 563 1835 884

CAPC2 648 388 1689 774

CAPC

Iteration 4 4 63 26

Stdev 380 288 313 169

P̂(CS) 0.9998 0.9995 0.9558 0.9672

CAPC2

Iteration 3 3 11 9

Stdev 268 169 408 191

P̂(CS) 0.9992 0.9995 0.9509 0.9581

Table 4: P(CS) and Sample Sizes When Design 1 is the

Best

Procedure MIM MIM LFC LFC

Type Increas Decreas Increas Decreas

NG 4032 1773 4056 1747

FSP 991 711 1225 780

CAPC 1065 741 1263 821

CAPC2 1107 718 1383 778

CAPC

Iteration 22 20 38 25

Stdev 364 263 386 271

P̂(CS) 0.9737 0.9791 0.9469 0.9650

CAPC2

Iteration 26 19 26 20

Stdev 362 240 380 248

P̂(CS) 0.9709 0.9730 0.9465 0.9493
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Table 5: P(CS) and Sample Sizes When Design 0 is the

Best and µ0 is Known

Procedure MIM MIM EMC EMC

Type Increas Decreas Increas Decreas

NG 2279 647 2291 644

FSP 322 124 1283 365

CAPC 507 422 1278 545

CAPC2 456 286 1037 438

CAPC

Iteration 5 4 16 10

Stdev 215 199 309 141

P̂(CS) 0.9869 0.9874 0.9482 0.9567

CAPC

Iteration 3 3 7 6

Stdev 177 108 182 78

P̂(CS) 0.9864 0.9866 0.9490 0.9502

Table 6: P(CS) and Sample Sizes When Design 1 is the

Best and µ0 is Known

Procedure MIM MIM LFC LFC

Type Increas Decreas Increas Decreas

NG 1918 802 1932 795

FSP 419 307 673 384

CAPC 638 516 834 585

CAPC2 605 371 870 440

CAPC

Iteration 7 6 18 12

Stdev 245 194 247 204

P̂(CS) 0.9875 0.9882 0.9646 0.9704

CAPC2

Iteration 5 4 6 5

Stdev 204 112 194 113

P̂(CS) 0.9828 0.9817 0.9591 0.9599
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a standard when µ0 is known and is not simulated with

alternatives. Moreover, this procedure can be deployed in a

parallel and distributed environment to shorten the duration

of execution time, see Chen (2005).

We have shown that the proposed procedures are ver-

satile and easy to apply. Our approach is easy to state,

interpret, and implement. These procedures preserve the

simple structure of indifference-zone selection while being

more efficient in situations where there are many alternative

designs but some are not really competitive.
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