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ABSTRACT

We describe the results of numerical experiments evaluating

the efficiency of variance estimators based on integrated

sample paths. The idea behind the estimators is to compute

a vector of integrated paths and combine them to form an

estimator of the time-average variance constant that is used,

for example, in the construction of confidence intervals.

When used in conjunction with batching, the approach

generalizes the method of non-overlapping batch means.

Compared with non-overlapping batch means, the estimators

require longer to compute, have smaller variance and larger

bias. We show that for long enough simulation run lengths,

the efficiency (the reciprocal of running time multiplied by

mean-squared error) of integrated path estimators can be

much greater than that of non-overlapping batch means; the

numerical experiments show an efficiency improvement by

up to a factor of ten.

1 INTRODUCTION

In steady-state discrete-event simulation, we are often in-

terested in estimating the variance parameter associated

with a stationary output process. Many methods have been

proposed, such as batch means (non-overlapping and over-

lapping), spectral methods, and the regenerative method;

see for example Law and Kelton (2000). In this paper we

describe a method based on computing a vector of integrated

simulation paths, an approach introduced in Calvin (2005).

Suppose that the discrete-event simulation generates a

real-valued output sequence Y1,Y2, . . .. We assume that the

process satisfies a functional central limit theorem of the

following form. Assume that there exist constants µ ∈ R

and σ ∈ (0,∞) such that the sequence of processes

Xn(t) = σ−1n−1/2
dnte∑

i=1

(Yi −µ), 0 ≤ t ≤ 1,
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converges in distribution to a standard Brownian motion,

where dxe denotes the smallest integer not less than x. Here

we take convergence to be in the space D of right-continuous

processes with left hand limits, endowed with the Skorohod

metric; see Billingsley (1999). Under this assumption,

n1/2

(
1

n

n∑

i=1

Yi −µ

)
D→N (0,σ2), (1)

where
D→ denotes convergence in distribution. A suitable

estimate of σ2 enables the use of the central limit theorem

(1) to construct asymptotically valid confidence intervals

for the steady-state mean µ . An estimate of σ2 can also be

used in adaptive methods for comparing the performance

of alternative systems.

2 OVERVIEW OF ESTIMATORS

We define a family of estimators indexed by a positive

integer parameter k, which we call the integration count.

The memory required to compute the estimators increases

linearly with k, and the overall computation time increases

roughly affinely with k. The parameter k should be small

compared to the square root of the simulation run length.

The estimator that we consider in this paper is a two-pass

estimator. See Calvin (2005) for a one-pass version.

In the first phase, a simulation is run producing output

Y1,Y2, . . . ,Yn. Let

µn =
1

n

n∑

i=1

Yi

be the sample mean. The construction of the estimator will

be based on the “bridged” path

W 0
i =

i∑

j=1

Yj − iµn, 1 ≤ i ≤ n.
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The idea is to compute the r-times integrated paths, for

1 ≤ r ≤ k, and use the limit distribution of the normalized

vector of integrated paths. For 1 ≤ r ≤ k, set

W r
i =

i∑

l=1

W r−1
l (2)

and

W̃ r
n = n−r−1/2W r

n −
r−1∑

j=1

(−1)r− js(r, j)
j!

r!
W̃ j

n ,

where the s(n, i) are the Stirling numbers of the first kind,

satisfying the recurrence

s(n+1,m) = s(n,m−1)−ns(n,m), 1 ≤ m ≤ n,

and s(n,n) = 1, and s(0,0) = 1, s(n,0) = 0 for n ≥ 1.

For 1 ≤ r ≤ k, set

Zr
n =

r∑

j=1

Ar jn
− j−1/2W̃ j

n ,

where

Ai j =
(−1)i+ j(i+ j)!

√
2i+1

j!(i− j)!
(3)

if 1 ≤ j ≤ i and Ai j = 0 otherwise.

We define our estimator of σ2 based on a simulation

of length n by

Vn =
1

k

k∑

r=1

(Zr
n)

2. (4)

Theorem 1 As n →∞,

Vn
D→ σ2 χ2

k

k
, (5)

where χ2
ν denotes a chi-squared random variable with ν

degrees of freedom.

The asymptotic variance of Vn as n →∞ is therefore

2σ4/k.

We now consider the bias of the estimator Vn. We will

assume that {Yi} is a second order stationary process with

EYi = 0 and EYiYi+ j = γ j, j ≥ 0. We further assume that

∞∑

j=1

j|γ j| < ∞
330
and define

λ =

∞∑

j=1

jγ j.

With these assumptions we have the representation

σ2 = γ0 +2

∞∑

j=1

γ j.

Theorem 2 For fixed k, we have

n
(
EVn −σ2

)
→−2kλ

as n →∞.

Theorems 1 and 2 are proved in Calvin (2005).

3 BATCHING

In this section we describe how the integrated path esti-

mator can be used in a batching context. Suppose that the

simulation length n can be expressed as n = mb, where b

is the batch size and m is the number of batches. The inte-

grated path estimator of the previous section can be applied

to each batch (subtract from W 0 the linear interpolation

between W 0
jb and W 0

( j+1)b−1 for each 0 ≤ j < m). Apply

the standard method of (non-overlapping) batch means to

W 0, obtaining a batch means estimator Bm
n . As simulation

run length n →∞ (with the number of batches b held fixed

and batch size m →∞),

Bm
n

D→ σ2
χ2

b−1

b−1
;

see for example Chien, Goldsman, and Melamed (1997).

Let V i
n be the integrated path estimator for batch i. Our

integrated path estimator with batching is defined by

Vb,n =
k
∑b

i=1V i
n +(b−1)Bm

n

kb+b−1
,

for which we have

Vb,n
D→ σ2

χ2
kb+b−1

kb+b−1

as n →∞.

4 EFFICIENCY

In addition to studying the variance and bias of the estimators,

our goal is to examine their efficiency. We take the efficiency

of an estimator with bias B and variance V , that takes time
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t to compute, to be

1

t(B2 +V )
;

that is, the efficiency of a simulation estimator is the recip-

rocal of the mean-squared error multiplied by the running

time. Increasing the parameter k increases the running time,

while decreasing the variance and increasing the bias.

In order to get a feeling for the efficiency with large

values of n and k, let us consider a simple computational

model for the simulation. Suppose that the time to perform

an add/store is α , and the time to generate one step of the

simulation data is β . In general we would expect β to be

much larger than α , but we do not assume that is the case.

The k terms {W r
n : 1≤ r ≤ k} can be computed in time knα;

adding the time nβ to generate the simulation, we have

a total computation time of n(kα + β ). (The computation

of Vn requires additional work of O(k2), which we ignore

since k2 = o(n).) From Theorems 1 and 2, we expect that

the efficiency is therefore approximately

1

n(kα +β )
(

4λ2k2

n2 + 2σ4

k

)

=
1

2σ4n(α +β/k))(1+O(n−2))
.

Let us consider increasing run length with increasing k = kn,

where kn = o
(
n1/2

)
. Then as n →∞, the relative efficiency

of the integrated path estimator compared with the standard

non-overlapping batch means estimator is

α +β

α +β/k
.

Thus asymptotically as n →∞ efficiency is increasing in

k (still assuming that k = o(n1/2)). As k increases, the

limiting ratio is

1+
β

α
.

If the time to generate a step of the simulation β is much

longer than the time to perform an addition and store α ,

then the potential efficiency improvement would be corre-

spondingly large.

Of course, for fixed n there will be a point beyond

which increasing k degrades performance.

5 EXPERIMENTS

This section reports the results of numerical experiments

on a first-order autoregressive process. We ran experiments
331
calculating the sample variance, sample bias, and running

time. Based on these data we also computed the efficiency.

In the experiments we computed the relative increase

in efficiency compared with the base case of k = 0, which

is the standard method of batch means. The AR(1) model

is inexpensive to simulate; the efficiency increases would

be larger for more computationally intensive simulations.

The AR(1) model is a stationary Gaussian process

defined by Y0 ∼ N(0,1) and

Yi = ϕYi−1 + εi, i ≥ 1,

where −1 < ϕ < 1 and the {εi} are independent, εi ∼
N(0,1−ϕ2). For this process γk = ϕk,

λ =
∞∑

k=1

kγk =
ϕ

(1−ϕ)2
,

and

σ2 = γ0 +2
∞∑

k=1

γk =
1+ϕ

1−ϕ
.

For the experiment we took ϕ = 0.9, so σ2 = 19 and

λ =
φ

(1−φ)2
= 90.

The model and these calculations are described in Alexopou-

los, Argon, Goldsman, Steiger, Tokol, and Wilson (2005).

The experiments consisted of 1,000 independent repli-

cations, with each simulation split into b = 20 batches.

In Table 1 we show the bias, variance, and mean-squared

error for k between 0 and 10 and simulation run length

n = 20,000. In Table 2 we show the same performance

characteristics, but with a longer run length of n = 200,000
and for k ranging from 0 to 20. Notice that with the longer

run length, efficiency increases with larger values of k. In

both cases, efficiency decreases with k after some point.

6 CONCLUSIONS

The integrated path estimators considered in this paper

have aymptotic variance proportional to 1/k, where k is the

fixed integration count parameter which should be chosen

small compared to the square root of the simulation run

length. When used in conjunction with batching, the method

generalizes the popular method of (non-overlapping) batch

means.

Compared with the standard non-overlapping batch

means estimator, the integrated path estimators have lower

mean-squared error, and for long enough simulation run

lengths the efficiency of the estimators is increasing in the
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Table 1: Performance of Integrated-Path Estimators for

Different Parameters k, Simulation Run Length 20,000

k variance bias MSE rel. eff.

0 35.80 -0.28 35.88 1.00

1 18.42 -0.43 18.61 1.80

2 11.75 -0.58 12.09 2.36

3 8.71 -0.72 9.22 3.00

4 6.65 -1.08 7.83 3.34

5 5.64 -1.15 6.96 3.48

6 4.25 -1.43 6.31 3.75

7 3.67 -1.48 5.86 3.59

8 3.51 -1.77 6.66 3.16

9 2.92 -1.83 6.26 3.16

10 2.87 -2.07 7.16 2.65

Table 2: Performance of Integrated-Path Estimators for

Different Parameters k, Simulation Run Length 200,000

k variance bias MSE rel. eff.

0 36.35 0.09 36.35 1.00

1 18.80 0.07 18.81 1.73

2 12.50 -0.14 12.52 2.39

3 9.47 0.13 9.48 2.99

4 7.33 -0.12 7.34 3.66

5 5.43 -0.13 5.44 4.64

6 5.47 -0.01 5.47 4.42

7 4.55 -0.13 4.57 5.05

8 4.02 -0.18 4.05 5.40

9 3.57 -0.09 3.58 5.86

10 3.23 -0.21 3.27 6.15

11 2.92 -0.27 2.99 6.47

12 2.57 -0.26 2.63 7.04

13 2.49 -0.24 2.55 8.89

14 2.33 -0.28 2.41 9.07

15 2.28 -0.22 2.32 9.13

16 2.04 -0.37 2.17 9.50

17 1.72 -0.36 1.85 10.85

18 1.84 -0.33 1.94 10.05

19 1.90 -0.40 2.06 9.19

20 1.66 -0.44 1.85 9.99

parameter k. In numerical examples, the efficiency increases

by up to a factor of 10.
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