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ABSTRACT

Mixture of normals is a more general and flexible distri-

bution for modeling of daily changes in market variables

with fat tails and skewness. An efficient analytical Monte

Carlo method was proposed by Wang and Taaffe for gener-

ating daily changes using a multivariate mixture of normal

distributions with arbitrary covariance matrix. However the

usual Cholesky Decomposition will fail if the covariance

matrix is not positive definite. In practice, the covariance

matrix is unknown and has to be estimated. The estimated

covariance may be not positive definite. We propose a

modified Cholesky decomposition for semi-definite matri-

ces and also suggest an optimal semi-definite approximation

for indefinite matrices.

1 INTRODUCTION

Recently the mixture of normal distributions has become a

popular model for fitting the market data of daily changes

(Zangari 1996, Venkataraman 1997, Duffie and Pan 1997,

Hull and White 1998, and Wang and Taaffe 2001). The

mixture of normals fully takes into account fat tails and

skewness.

We have proposed an efficient Monte Carlo method

for generating daily changes in market variables using a

multivariate mixture of normal distributions with an arbitrary

covariance matrix (Wang and Taaffe 2001). The main

idea is to transform a multivariate normal with an input

covariance matrix into the desired multivariate mixture of

normal distributions. This input covariance matrix can be

derived analytically.

After we proposed our method, researchers, graduate

students, and practitioners from both academic and financial

institutions showed their great interests about the method.

We have received many inquiries on implementation of our

method and model fitting. The most common question from

finance industry is how to implement our method when the

input covariance matrix is not positive definite.
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In theory, the covariance matrix of market variables

is positive semi-definite if it exists. However it is usually

unknown and has to be estimated from the existing market

data. The estimated covariance matrix can be positive defi-

nite, or positive semi-definite, or indefinite due to numerical

or estimation errors.

Modified Cholesky decomposition is widely used to

handle positive semi-definite and indefinite matrices (Gill

and Murray 1981; Higham 1988, 1990; Schlick 1993; Schn-

abel and Eskow 1990; and Cheng and Higham 1998). We

propose an alternative modified Cholesky decomposition

to deal with positive semi-definite matrices. It is simple,

efficient, and easy to implement. An optimal positive semi-

definite approximation in Frobenius norm is provided to

deal with symmetric indefinite matrices.

This paper proceeds as follows. In Section 2, we

discuss the covariance matrix and its estimation. In theory,

the covariance matrix is positive semi-definite. The two

most widely used sample covariance estimates have been

proved to be positive semi-definite. A positive definite

sample covariance matrix is constructed in order to apply

the usual Cholesky decomposition directly. In Section 3, we

briefly review the original Cholesky decomposition, which

only works for positive definite matrices. The estimated

covariance matrix may not be positive definite due to several

reasons. In Section 4, we propose a modified Cholesky

decomposition with diagonal pivoting to handle the positive

semi-definite matrices. The algorithm is easy to implement

and efficient. In Section 5, a best approximation of indefinite

matrix is introduced. We just add a small diagonal matrix to

the covariance matrix to form a positive definite or positive

semi-definite matrix, so that the usual or modified Cholesky

decomposition can be used. In Section 6, we review the

general mixture of k normal random variable. In Section 7,

we propose a method for generating multivariate mixture of

normals with arbitrary covariance matrix using the modified

Cholesky decomposition. A detailed algorithm is provided

to deal with the more general semi-definite matrices.
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2 COVARIANCE AND SAMPLE COVARIANCE

MATRICES

In this section, we derive that any covariance matrix is

positive semi-definite by theory. In practice, the covariance

matrix is unknown. We need to use the market data to

estimate it. There is no guarantee that it would be posi-

tive semi-definite due to numerical and estimation errors.

However we can prove that the sample covariance matrix

is always positive semi-definite in theory.

Let X = (X1, . . . ,Xn)
T be a multivariate random variable,

we define its covariance as

Σ = Var(X) = E(X −E(X))(X −E(X))T .

We have the following fundamental result:

Theorem 2.1 If the covariance matrix Σ exists, then

it must be positive semi-definite.

Proof For any constant vector c = (c1, . . . ,cn)
T , we

have

Var(cT X) ≥ 0.

Since

0 ≤ Var(cT X) = Cov(cT X ,cT X)

= E(cT X −E(ctX))2

= E[(cT X −E(ctX))(cT X −E(ctX))T ]

= E[cT (X −E(X))(X −E(X))T c]

= cT E(X −E(X))(X −E(X))T c

= cT Σc,

therefore Σ is positive semi-definite. 2

If xk = (x1k, . . . ,xnk)
T is the k-th observation of X =

(x1, . . . ,xn)
T for k = 1, . . . ,N, then the sample mean of X is

x̄ = (x̄1, . . . , x̄n)
T =

(

1

N

N
∑

k=1

x1k, . . . ,
1

N

N
∑

k=1

xnk

)T

.

The most widely used sample covariance matrices are

Σ̂1 =
1

N

N
∑

k=1

(xk − x̄)(xk − x̄)T

and

Σ̂2 =
1

N −1

N
∑

k=1

(xk − x̄)(xk − x̄)T .

There is no big difference between Σ̂1 and Σ̂2 if the sample

size N is large. In statistics, sometimes Σ̂1 is called the

maximum likelihood estimate and Σ̂2 is called an unbiased
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estimate. In addition, Σ̂1 and Σ̂2 have the following nice

properties.

Theorem 2.2 Both sample covariance matrices Σ̂1

and Σ̂2 are positive semi-definite.

Proof For any constant vector c = (c1, . . . ,cn)
T ,

cT Σ̂1c = cT

(

1

N

N
∑

k=1

(xk − x̄)(xk − x̄)T

)

c

=
1

N

N
∑

k=1

cT (xk − x̄)(xk − x̄)T c

=
1

N

N
∑

k=1

cT (xk − x̄)[cT (xk − x̄)]T

=
1

N

N
∑

k=1

[cT (x j − x̄)]2 ≥ 0.

Therefore Σ̂1 is positive semi-definite. Similarly we can

prove that Σ̂2 is positive semi-definite too. 2

We can combine Σ̂1 and Σ̂2 to form a new positive

definite sample covariance matrix. Define

σ̂i j =







































1

N −1

N
∑

k=1

(xik − x̄i)
2

for i = j, and i = 1, . . . ,n,

1

N

N
∑

k=1

(xik − x̄i)(x jk − x̄ j)

for i 6= j, and i, j = 1, . . . ,n.

We have the following result.

Theorem 2.3 The combined sample covariance ma-

trix

Σ̂3 = (σ̂i j)

is positive definite when the Xis are not constants.

Proof We can view Σ̂3 as a sum of two matrices:

Σ̂3 = Σ̂1 +E

where E is a diagonal matrix with elements

eii =
1

N(N −1)

N
∑

k=1

(xik − x̄i)
2, i = 1, . . . ,n.

For any non-zero constant vector c = (c1, . . . ,cn)
T ,

cT Σ3c = cT Σ1c+ cT Ec ≥ cT Ec

=
1

N(N −1)

N
∑

k=1

(xik − x̄i)
2c2

i > 0.
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We conclude that Σ̂3 is positive definite. 2

Therefore the usual Cholesky decomposition can apply

to Σ̂3 directly. All three estimates are good candidates to

estimate the covariance matrix. They are positive semi-

definite and converge to the true Σ almost surely (as second

order moment estimates).

3 CHOLESKY DECOMPOSITION AND

SINGULAR CASES

Cholesky decomposition is the most commonly used nu-

merical algorithm to decompose a symmetric and positive

definite matrix into a lower and upper triangular matrix.

A = LLT

or










a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann











=











l11 0 . . . 0
l21 l22 . . . 0
...

...
. . .

...

ln1 ln2 . . . lnn





















l11 l21 . . . ln1
0 l22 . . . ln2
...

...
. . .

...

0 0 . . . lnn











.

The procedure of decomposition is as follows.

lii =

√

√

√

√(aii −
i−1
∑

k=1

l2ik), i = 1, . . . ,n (1)

and

l ji = (a ji −
i−1
∑

k=1

l jklik)/lii, j = i+1, . . . ,n. (2)

When matrix A is symmetric and positive definite, the

expression under the square root is positive and therefore,

all elements in L are real. Because of this, the Cholesky

decomposition is also called the “square root” decomposi-

tion.

Cholesky decomposition is one of the most numerically

stable of all matrix algorithms (Wilkinson 1968). Without

any pivoting, the decomposition process is stable and the

propagation round-off error can be controlled.

In order for the above decomposition to proceed, the

matrix A must be positive definite. Mathematically, this

requires all eigenvalues of the matrix be positive. Covariance

matrix estimated from historic data can be proved to be at
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least positive semi-definite, i.e., all its eigenvalues are greater

than or equal to 0.

However, in certain situations, the eigenvalues of a

covariance matrix can be 0, and hence, cause it to be not

positive definite. This can happen in the following three

cases:

Case 1 If one random variable Xi is indeed a constant,

then the entire i-th row (and column) of the covariance matrix

is 0.

Case 2 If one variable has a perfect linear dependency

on one or more other variables, then the matrix is singular

and has at least a zero eigenvalue.

Case 3 When the sample size is small, the covariance

matrix may be singular due to mere sampling fluctuation.

Because the sample covariance matrix does converge to its

population covariance matrix, this will not be a problem

when the sample size gets large.

When the covariance matrix is not positive definite,

the Cholesky decomposition process cannot proceed. Many

statistics programs simply send an error message and halt.

In order to simulate such situations properly, we need to find

a way to process covariance matrices that are not positive

definite.

4 CHOLESKY DECOMPOSITION WITH

DIAGONAL PIVOTING

Lemma 4.1 The maximum value of a symmetric

and positive semi-definite matrix can be achieved on its

diagonal.

This lemma guarantees that the pivots of Gaussian

Elimination with complete pivoting can always be chosen

from the diagonal, and therefore, maintain the symmetry in

the decomposition process.

Algorithm 4.1 (Cholesky Decomposition with Di-

agonal Pivoting) Input: integer n, positive semi-definite

n×n matrix A.

For i = 1, . . . ,n, repeat the following steps.

1. Find the largest diagonal elements on or below the

i-th row and column. Let it be ari,ri
.

2. If ari,ri
= 0, stop. The decomposition is complete.

3. If ri 6= i, interchange the i-th row and the ri-th row,

and the i-th column and the ri-th column.

4. Calculate

lii =

√

√

√

√(aii −
i−1
∑

k=1

l2ik) (3)

and

l ji = (a ji −
i−1
∑

k=1

l jklik)/lii, j = i+1, . . . ,n. (4)
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Each iteration in the above algorithm reduces one col-

umn of the original matrix A towards an upper triangular

matrix through row/column interchanges Ii,ri
and IT

i,ri
and

Gaussian elimination L−1

i :

Ai+1 = L−1

i Ii,ri
AiI

T
i,ri

(5)

where A1 = A,

Li = I +[0, · · · ,0, li+1,i, · · · , ln,i]
T eT

i

and ei is the i-th unit coordinate vector.

If the algorithm stops at step i, then Ii,ri
is the unit

matrix I. Li should be equal to the diagonal matrix with

first i−1 diagonal elements being 1 and all other elements

being 0. Il,rl
and Ll for l = i+1, . . . ,n can be regarded as

unit matrix I.

When the algorithm terminates, matrix A is decomposed

into

A = L∗LT
∗ (6)

where L∗ = I1,r1L1I2,r2L2 · · · I1,r1Ln.

Notice that L∗ is not a lower triangular matrix. But if

we define

P = I1,r1I2,r2 · · · In−1,rn−1 (7)

then the matrix

L = PT L∗

is a lower triangular matrix. Obviously, P is a permutation

matrix: PPT = I.

From the above constructive algorithm, we can have

the following theorem.
Theorem 4.1 A symmetric and positive semi-

definite matrix can always be decomposed to A = (PL)(PL)T

form, where P is a permutation matrix, and L is a lower

triangular matrix.

Because of the diagonal pivoting, the absolute value of

all elements in the Gaussian elimination matrix Li is less

than or equal to 1. Therefore, the decomposition process

is numerically stable.

5 BEST APPROXIMATION OF INDEFINITE

MATRICES

In real practice, because of missing data or numerical errors,

the estimated covariance matrix Σ may be indefinite (i.e., it

contains one or more negative eigenvalue). In such abnormal

cases, we propose to add a small diagonal matrix E to Σ
and use the new matrix Σ̃ = Σ+ E as the covariance. If

the smallest element in E is greater than or equal to the

absolute value of the negative eigenvalues of Σ, then Σ̃
will be positive definite or semi-definite. We can use the
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usual Cholesky decomposition or our modified Cholesky

algorithm.

Recall the definition of Frobenius norm:

‖A‖F =

√

∑

i, j

|ai, j|2.

Under the Frobenius norm,

‖Σ̃−Σ‖F = ‖E‖F

can reach a minimum for a special construction of E.

For example, see Higham (1988). We consider a spectral

decomposition of Σ. Let

Σ = QΛQT

with Q orthogonal and Λ diagonal. We define D and Σ̃ by

D = diag(max(0,λ11), . . . ,max(0,λnn))

and

Σ̃ = QDQT .

Here E can be picked as

E = Σ̃−Σ.

Σ̃ is the unique best semi-positive approximation of Σ with

respect to the Frobenius norm.

Is it possible that some of the main diagonal elements of

Σ̃ generated according to above procedure are not positive?

If it is true, its corresponding correlation matrix of Σ̃ will

not have ones on the diagonal. Certainly having ones on

the diagonal of the correlation matrix are important and

necessary. We use the following result as an answer.

Theorem 5.1 All diagonal elements of Σ̃ are greater

than or equal to their corresponding diagonal elements in

Σ and therefore, are positive:

σ̃ii ≥ σii > 0, i = 1, . . . ,n.

Proof From the spectral decomposition of Σ, we have

σii =

n
∑

j=1

λ j jq
2
i j, i = 1, . . . ,n

and

σ̃ii =

n
∑

j=1

d j jq
2
i j, i = 1, . . . ,n.
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By the definition of D, we have

dii = max(0,λii), i = 1, . . . ,n

and

dii ≥ λii, i = 1, . . . ,n.

Therefore

σ̃ii ≥ σii > 0, i = 1, . . . ,n.

2

6 MIXTURE OF NORMAL DISTRIBUTIONS

In this section, we review the univariate mixture of k normal

distributions.

In general, the cumulative distribution function (cdf)

of a mixture of k normal random variable X is defined by

F(x) =

k
∑

j=1

p jΦ

(

x−µ j

σ j

)

, (8)

where Φ is the cdf of N(0,1). Therefore its probability

density function (pdf) is

f (x) =
k
∑

j=1

p jφ j(x;µ j,σ
2
j ), (9)

where, for j = 1, · · · ,k,

φ j(x;µ j,σ
2
j ) =

1√
2π σ j

e
−

(x−µ j)
2

2σ2
j ,

0 ≤ p j ≤ 1,
k
∑

j=1

p j = 1,

with mean

µ =
k
∑

j=1

p jµ j

and variance

σ2 =
k
∑

j=1

p j(σ
2
j + µ2

j )−µ2.
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7 GENERATING MULTIVARIATE MIXTURES

OF NORMAL VARIATES

In this section, we propose a modified Cholesky decom-

position in generating a multivariate mixture of normal

distributions with arbitrary covariance matrix.

We assume that X = (X1, · · · ,Xn)
T is a random vector of

daily changes in market variables. The marginal distribution

of each component Xi is a univariate mixture of ki normals

with pdf:

fXi
(x) =

ki
∑

h=1

pih

1√
2π σih

e
−

(x−µih
)2

2σ2
ih , (10)

where

0 ≤ pih ≤ 1, h = 1, · · · ,ki,

ki
∑

h=1

pih = 1, i = 1, . . . ,n.

The covariance matrix of X is

ΣX = [σi j(X)], (11)

where σi j(X) = Cov(Xi,X j) and i, j = 1, . . . ,n.

Based on our results of Propositions 3.2.2 and 3.2.3 of

Wang and Taaffe (2001), generating a multivariate mixture

of normals with the marginal pdfs of (10) and covariance

matrix of ΣX = [σi j(X)] can be accomplished as follows:

Algorithm 7.1 Inputs: integer n, positive semi-

definite covariance matrix ΣX , mixture of normal parameters

pil , µil , σil , l = 1, . . . ,ki, i = 1, . . . ,n.

1. Calculate
∑

Y , where σi j(Y ) =
8

>

>

>

<

>

>

>

:

σi j(X)−
Pki

h=1

Pk j

l=1
pih p jl (µih −µi)(µ jl −µ j)

Pk j

l=1
pih p jl σih σ jl

,

f or i 6= j, and i, j = 1, . . . ,n
1, f or i = j, and i = 1, . . . ,n.

2. Decompose the ΣY using Cholesky Decomposition

with Diagonal Pivoting.

3. Generate Z = (Z1, · · · ,Zn)
T , where the Zis are from

N(0,1).
4. Generate U = (U1, · · · ,Un)

T , where the Uis are

from U(0,1).
5. Calculate Y = (Y1, . . . ,Yn)

T from Y = L∗Z =
I1,p1L1I2,p2L2 · · · I1,p1LnZ.

6. Return X = (X1, · · · ,Xn)
T , where Xi =

∑ki

h=1
(σihYi + µih)I

n

Ph−1
l=1

pil
≤Ui<

Ph
l=1 pil

o,

and
∑0

l=1
pil = 0.

Theorem 7.1 The random vector X generated from

the previous algorithm is a multivariate mixture of normals
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with the marginal pdfs of (10) and covariance matrix of

ΣX = [σi j(X)].

8 CONCLUSIONS

Mixture of normals is a more general and flexible distri-

bution for fitting the market data of daily changes. How

to handle the covariance matrix is very difficult sometimes

in generating random vectors. The classical three-step gen-

erating method is not efficient. Instead, generating market

variables using the mixture of normal distributions is very

efficient and more accurate. The input covariance matrix

can be derived analytically without solving any numerical

equations. Feedback from financial industry shows that a

modified Cholesky decomposition is needed to handle the

semi-definite situation. Sometimes the estimated covariance

is indefinite. A best approximation of indefinite matrices in

the Frobenius norm is provided here to form a semi-definite

matrix. Thus the modified Cholesky decomposition can

still be used. In theory, the covariance matrix is positive

semi-definite. Quality market data and reasonable estimation

should produce a positive semi-definite covariance estimate.

Here, sample covariance is a good candidate to estimate

the covariance. The purpose of this paper is to answer

some questions from finance industry while implementing

our algorithm.
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