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ABSTRACT

Nelson and Staum derived R&S procedures that employ

control-variate estimators (CVs) instead of sample means

to obtain more statistical efficiency. However, control-

variate estimators require more computational effort than

sample means, and effective controls must be identified.

We present a new CV screening procedure to avoid much

of the computation cost. We also present a two-stage CV

combined procedure which captures the ability to eliminate

inferior systems in the first stage and the statistical efficiency

of control variates for selection in the second stage. An

empirical evaluation is provided.

1 INTRODUCTION

In simulation research and applications, ranking-and-

selection procedures (R&S; see for instance Bechhofer et

al. 1995) have proven to be quite useful for finding the

system design that is the best, or near the best, where the

“best” system is the one with the largest or smallest ex-

pected performance measure. However, R&S procedures

are only recommended when the number of alternative de-

signs is relatively small and the designs are not functionally

related. For instance, the typical indifference-zone (IZ) se-

lection procedure will require large numbers of observations

to deliver the desired correct-selection guarantee when the

number of systems is large. To solve this problem, Nelson

et al. (2001) proposed a combined procedure which uses

the subset selection approach to eliminate some uncompet-

itive systems in the first stage; it then applies a standard

IZ selection procedure in the second stage. In this way,

sampling cost can be saved while still maintaining the ease

of implementation and statistical efficiency.

In almost all R&S procedures sample means of the

responses are used as the estimators of the expected perfor-

mance. Nelson and Staum (2006) derived R&S procedures

which employ control-variate estimators instead of sample

means. Controls are random variables in the simulation
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that are correlated with the output of interest, but whose

expected values are known (Lavenberg and Welch 1981).

These control-variate procedures can be more statistically

efficient than the sample-mean-based procedures. However,

control-variate estimators require more computational effort

than sample means, and effective controls must be identified.

Our goal is to propose a two-stage procedure which

captures the ability to screen out inferior systems and the

statistical efficiency of control variates (CVs). We will

use a screening procedure with control variates to elim-

inate obviously noncompetitive systems in the first stage

and then apply a selection-of-the-best-with-control-variates

procedure to the surviving subset of systems in the second

stage. Nelson and Staum (2006) showed that the screen-

ing threshold with CVs is expected to be tighter than with

sample means when the correlation between the output and

control is not too small. Therefore, the expected subset size

is correspondingly smaller. For the selection-of-the-best-

with-control-variate procedure, Nelson and Staum (2006)

also showed that we can expect savings of sample size

compared with Rinott’s (1978) procedure even when the

correlation between the output and control is modest. So

the sample size of the CV selection procedure is typically

smaller than that of Rinott’s (1978) procedure, which is

based on sample means. Since the CV screening procedure

is better than the standard screening procedure based on

sample means, and the CV selection procedure is better

than the selection procedure based on sample means, we

can expect that a combined CV procedure is better than a

combined procedure based on sample means. In this paper

we develop the theory and procedures to support such a

combined approach.

This paper is organized as follows: In Section 2, we

outline the generic combined procedure. Sections 3–5 review

CV estimators, and several CV R&S procedures. We also

present a new CV screening procedure in Section 4. In

Section 6, we present the CV combined procedure in detail.

The paper ends with an empirical evaluation performed to

compare the two combined procedures in Section 7, and



Tsai and Nelson
conclusions in Section 8. The proofs of all theorems can

be found in Tsai (2006).

2 GENERIC COMBINED PROCEDURE

In the CV combined procedure, we apply the CV selection-

of-the-best procedure to the subset of systems chosen by

the CV screening procedure to acquire both statistical and

computational efficiency. The generic combined procedure

is as follows. In the remainder of the paper we fill in specific

pieces of this procedure.

1. For each system, obtain a small number of obser-

vations of the system performance measure and

the controls. Then form CV estimators of each

system’s mean and calculate an estimator of the

variance of each CV estimator.

2. Apply a CV screening procedure to eliminate in-

ferior systems based on the information acquired

in the first step.

3. If only one system survives, then stop and return

that one as the best system. Otherwise, calculate

the total number of observations needed for each

system to detect a specified practically significant

difference in performance with the desired confi-

dence level.

4. Take additional observations from each surviving

system and form CV estimators. Then select the

system with the best CV estimator.

3 SCREENING WITH INDIVIDUAL CONTROL

VARIATES

In this section we briefly provide the definitions and notation

that will be used throughout the paper and review the

screening procedure with individual controls in Nelson and

Staum (2006). The following description is based on Nelson

and Staum (2006).

3.1 Individual Control-Variate Estimators

Let Xi j be the jth simulation observation from system i, for

i = 1,2, . . . ,k. We assume it can be represented as

Xi j = µi +(Ci j −ξ i)
′β i +ηi j (1)

where {ηi j, j = 1,2, . . . ,n} is a set of i.i.d. N(0,τ2
i ) random

variables. The qi ×1 vector Ci j is called the control and is

assumed multivariate normal. For each system i = 1,2, . . . ,k,

the controls {Ci j, j = 1,2, . . . ,n} are also i.i.d., are indepen-

dent of {ηi j, j = 1,2, . . . ,n} and have known expected value

ξ i. The Xi j are therefore i.i.d. N(µi,σ
2
i ) random variables,

with both µi and σ2
i unknown and (perhaps) unequal. The

multiplier β i is a qi ×1 vector of unknown constants that
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captures the relationship between the output Xi j and the

control Ci j, while ηi j represents that part of the variability

in Xi j that is not explained by the controls.

A control-variate estimator of µi can be much more

statistically efficient than the sample mean of the Xi j. We

review some basic properties of the CV estimator under

Model (1) below. The development is based on Nelson

(1990), Nelson and Hsu (1993), and Nelson and Staum

(2006).

Let

Xi(n) =





Xi1

Xi2

...

Xin




and Ci(n) =





C′
i1

C′
i2
...

C′
in





be vectors of the output and controls across all n observations

from system i. Define the sample mean of the outputs and

controls as

X̄i(n) =
1

n

n∑

j=1

Xi j and C̄i(n) =
1

n

n∑

j=1

Ci j.

We append “(n)” to quantities defined across n observations.

Then the CV point estimator of µi is

µ̂i(n) = X̄i(n)−
(
C̄i(n)−ξ i

)′
β̂ i

(Nelson 1990). It is known that under Model (1)

E[µ̂i(n)] = µi and Var[µ̂i(n)] =

(
n−2

n−qi −2

)
τ2

i

n

where τ2
i = (1−R2

i )σ
2
i and R2

i is the square of the multiple

correlation coefficient between Xi j and Ci j (Lavenberg and

Welch 1981).

We need to know the distribution of µ̂i (n) and an

estimator of its variance to derive R&S procedures. Let

Ai(n) =





1 (Ci1−ξ i)
′

1 (Ci2−ξ i)
′

...
...

1 (Cin −ξ i)
′




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and define the residual variance estimator τ̂2
i (n) as

1

n−qi −1
Xi(n)′

[
I−Ai(n)(A′

i(n)Ai(n))
−1

A′
i(n)

]
Xi(n)

=
1

n−qi −1

n∑

j=1

[
Xi j − µ̂i(n)− (Ci j −ξ i)

′β̂ i(n)
]2

.

(2)

Further, let

∆̂2
i (n) =

1

n
+

1

n−1

(
C̄i(n)−ξ i

)′
S−1

Ci
(n)

(
C̄i(n)−ξ i

)
(3)

where SCi
(n) is the sample variance-covariance matrix of

Ci j. Then we have the following key result:

Lemma 1 (Nelson & Hsu (1993), Thm. 4.1)

If Model (1) pertains, then conditional on

C1(n),C2(n), . . . ,Ck(n) the following properties hold:

P1: µ̂i(n) ∼ N(µi,∆̂
2
i (n)τ2

i ), i = 1,2, . . . ,k.

P2: τ̂2
i (n)∼

τ2
i χ2

n−qi−1

n−qi −1
and is independent of µ̂i(n), for

i = 1,2, . . . ,k.

P3: If {ηi j, i = 1,2, . . . ,k, j = 1,2, . . . ,n} are mutually

independent, then {µ̂i(n), τ̂2
i (n), i = 1,2, . . . ,k} are

mutually independent.

Property P3 requires that the ηi j are independent for all

systems i as well as for all observations j. In practice, P3

will hold either if all systems are simulated independently,

or if common random numbers (CRN) are used but the

dependence due to CRN is entirely explained by the controls.

CRN is a technique that tries to induce a positive correlation

between the outputs of different systems by using the same

pseudorandom numbers to simulate each alternative system

and therefore reduce the variance of the difference between

them.

3.2 Screening with Individual Control Variates

We will assume that unknown to us µk ≥ µk−1 ≥ ·· · ≥ µ1

and that bigger is better. The goal of the procedure is to find a

subset I that contains system k with prespecified confidence.

We also assume that Model (1) holds with independence

among {ηi j, i = 1,2, . . . ,k, j = 1,2, . . . ,n}. Let tp,ν represent

the p quantile of the t distribution with ν degrees of freedom.

Procedure 1 (Individual CV Screening)

1. Choose the confidence level 1−α > 1/k.

2. Obtain ni > qi +2 observations from system i =
1,2, . . . ,k and form CV estimators µ̂i(ni), i =
1,2, . . . ,k.
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3. Let ti = t(1−α)1/(k−1),ni−qi−1 and create the subset

IIndiv = {i : µ̂i(ni)− µ̂`(n`) ≥−Wi`,∀` 6= i} ,

where

Wi` =

√
t2i ∆̂2

i (ni)τ̂2
i (ni)+ t2` ∆̂2

` (n`)τ̂
2
` (n`).

Nelson and Staum (2006) proved that Pr{k ∈ IIndiv} ≥
1−α when Model (1) holds with independence among

{ηi j, i = 1,2, . . . ,k, j = 1,2, . . . ,n}. The advantage of this

procedure is that we just need to compute k CVs. Its disad-

vantage is that the assumption that there is no dependence

between residuals across systems induced by CRN will not

hold in practice. So Nelson and Staum (2006) proposed a

screening procedure with paired control variates.

4 SCREENING WITH PAIRED CONTROL

VARIATES

In this section we review the screening procedure with paired

control variates in Nelson and Staum (2006) and propose a

new procedure to reduce the computation cost and retain the

benefit of paired CVs as well. The description in Section

4.1 is based on Nelson and Staum (2006).

4.1 All-Pair Screening Procedure

Nelson and Staum (2006) use the paired controls model

to avoid the assumption that the controls entirely ex-

plain the dependence induced by CRN. We form pairwise

differences across systems, X j(i, `) = Xi j −X` j,C j(i, `) =
Ci j −C` j,µi` = µi − µ` and ξ i` = ξ i − ξ `. We need the

observations and the controls to be paired across systems,

so the number of observations should be equal for each

system in the same pair, and also the number of controls

for each system in the same pair is equal. For convenience

we let n be the common number of replications and q be

the common number of controls for each system. Then we

assume that a model like Model (1) holds:

X j(i, `) = µi` +(C j(i, `)−ξ i`)
′B(i, `)+ ε j(i, `) (4)

where {ε j(i, `), j = 1,2, . . . ,n} is a set of i.i.d. N(0,τ2
i`) ran-

dom variables. The q×1 vector C j(i, `) is assumed multi-

variate normal. For each pair of systems i, ` = 1,2, . . . ,k, i 6=
` the controls {C j(i, `), j = 1,2, . . . ,n} are also i.i.d., are

independent of {ε j(i, `), j = 1,2, . . . ,n} and have known

expected value ξ i`. Unlike Model (1), Model (4) can hold

even when ηi j and η` j are dependent.

For all i 6= `, we let µ̂i`(n) be the corresponding CV

estimator of µi`, and define τ̂2
i`(n) and ∆̂2

i`(n) in analogy
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to Equations (2) and (3), but applying CVs to differences

between systems’ output instead of to each system’s output.

We call the following procedure proposed by Nelson

and Staum (2006) the “All-Pair” screening procedure.

Procedure 2 (All-Pair Screening)

1. Choose the confidence level 1−α > 1/k.

2. Obtain n > q +2 observations from each system

and form the k(k−1)/2 CV estimators µ̂i`(n) for

all i 6= `.

3. Let t = t1−α/(k−1),n−q−1 and create the subset

IAllPair =
{

i : µ̂i`(n) ≥−t ∆̂i`(n)τ̂i`(n),∀` 6= i
}

.

Nelson and Staum (2006) proved that Pr{k ∈ IAllPair}≥
1−α when Model (4) holds. The advantage of this procedure

is that we do not have to be concerned about the dependence

remaining in residuals due to CRN. Its disadvantages are

that we have to compute k(k−1)/2 CV estimators and that

the procedure uses the conservative Bonferroni inequality.

4.2 “Best Bet” Screening Procedure

Nelson and Staum (2006) proved that Pr{ k ∈ IAllPair } ≥
1−α . However, the All-Pair screening procedure requires

calculating k(k−1)/2 CV estimators which can be a large

computation cost. In this subsection, we propose a new

procedure which requires less computation and creates a

subset I ⊇ IAllPair, and therefore we can guarantee that

Pr{ k ∈ I } ≥ 1−α . To accomplish this we choose some

system K∗ which is very likely to be the best system, and

then perform screening with paired CVs just against K∗.

In the following “Best Bet” screening procedure, we

denote the system with the largest µ̂i(n) as K∗.

Procedure 3 (Best Bet Screening)

1. Choose the confidence level 1−α > 1/k.

2. Obtain n > q +2 observations from each system

and form the k CV estimators µ̂i(n), i = 1,2, . . . ,k.

3. Let K∗ be the index of the system with the largest

µ̂i(n), that is, K∗ = argmaxi µ̂i(n), and then form

the k − 1 paired CV estimators µ̂iK∗(n) for all

i 6= K∗.

4. Let t = t1−α/(k−1),n−q−1 and create the subset

IBestBet =
{

i : µ̂iK∗(n) ≥−t ∆̂iK∗(n)τ̂iK∗(n),

∀i 6= K∗
}
∪{ K∗ } .

The advantage of this procedure is that it can decrease

the computation cost and achieve the desired statistical
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efficiency as well. The subset size will be close to that of

the All-Pair screening procedure, because there is a large

correlation between µ̂i`(n) and µ̂i(n)− µ̂`(n). And it also

avoids the assumption that CVs explain all the dependence

induced by CRN. Its disadvantage is that it needs to compute

2k−1 CV estimators which is more than the individual CV

screening procedure (k). However, it still saves computation

cost compared with All-Pair screening procedure (k(k −
1)/2), when the number of alternatives is large.

5 SELECTING THE BEST WITH CONTROL

VARIATES

In this section we briefly review the selection-of-the-best-

with-control-variates procedure in Nelson and Staum (2006).

Under Model (1), we adopt the indifference-zone (IZ) for-

mulation in which we require a guaranteed probability of

selecting system k whenever the difference µk −µk−1 ≥ δ ,

where the indifference-zone parameter δ > 0 is set to the

smallest difference the analyst feels is worth detecting. We

also assume that all systems have the same number of

controls q. The procedure is as follows:

Procedure 4 (Selecting the Best with Controls)

1. Choose the indifference-zone parameter δ > 0, con-

fidence level 1−α > 1/k and choose α0,α1 > 0
such that α = α0 +α1.

2. For each system i = 1,2, . . . ,k, obtain n0 observa-

tions and calculate τ̂2
i (n0).

3. For each system i = 1,2, . . . ,k, set the total sample

size

Ni=minn≥n0


n:

“
n−q

q

”„
nδ2

h2bτ2
i
(n0)

−1

«
≥F

(γ)
q,n−q

ff

where h = hk,1−α1,n0−q−1 is Rinott’s (1978) con-

stant, F
(γ)
q,n−q is the γ quantile of the F distribution

with (q,n−q) degrees of freedom, and

γ =

{
(1−α0)

1
k , if systems are independent

1−α0/k, otherwise.

4. Collect Ni − n0 observations from system i and

form the CV estimators µ̂i(Ni) for i = 1,2, . . . ,k.

5. Select system B = argmaxi µ̂i(Ni).

Nelson and Staum (2006) proved that Pr{B = k} ≥
1−α whenever µk −µk−1 ≥ δ .

6 COMBINED PROCEDURE

In the combined procedure, we apply a screening procedure

with control variates to eliminate noncompetitive systems

in the first stage. Then in the second stage the CV selection-
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of-the-best procedure is applied to the surviving systems to

pick the best system, while still gaining the desired overall

confidence level. Here are some key observations:

• We spend α0 of the overall allowable error α for

incorrect selection on the first screening stage, and

α1+ α2 on the second selection-of-the-best stage.

• If we use the individual CV screening procedure

in the first stage, then a multiplicative approach is

applied:

1−α = (1−α0)(1−α1−α2).

• If we use the paired CV screening procedure in the

first stage, then an additive approach is applied:

1−α = 1−α0−α1−α2.

• We set the appropriate critical constant ti of each

system i = 1,2, . . . ,k in the CV screening procedure

for k systems, ni first stage samples, qi control

variates, and confidence level 1−α0.

• We set the appropriate critical constant h of each

system i = 1,2, . . . ,k in the CV selection-of-the-

best procedure for k systems, ni first stage samples,

qi control variates, and confidence level 1−α1.

• We set the appropriate critical constant γ in the

CV selection-of-the-best procedure for k systems,

confidence level 1−α2, and depending on whether

or not the systems are simulated independently.

In the procedure below we assume that ni−qi is the same

for each system i = 1,2, . . . ,k and mention the necessary

adjustment for unequal ni −qi in Remark 6.1. Following is

a procedure which combines the individual CV screening

procedure with the CV selection-of-the-best procedure.

Procedure 5 (Individual CV Combined)

1. Select overall confidence level 1/k < 1−α < 1,

indifference-zone parameter δ > 0, number of sys-

tems k, and first-stage sample size ni > qi +2 from

system i = 1,2, . . . ,k. Set ti = t(1−α0)1/(k−1),ni−qi−1
and h = hk,1−α1,ni−qi−1 which is Rinott’s constant

(see Wilcox 1984 or Bechhofer et al. 1995 for

tables).

2. Obtain ni observations from each system and cal-

culate µ̂i(ni), ∆̂2
i (ni) and τ̂2

i (ni), i = 1,2, . . . ,k. We

also create the subset

I = {i : µ̂i(ni)− µ̂`(n`) ≥−Wi`,∀` 6= i} ,
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where

Wi` =

√
t2i ∆̂2

i (ni)τ̂2
i (ni)+ t2` ∆̂2

i (n`)τ̂
2
i (n`).

3. If I contains a single index, then stop and return

that system as the best. Otherwise, for all i ∈ I,

compute the second-stage sample size

Ni=minn≥ni


n:

“
n−qi

qi

”„
nδ2

h2bτ2
i
(ni)

−1

«
≥F

(γ)
qi,ni−qi

ff

whereF
(γ)
qi,ni−qi

is the γ quantile of the F distribution

with (qi,ni −qi) degrees of freedom, and

γ =

{
(1−α2)

1
k , if systems are independent

1−α2/k, otherwise.

Notice that 1− α = (1− α0)(1− α1 − α2), the

multiplicative approach.

4. Take Ni −ni additional observations from all sys-

tems i ∈ I and form the CV estimators µ̂i(Ni) for

i ∈ I.

5. Select the system B = argmaxi µ̂i(Ni) as best from

all systems i ∈ I.

Theorem 1 If Model (1) holds with independence

among {ηi j, i = 1,2, . . . ,k, j = 1,2, . . . ,n} and the distribu-

tion of each control Ci j is multivariate normal, then the

individual CV combined procedure selects a system B such

that Pr{B = k} ≥ 1−α whenever µk −µk−1 ≥ δ .

Remark 6.1 Suppose that ni−qi is different across

systems. This causes the first-stage residual-variance esti-

mators τ̂2
1 (n1), τ̂

2
2 (n2), . . . , τ̂

2
k (nk) to have different degrees

of freedom. One approach is to use the adjusted constant

h′ = h2,(1−α1)1/(k−1),mini ni−qi−1

which is valid when degrees of freedom are unequal (Boesel,

Nelson and Kim 2003).

Remark 6.2 We can combine the paired CV screen-

ing procedure with the CV selection-of-the-best procedure

to be the paired CV combined procedure. When we use

Best Bet screening procedure, we need to change Step 2 to

the following:

2. Obtain n > q +2 observations from each system

and form the k CV estimators µ̂i(n), i = 1,2, . . . ,k.

Let K∗ be the index of the system with the largest

µ̂i(n), that is, K∗ = argmaxi µ̂i(n), and then form

the k − 1 paired CV estimators µ̂iK∗(n) for all

i 6= K∗. Then we let t = t1−α0/(k−1),n−q−1 and
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create the subset

IBestBet =
{

i : µ̂iK∗(n) ≥−t ∆̂iK∗(n)τ̂iK∗(n),

∀i 6= K∗
}
∪{ K∗ } .

In Step 3, an additive approach is applied (1−α = 1−
α0−α1−α2).

Theorem 2 If Model (1) and Model (4) both hold

with independence among {ηi j, i = 1,2, . . . ,k, j =1,2, . . . ,n}
and the distribution of each control Ci j is multivariate

normal, then the paired CV combined procedure selects a

system B such that Pr{B = k}≥ 1−α whenever µk−µk−1 ≥
δ .

We prove this PCS guarantee assuming independence

among {ηi j, i = 1,2, . . . ,k, j = 1,2, . . . ,n} in Tsai (2006),

however, the experiments showed that this paired CV

combined procedure can perform very well even when

{ηi j, i = 1,2, . . . ,k, j = 1,2, . . . ,n} are not independent.

7 EMPIRICAL RESULTS

In this section we summarize the results of an empirical

evaluation performed to compare the following procedures:

1. The combined sample-mean-based procedure

(NSGS) due to Nelson et al. (2001) that uses a

screening procedure with sample means to elimi-

nate uncompetitive systems after the first stage of

sampling, and then applies Rinott’s IZ selection

procedure in the second stage. This procedure al-

lows for unknown and unequal variances across

systems, but CRN is not exploited.

2. The individual CV combined procedure which we

call TN-I, and the paired CV combined procedure

which we call TN-P. These procedures allow for

unknown and unequal variances across systems and

the use of CRN although TN-I does not exploit

CRN.

The systems were represented by various configurations

of k normal distributions; in all cases, system k was the

best (had the largest true mean). Let Xi be a simulation

observation from system i, for i = 1,2, . . . ,k. For simplicity,

we assume that there is q = 1 control variate. Then we

assume the output can be represented as

Xi = µi +(Ci −ξi)βi +ηi

where {ηi, i = 1,2, . . . ,k} are N(0,σ2
η ) random variables.

The {Ci, i = 1,2, . . . ,k} are assumed to be N(ξi,σ
2
c ) random

variables which are independent of {ηi, i = 1,2, . . . ,k}. The

correlation between controls Ci and C j for i 6= j is ρc. The

correlation between residuals ηi and η j for i 6= j is ρη . The

squared correlation coefficient between Xi and Ci is ρ2
(x,c).
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We evaluated each procedure on different variations

of the systems, examining factors including the number of

systems k, the practically significant difference δ , the initial

sample size n0, the variances of controls σ2
c , the variance

of residuals σ2
η , the correlation of the controls ρc, and the

correlation of residuals ρη . The larger σ2
c is compared with

σ2
η , the more the variability in outputs can be explained

by the controls. Larger ρη means more dependence due to

CRN is accounted for by the residuals. The configurations,

the experiment design, and the results are described below.

7.1 Configurations and Experiment Design

We used the slippage configuration (SC) of the true means

of the systems, in which µk was set to δ , while µ1 = µ2 =
· · · = µk−1 = 0. This is a difficult scenario for screening

procedures because all the inferior systems are close to

the best system. Notice that we do not need to examine

more favorable configurations since our goal is to compare

NSGS with the TN procedures. The slippage configuration

is sufficient for this purpose.

We chose the initial sample size to be n0 = 10, for

i = 1,2, . . . ,k. The mean of the controls, ξi, is set to be 0,

for i = 1,2, . . . ,k. We also set βi to be 1, for i = 1,2, . . . ,k.

The number of systems in each experiment varied over

k = 2,5,10,25,100. The indifference zone, δ , was set to

δ =
√

(σ2
c +σ2

η)/n0, where σ2
c is the variance of controls

and σ2
η is the variance of residuals. For each configuration,

500 macroreplications (complete repetitions) of the entire

combined procedure were performed. In all experiments, the

nominal probability of correct selection was set at 1−α =

0.95. We took α0 = α1 = α2 = α/3 in paired CV screening

cases and took α0 = α/3, α1 = α2 = α/(3−α) in individual

CV screening cases. For NSGS, we set α0 = α1 = α/2. To

compare the performance of the procedures we recorded the

estimated probability of correct selection (PCS), the average

number of samples per system (ANS), and the percentage

of systems that received second-stage sampling (PSS).

7.2 Summary of Results

The PCS of the CV combined procedure was over 0.95

in all configurations. The overall experiments showed that

the CV combined procedure is superior to the combined

sample-mean-based procedure under any configuration we

examined. The ANS increased much more slowly for the

CV combined procedure than for the combined sample-

mean-based procedure NSGS as k increased.

7.3 Some Specific Results

We do not try to present comprehensive results from such a

large simulation study. Instead, we present selected results
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that highlight the key conclusions. Notice that we apply

the Best Bet screening procedure in TN-P.

7.3.1 Effect of Number of Systems

See Table 1 for an illustration. Systems are simulated

independently since NSGS and TN-I do not exploit CRN.

So the key factor is to compare NSGS with TN-I when

we have different numbers of systems. As k increases, the

average number of samples per system increases greatly in

NSGS. However, the ANS increases much slower in TN-I

than in NSGS as k increases. The percentage of systems

that received second-stage sampling is also smaller in TN-I

than in NSGS, which is not surprising. When the number

of systems increases, TN-I can get more advantage than

NSGS.

7.3.2 Effect of Control Variates

See Table 2 for an illustration. We know that ρ2
(x,c) =

σ2
c /σ2

x = σ2
c /(σ2

c + σ2
η) which represents how good this

CV is. In our experiments, we fix σ2
x to be 16. For example,

ρ2
(x,c) = 0.2 means σ2

x = 16 and σ2
c = 3.2. We find that

the performance of individual CV combined procedure is

almost the same as NSGS when ρ2
(x,c) is 0.2. When ρ2

(x,c) is

larger than 0.2, the CV combined procedure can outperform

NSGS. Very little ρ2
(x,c) is required for the CV combined

procedure to beat NSGS. Certainly, larger ρ2
(x,c) means the

CVs can explain more variability of the outputs, and thereby

makes the CV combined procedure more efficient.

7.3.3 Effect of Correlation

See Table 3 for an illustration. Here we compare TN-I

and TN-P under different ρη . The performance of TN-I is

not affected by the correlation between residuals. On the

other hand, when the correlation between residuals is larger,

TN-P performs better and beats TN-I easily. In Table 3, we

see that the PSS of TN-P is as low as 0.09 which shows

the high efficiency of TN-P when ρη is large.

8 CONCLUSIONS

In this paper we presented a CV combined procedure which

captures the ability to screen out inferior systems and the

statistical efficiency of control variates. We also presented

a new paired CV screening procedure to reduce the com-

putation cost and retain the benefits of paired CV as well.

As we showed in Section 7, TN-I is superior to NSGS

for all the scenarios we examined. NSGS is based on the

assumption that all systems are simulated independently,

and TN-I assumes that the dependence induced by CRN

is entirely explained by the controls. On the other hand,
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Table 1: Effect of Number of Systems for NSGS and TN-I

when σc = 4,ση = 1,ρc = ρη = 0

Number of

systems Procedure PCS ANS PSS

k=2 NSGS 0.98 98 0.86

TN-I 1 12 0.41

k=5 NSGS 0.98 186 0.96

TN-I 1 19 0.76

k=10 NSGS 0.98 234 0.97

TN-I 1 27 0.86

k=25 NSGS 0.98 306 0.99

TN-I 1 34 0.92

k=100 NSGS 0.99 430 0.99

TN-I 1 49 0.98

Table 2: Effect of Control Variates for TN-I comparison

with NSGS when ρc = 0,ρη = 0, and k = 10

Procedure PCS ANS PSS

σ2
x =16 NSGS 1 235 0.97

ρ2
(x,c)=0.2 Individual CV 0.97 241 0.98

ρ2
(x,c)=0.4 Individual CV 1 181 0.99

ρ2
(x,c)=0.6 Individual CV 1 129 0.97

ρ2
(x,c)=0.8 Individual CV 1 68 0.99

Table 3: Effect of Correlation for TN-I and TN-P when

σc = 4,ση = 1, and k = 10

Correlation Procedure PCS ANS PSS

ρc=0 Individual CV 1 34 0.80

ρη =0.2 Paired CV 1 30 0.74

ρc=0 Individual CV 1 34 0.90

ρη =0.5 Paired CV 1 24 0.53

ρc=0 Individual CV 1 35 0.90

ρη =0.8 Paired CV 1 12 0.09

TN-P is significantly more efficient than TN-I when the

correlation between residuals induced via CRN is large.

However, the advantage of TN-P over TN-I is diminishing

with larger numbers of systems and TN-P requires more

computation cost than TN-I. As a rough rule of thumb, we

use TN-P when CRN is involved, but use TN-I when all

the systems are simulated independently.
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