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ABSTRACT

In many real-world optimization problems, the objective

function may come from a simulation evaluation so that it is

(a) subject to various levels of noise, (b) not differentiable,

and (c) computationally hard to evaluate. In this paper,

we modify Powell’s UOBYQA algorithm to handle those

real-world simulation problems. Our modifications apply

Bayesian techniques to guide appropriate sampling strategies

to estimate the objective function. We aim to make the

underlying UOBYQA algorithm proceed efficiently while

simultaneously controlling the amount of computational

effort.

1 INTRODUCTION

Powell’s UOBYQA (Unconstrained Optimization BY

Quadratic Approximation) (Powell 2002) is a derivative-

free algorithm designed for (small scale) unconstrained op-

timization. The general structure of UOBYQA follows a

model-based approach, which constructs a series of local

quadratic models that approximate the objective function.

The algorithm generates its iterates using a trust region

framework (Nocedal and Wright 1999). It differs from a

classical trust region method in that it creates quadratic mod-

els by interpolating a set of sample points instead of using

the gradient and Hessian values of the objective function

(thus making it a derivative-free tool). Besides UOBYQA,

other model-based software includes WEDGE (Marazzi and

Nocedal 2002) and NEWUOA (Powell 2004).

We develop a variant of the original UOBYQA, called

noisy UOBYQA, that is adapted for noisy optimization prob-

lems. These are very common in real-world applications,

in particular when the objective function is an associated

measurement of an experimental simulation. In this situ-

ation, the objective value may be difficult to obtain and

the inaccuracy of the objective function often complicates

the optimization process. For example, the derivative value
3121-4244-0501-7/06/$20.00 ©2006 IEEE
is typically unavailable, thus many standard algorithms are

not applicable.

We consider the stochastic problem in the following

parametric form:

min
x∈Rn

F(x) = E[ f (x,ω(x))]. (1)

The underlying function F(·) is unknown and must be

estimated. The function f (·,ω(x)) is a sample response

function, which is affected by a random factor ω(x) at x.

We normally assume the noise term ω(x) has mean zero

and is independently distributed. As a special case, we

consider ω(x) as ‘white noise’ in our paper and use the

additive form: f (x,ω(x)) = F(x)+ω(x).
When noise is present, UOBYQA may behave pre-

cariously. For example, a subproblem that minimizes the

quadratic model within a trust region may generate poor

solutions. The idea of our modification is to control the

random error by averaging multiple evaluations per point,

helping the algorithm to proceed appropriately. Therefore,

we will face the primary issue of handling the tradeoff be-

tween two objectives: having an efficient algorithm versus

minimizing computational effort. On the one hand, we

sample more replications to increase the accuracy of estima-

tion of the underlying function F and hence the accuracy

of the algorithm; on the other hand, we want to use as

little computation as possible. In our modifications, we

apply Bayesian techniques to establish ‘rules’ of evaluating

appropriateness of performing a step in UOBYQA. Only

when such rules are satisfied, do we proceed with this step

of the algorithm.

The noisy UOBYQA algorithm shares similarities to

the Response Surface Methodology (RSM) (Box and Draper

1986). Both of the methods construct a series of models

to the simulation response during the optimization process.

However, many features implemented in UOBYQA, such

as the quadratic model update, and trust region control, have

advantages over the classical RSM approach.
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The remainder of the paper is arranged as follows.

In Section 2, we give a brief outline of the deterministic

UOBYQA algorithm. In Section 3, we present the noisy

UOBYQA algorithm, including the following modifications:

stabilizing the quadratic models, comparing two candidate

points and a new termination criterion. We also show

how to optimally allocate computational resources in these

procedures. In Section 4, we apply the new noisy UOBYQA

algorithm to several numerical examples and compare it with

other noisy algorithms. Finally, we design and solve a real

simulation model.

2 THE UOBYQA ALGORITHM

We first outline the structure of the standard UOBYQA in

the noiseless case. In the following description, we denote

the deterministic objective function as f (·).
As we have mentioned, UOBYQA is essentially in

the framework of a model-based approach. Starting the

algorithm requires an initial trial point x0 and an initial

trust region radius ∆0. At each iteration k, the derivative

estimate of the objective function f is contained in a quadratic

model

Qk(xk + s) = cQ +gT
Qs+

1

2
sT GQs, (2)

which is constructed by interpolating a set of well-positioned

points I = {y1,y2, . . . ,yL},

Qk(y
i) = f (yi), i = 1,2, . . . ,L.

The point xk acts as the center of the trust region, and

is the best point in the set I. The interpolative model is

expected to well approximate f around the base point xk,

such that the parameters cQ,gQ and GQ approximate the

Taylor expansion coefficients of f around xk. To ensure a

unique quadratic interpolator, the number of interpolating

points should satisfy

L =
1

2
(n+1)(n+2). (3)

As in a classical trust region method, a new promising

point is found from a subproblem:

min
s∈Rn

Qk(xk + s), subject to ‖s‖2 ≤∆k. (4)

The solution s∗ of (4) is accepted (or not) by evaluating the

“degree of agreement” between f and Qk:

γ =
f (xk)− f (xk + s∗)

Qk(xk)−Qk(xk + s∗)
. (5)
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If the ratio γ is large enough and the new point maintains

the “good geometry” of the set I, then the point is accepted

into I. Otherwise, we either improve the geometry of I or

update the trust region radius. We always keep track of the

best point in the set I. Whenever a new point x+ enters, it

is compared with f (xk) to determine the best point, which

becomes the next iterate xk+1← argmin{ f (xk), f (x+)}.
The following outline of the UOBYQA algorithm con-

tains only the key points regarding the modifications; details

can be found in (Powell 2002).

The UOBYQA Algorithm

A starting point x0, an initial trust region radius ∆0, and a

terminating trust region radius ∆end are given.

1. Generate initial trial points in the interpolation set

I. Let iterate x1 be the best point in I.

2. For iterations k = 1,2, . . .

(a) Construct a quadratic model Qk(x) of the form

(2) that interpolates points in I. Solve the trust

region subproblem (4).

(b) Evaluate the function at the new point xk + s∗

and compute the agreement ratio γ in (5).

(c) Test whether the point is acceptable in the set

I. If not, improve the quality I or update the

trust radius ∆k. If a point is added to the set

I, another element in I should be removed.

(d) When a new point x+ is added, determine the

best point in I.

(e) If ∆k ≤∆end , terminate the loop.

3. Evaluate and return the final solution point.

3 MODIFICATIONS

In the following subsections, we will present our modifica-

tions to the UOBYQA algorithm to deal with problematic

points of the algorithm in the noisy case.

3.1 Reducing Quadratic Model Variance

When there is uncertainty in the objective function, the

existence of noise can cause erroneous estimations of co-

efficients of the quadratic model Q(x), say cQ,gQ,GQ, and

as a result, generate an unstable solution xk + s∗. To reduce

the variance of the quadratic model, we consider gener-

ating multiple function values for points y j, j = 1,2, . . . ,L
in the set I and use the averaged function value for the

interpolation process.

In UOBYQA, the quadratic function is constructed as

a linear combination of Lagrange functions l j(x),

Qk(x) =

L
∑

j=1

f (y j)l j(x), x ∈ R
n, (6)
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where L is the cardinality of the set I, as defined in (3).

Each l j(x) is a quadratic polynomial from R
n to R

l j(xk + s) = c j +gT
j s+

1

2
sT G js, j = 1,2, . . . ,L,

that has the property l j(y
i) = δi j, i = 1,2, . . . ,L, where δi j

is 1 if i = j and 0 otherwise. It follows from (2) and (6)

that the parameters of Qk are derived as

cQ =
∑L

j=1 f (y j)c j, gQ =
∑L

j=1 f (y j)g j,

and GQ =
∑L

j=1 f (y j)G j.
(7)

Note that the parameters c j, g j, and G j in each Lagrange

function l j are uniquely determined when the y j are given,

regardless of the objective function f (·).
When we have r j function evaluations for the point y j,

we can compute more accurate estimates of cQ,gQ, and GQ

using mean values in (7) in place of f (y j). We employ

Bayesian tools to analytically quantify the distributions of the

parameters in (7), which helps us determine the appropriate

number of evaluations r j.

In the Bayesian framework, the unknown mean µ(y j)
and variance σ2(y j) of f (y j,ω) are considered as ran-

dom variables, whose distributions are inferred by Bayes’

rule. By assuming a non-informative prior distribution, we

can estimate the joint posterior distributions of µ(y j) and

1/σ2(y j) as

1
σ2(y j)

|X ∼ Gamma((r j−1)/2, σ̂2(y j)(r j−1)/2),

µ(y
j)|σ2(y j),X ∼ N(µ̄(y j),σ2(y j)/r j).

(8)

Here we denote the sample mean and sample variance of

the data by µ̄(y j) and σ̂2(y j). The gamma distribution

Gamma(α,β ) has mean α/β and variance α/β 2. We use

a non-informative prior since there is no prior information

on the real distribution.

The distribution of the mean value µ(y j) is of most

interest to us. When the sample size is large, we can replace

the variance σ2(y j) with the sample variance σ̂2(y j) in (8),

and can asymptotically derive the posterior distribution of

µ(y j)|X as

µ(y j)|X ∼ N(µ̄(y j), σ̂2(y j)/r j). (9)

According to (7), we treat the cQ,gQ and GQ as random

variables from a Bayesian perspective. They all follow

normal distributions whose means are estimated using (9)

as (all of these are posterior estimates)

E[cQ] = E

[

∑L
j=1 f (y j,ω)c j

]

= E

[

∑L
j=1 µ(y j)c j

]

=
∑L

j=1 µ̄(y j)c j,
314
E[gQ] =
∑L

j=1 µ̄(y j)g j,

E[GQ] =
∑L

j=1 µ̄(y j)G j

(10)

and the variances are estimated as

var(cQ) = var
(

∑L
j=1 µ(y j)c j

)

=
∑L

j=1 c2
j σ̂

2(y j)/r j,

var(gQ(i′)) =
∑L

j=1 g2
j (i

′)σ̂2(y j)/r j,

var(GQ(i′, j′)) =
∑L

j=1 G2
j (i

′, j′)σ̂2(y j)/r j,

i′, j′ = 1, . . . ,n.

(11)

As r j increases to infinity, the variance decreases to zero. A

more precise computation involving the use of the Student’s

t-distribution was found to perform similarly.

To increase the stability of a quadratic model, we want

to quantify how the randomness in the coefficients cQ,gQ,

and GQ affects the solution of the subproblem (4). Sup-

pose we solve Nt trial subproblems whose quadratic model

coefficients are extracted from their posterior distributions,

we expect that solutions s∗(i), i = 1,2, . . . ,Nt have a small

overall variance (see Figure 1). Therefore, we introduce a

criterion that constrains the standard deviation of solutions

in each coordinate direction, requiring them to be smaller

than a threshold value β times the trust region radius:

n
max
j=1

std([s∗(1)( j),s∗(2)( j), . . . ,s∗(Nt)( j)])≤ β∆k. (12)

Increasing r j should help reduce the volatility of coefficients,

thus reduce the standard deviations of solutions. Therefore,

satisfying the above criterion necessitates a sufficiently large

r j for the point y j.

Figure 1: The Trial Solutions within a Trust Region are

Projected to Each Coordinate Direction and the Standard

Deviations of the Projected Values are Evaluated.

Sequentially allocating computational resources: A new

resource allocation question arises (based on r j function

evaluations at site y j) about which site to assign new function

replications in order to satisfy the constraint (12) with the

minimum total number of function evaluations. In solving

the subproblem (4), we know that only gQ and GQ matter
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for determining the solution s∗ from the definition of Qk(x)
in (2). Instead of satisfying the constraint directly, we aim

to control the variance of the most volatile coefficient. We

minimize the corresponding ratio of the standard deviation

to the expected value

max
i′, j′

(

std(gQ(i′))

|E[gQ(i′)]|
,

std(GQ(i′, j′))

|E[GQ(i′, j′)]|

)

, i′, j′ = 1, . . . ,n. (13)

We propose a fast but sub-optimal strategy here, one

that assigns additional computational resources sequentially.

We assume that when an additional batch of r replications

at site y j are newly produced, the sample mean µ̄(y j) and

variance σ̂2(y j) remain invariant. Under this assumption,

the posterior variance of µ(y j) (see (9)) changes from

σ̂2(y j)/r j→ σ̂2(y j)/(r j + r).
First, let φ(~r) (here~r = [r1,r2, . . . ,rL]) denote the largest

quantity in (13):

φ(~r) = max
i′, j′

(

std(gQ(i′))

E[gQ(i′)] ,
std(GQ(i′, j′))

E[GQ(i′, j′)]

)

= max
i′, j′







s

L
P

j=1

g2

j
(i′)σ̂2(y j)/r j

L
P

j=1

µ̄(y j)g j(i′)

,

s

L
P

j=1

G2

j
(i′, j′)σ̂2(y j)/r j

L
P

j=1

µ̄(y j)G j(i′, j′)






,

i′, j′ = 1, . . . ,n.
(14)

To achieve a good allocation scheme, we invest our new

resources in the point y j in order to most sharply decrease

the quantity φ(~r). After assigning r samples to the point

y j, we obtain a new vector~r+ re j, where e j is the standard

unit vector in R
L with 1 on the jth component. We select

the site y j with the index:

argmax
j

φ(~r + re j). (15)

The best index is determined by comparing the L different

possible options.

Procedure to stabilize the quadratic model:

Given initial sample size r0, batch size r, and the threshold

value β .

1. Generate r0 function evaluations for each point

for pre-estimations of sample mean and sample

variance. Set r j← r0, j = 1,2, . . . ,L.

2. Determine the largest quantity φ(~r) which corre-

sponds to the most volatile coefficient.

3. Select the site for further evaluations using (15).

4. Evaluate r function replications on the selected site

and update the sample mean and sample variance.

5. Repeat Steps 2-4, until constraint (12) is satisfied.
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3.2 Selecting the Best Point

If x+ is a new point entering the interpolation set I, we

encounter the problem of selecting the best point in I. Since

xk is known to be the best in the previous set, the question

becomes how we determine the order of xk and x+. When

there is noise in the function output, we need more precise

estimations of the underlying function value to make the

correct decision.

Without loss of generality, the problem is equivalent

to solving a discrete-event optimization problem:

arg min
j∈{1,2}

E[ f (y j,ω)]. (16)

An extension of the problem is to select the best point

among K (K ≥ 2) points. This general problem is often

regarded ‘selecting the best system’, which is considered

one of the principal problems in discrete-event simulation

studies. Kim and Nelson (2003) provide a good survey on

IZ-R&S procedures.

In our case, since there are only two points involved,

we implement a simplified variant of a ranking and selec-

tion procedure OCBA (Chen, Chen, and Yucesan 1999).

Suppose we have replicated r j function values for y j, let

µ(yi) and σ2(y j) be the unknown mean and variance of

the output at y j. The point evidenced by a smaller sample

mean is selected:

Choose point

{

1, if µ̄(y1)≤ µ̄(y2);
2, otherwise.

We will quantify our decision-making by the so-called

probability of correct selection (PCS):

PCS = Pr(select y(1) |µ(y(1))≤ µ(y(2))). (17)

Here the notation µ(y(1))≤ µ(y(2)) reveals the underlying

order of the means. In OCBA, Bayesian methods are

applied to estimate the ‘posterior’ PCS. The idea is to

construct a posterior distribution for the underlying mean

µ(y j) using observed data and estimate the PCS via joint

distributions. We increase the number of samples until the

desired accuracy is achieved

PCS≥ 1−α, (18)

where α represents a significance level.

We perform a similar analysis using Bayesian inference

as in Section 3.1. Without loss of generality, suppose we

observe µ̄(y1)≤ µ̄(y2) and select the first point. The PCS
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corresponds to the probability of the event {µ(y1)≤ µ(y2)},

PCS = Pr(µ(y1)≤ µ(y2))
∼ Pr(µ(y1)≤ µ(y2)|X)
= Pr(µ(y1)|X −µ(y2)|X ≤ 0).

(19)

The approximate PSC in (19) is a tail probability of a normal

distribution:

PCS∼ (20)

Pr

(

N

(

µ̄(y1)− µ̄(y2),
σ̂2(y1)

r1
+

σ̂2(y2)

r2

)

≤ 0

)

.

Sequentially allocating computational resources We con-

sider a sequential allocation strategy to assign new compu-

tational resources to the points y1 and y2, so that we can

use the least number of function evaluations to satisfy the

rule (18). The change of sample mean and sample variance

follows the assumptions in Section (3.1).

To determine the potentially better point, we compare

the derivative value:

max
j∈{1,2}

(21)

∂
∂ r j

Pr
(

N
(

µ̄(y1)− µ̄(y2), σ̂2(y1)
r1

+ σ̂2(y2)
r2

)

≤ 0
)

.

It is not hard to find that, since the mean of the joint dis-

tribution µ̄(y1)− µ̄(y2) is unchanged, we desire the largest

decrease in the variance ψ(~r) := σ̂2(y1)/r1 + σ̂2(y2)/r2.

Therefore, the problem (21) becomes

min
j∈{1,2}

ψ(~r + re j). (22)

This determines the index of the potentially better point.

Procedure to select the best point in I:

Given initial sample size r0, batch size r, and a significance

parameter α .

1. Evaluate r0 function evaluations for each point

for pre-estimations of sample mean and sample

variance. Set r j← r0, j = 1,2.
2. Select the point to carry out further replications

using (22).

3. Evaluate r further function replications on the point

selected and update the sample mean and sample

variance.

4. Repeat Steps 2 and 3 until the constraint (18) is

satisfied.
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3.3 New Termination Criterion

In UOBYQA and other model-based optimization algo-

rithms, a test on the norm of the gradient ‖gk‖ or the trust

region size ∆k is typically treated as termination criteria;

i.e., ∆k ≤ ∆end = 10−12. However, these criteria are not

suitable for noisy cases. When ∆k gets smaller, the esti-

mated value of GQ, which is a gauge for ‘curvature’ of the

quadratic model, will approach zero. This will inevitably

require much more function evaluations in later iterations

to reduce the variance of the quadratic model in order to

retain accuracy.

The new termination criterion is designed to relax the

value of ∆end , such that the algorithm terminates much

earlier. We specify a parameter Nmax that controls the

maximum number of replications per site in the algorithm.

Nmax represents the amount of computing we are willing to

spend at any site. In each iteration k, we will check that

any point x on the edge of the subregion {x|‖x−xb‖ ≤∆k}
is ‘separable’ from the center xk, given the control Nmax on

the number of replications per site. Here ‘separable’ means

that one point is better than the other with high accuracy

(PCS≥ 1−α).

The difficulty occurs in estimations of sample mean

µ̄(x) and sample variance σ̂2(x) of an edge point x, which

demand additional function evaluations. We simplify this

procedure by performing the separability test using Qk(·)
instead of the original F(·), because Qk is a good surrogate

model of the underlying mean function F when ∆k is

small. We can (a) approximate µ̄(x) with Qk(x) and (b)

approximate σ̂2(x) with σ̂2(xk). The second approximation

is valid because the variances of function output at two points

are very close within a small trust region.

In fact, we enumerate 2n edge points (of {x|‖x−xk‖<
∆k}) which are in standard coordinate directions from xk,

and check their separability from xk. The 2n points consist

of a representative set of edge points. The stopping criterion

is met when a portion of the representative point set, i.e.,

80% of the 2n points, are separable from xk.

In practice, what we first calculate is a least ‘separable’

distance d. By observing the posterior distribution with the

approximations:

µ(x)−µ(xk)|X
∼ N(F(x)−F(xk), σ̂

2(x)+ σ̂2(xk)/Nmax)
≈ N(Qk(x)−Qk(xk),2σ̂2(xk)/Nmax).

We compute d, satisfying

Pr(N(d,2σ̂2(xk)/Nmax)≥ 0)≥ 1−α,

via an inverse cdf function evaluation. Then, we say x and

xk are ‘separable’ if and only if the difference |Qk(x)−
Qk(xb)| ≥ d.
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4 NUMERICAL RESULTS

4.1 Numerical Functions

We tested the noisy UOBYQA algorithm on several numeri-

cal examples and compared it with two other noisy optimiza-

tion tools, NOMADm (Nonlinear Optimization for Mixed

vAriables and Derivatives in Matlab) (Abramson 2006) and

SPSA (Simultaneous Perturbation Stochastic Approxima-

tion) (Spall 2003). NOMADm is a pattern search algorithm

that implements ranking and selection; and SPSA is a line

search algorithm that applies simultaneous perturbation for

gradient estimation.

The test function we employed was the well-known

extended Rosenbrock function:

F(x) =

n−1
∑

i=1

100(xi+1− x2
i )

2 +(xi−1)2.

The function has a global optima at the point (1,1, . . . ,1)′n,

at which the optimal objective value attains 0. A noisy

optimization problem was formulated by adding a white

noise term to the objective (Section 1). We also applied

our algorithm to the ARGLINC function with very similar

results.

We assume the random term ω was independent of

x and followed a normal distribution with mean zero and

variance σ2, indicating the levels of noise. The starting

point x0 was (−1.2,1,−1.2,1, . . . ,−1.2,1)′n and the initial

trust region radius ∆0 was set to 2.

Table 1 presents the details about a single-run of noisy

UOBYQA to the two-dimensional Rosenbrock function.

The variance σ2 was set to 0.01, which was moderately

noisy from our tested noise levels. We used the following

default setting of parameters: initial sampling number r0 = 3,

which is small but enough to generate sample mean and

sample variance; the significance level α = 0.2, the threshold

value β = 0.4, the number of trail solutions Nt = 20, and

the maximum number of evaluations per point Nmax = 60.

The new termination criterion we introduced terminated

the algorithm earlier, at iteration 81. In fact, we did not

observe noticeable improvement in terms of objective value

(0.0017 to 0.0016) between the iteration 80 and 120, because

the presence of noise deteriorated the accuracy in these

iterations. In order to keep the algorithm running and

maintaining correct decisions, a large number of function

evaluations were necessary. It was therefore preferable to

stop the algorithm early.

In the earlier iterations, the algorithm used relatively

few function replications. This implied that when noisy

effects were small compared to the large function values,

the basic operation of the method was unchanged.

In Table 3, we further compare numerical results of

UOBYQA, NOMADm, and SPSA. We tested the Rosen-
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Table 1: The Performance of Noisy UOBYQA for the

Rosenbrock Function, with n = 2 and σ2 = 0.01.

Iteration (k) FN F(xk) ∆k

1 1 404 2

20 78 3.56 9.8×10−1

40 140 0.75 1.2×10−1

60 580 0.10 4.5×10−2

80 786 0.0017 5.2×10−3

X Stops with the new termination criterion

100 1254 0.0019 2.8×10−4

120 2003 0.0016 1.1×10−4

X Stops with the termination criterion ∆k ≤ 10−4

brock function of dimension 2 and 10. Increasing the di-

mension significantly increased computational burden. To

solve a 10-dimensional problem, we need 20000 function

evaluations in total. The different scales of noise variance

σ2 were specified to be 0.001, 0.01, 0.1, and 1. We con-

strained the algorithm with various total number of function

evaluations. The parameter setting was the same as before,

except that we used different Nmax when the total number of

function evaluations or the variance changed. A practically

useful formula for Nmax was

Nmax =
Max FN

Iteration # (n)
·δ (σ2).

Here the iteration # represented the estimated number of

iterations that the algorithm should maintain for a given

dimension. This is a rough estimate and the actual number

of iterations varies in different problems. δ (σ2) was an

adjustment value associated with the variance σ2. The

algorithm used a relatively smaller Nmax when the variance

was small. We provide the following suggested values in

Table 2.

Table 2: Suggested Values to Define Nmax

n 2 4 7 10

Iteration # 50 200 550 1000

σ2 0.001 0.01 0.1 1

δ (σ2) 2.5 3 3.5 4

As shown in Table 3, for the 2 dimensional case, our

algorithms performed better than the other two algorithms.

The mean value was the smallest among the peer algorithms.

For the 10 dimensional case, when the variance σ2 was

large, our algorithm did not perform well. We should

note a fact that making the variance 10 times larger, from

our previous theoretical analysis, we potentially require 10

times more function evaluations in order to achieve the same

scale of accuracy. That is why the quality of the solutions
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decreased sharply as σ2 increased. Another aspect that

influences the performance may be the dimension of the

problem. Powell has pointed out that in higher dimensional

problems, UOBYQA may not be practically useful because

the number of interpolation points L is huge. We think that

noisy UOBYQA inherits the limitation in the same way.

Table 3: Apply Noisy UOBYQA to the Rosenbrock Function

(Results are Based on 10 Replications of the Algorithms).

n Noise

level

σ2

Max

FN

Noisy

UOBYQA

NOMADm SPSA

Mean

Error

Mean Er-

ror

Mean

Error

2

0.001 200 0.14 0.61 0.42

0.01 200 0.28 0.63 0.65

0.1 200 0.44 0.88 0.59

1 200 0.61 1.44 0.57

0.001 500 0.099 0.44 0.38

0.01 500 0.18 0.57 0.35

0.1 500 0.32 0.77 0.43

1 500 0.47 1.26 0.49

0.001 1000 0.024 0.44 0.30

0.01 1000 0.18 0.46 0.32

0.1 1000 0.20 0.77 0.34

1 1000 0.47 1.2 0.42

10

0.001 5000 0.042 0.63 2.3

0.01 5000 0.42 0.89 2.6

0.1 5000 0.97 1.24 2.9

1 5000 7.7 1.78 3.3

0.001 10000 0.033 0.54 2.3

0.01 10000 0.15 0.88 2.9

0.1 10000 0.77 1.2 3.6

1 10000 7.2 1.66 3.9

0.001 20000 0.022 0.32 2.1

0.01 20000 0.12 0.45 2.6

0.1 20000 0.53 0.50 3.4

1 20000 5.8 1.1 3.3

4.2 Simulation Problems

In this subsection, we applied the noisy UOBYQA algorithm

to solve a pricing problem via simulation. The parameters

we considered were the prices of M similar goods in a store,

say, p1, p2, . . . , pM . When a customer arrives at the store,

he is sequentially exposed to the M goods by the store

keeper, from the most expensive good which is of the best

quality to the cheapest good. He decides to purchase the

item or not after viewing it, but he will buy at most one of

them. For good i, we set the probability that the customer

purchases the item as

Probi = exp(−pi/ηi), i = 1,2, . . . ,M.
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The objective of the store keeper is to determine the best

combination of prices ~p = [p1, p2, . . . , pM] which yields the

largest expected profit. Running the simulation for a period

of time, if we denote the total number of customers as m,

and the number of customers who purchase good i as mi,

we formulate the stochastic problem as:

max
~p

(Expected Profit), where Profit :=

M
∑

i=1

mi

m
pi.

The precise solution is obtained from:

max
~p

(Expected Profit) (23)

:= max
~p

M
∑

i=1









i−1
∏

j=1

(1−Prob j)



Probi pi



 .

We used Arena 9.0 from Rockwell software to model

the pricing system. We considered cases M = 2 and M = 10,

where M also indicated the dimension of the variable ~p. In

computation of the Probi, the parameter ηi can reflect the

goodness of the merchandize. We set η1 = 50 and η2 = 20 in

the two-dimensional case; set η1 = 50,η2 = 48, . . . ,η10 = 32
in the ten-dimensional case.

The noisy UOBYQA algorithm and OptQuest (the op-

timization add-on for Arena, <www.opttek.com>) were

compared on the stochastic simulation problem. (See re-

sults in Table 4.) We implemented the same parametric

setting of the algorithm as in the Section 4.1, except that

we assigned the initial trust region as 10, and the upper

bound for replication usage as 200 and 2000 for the two

cases respectively. By varying the number of customers

generated in each simulation run, we can have several lev-

els of noisy “profit value”. The table shows the different

levels of variances of the output. We compared with the

real optimal solutions solved using the same ηi’s via (23).

As we can see in the table, noisy UOBYQA did a uniformly

better job than OptQuest, with a higher quality of solutions.

For all the tested cases, the gap to the optimal solution was

reduced around 50%.

Table 4: Optimization Results of the Pricing Model (over

Average Value of 10 Runs), Where the Real Solution for

M = 2 is 23.23 and for M = 10 is 68.28.

Model Estimated

variance

Max FN Noisy

UOBYQA

OptQuest

M=2

0.0022 200 0.10 0.29

0.014 200 0.25 0.39

1.1 200 0.45 1.05

M=10

0.0098 2000 0.78 1.32

0.093 2000 0.89 1.54

1.1 2000 1.47 2.98



Deng and Ferris
5 CONCLUSIONS

In this paper we modify Powell’s UOBYQA algorithm to

solve noisy optimization problems. UOBYQA belongs to

the class of model-based algorithms that do not require

evaluations of the gradient of the objective, therefore, this

algorithm is particularly applicable to real-world simulation

problems. In the noisy setting, performing more function

evaluations can reduce the randomness in function responses.

Our approach is motivated by applying analytical Bayesian

inference to determine the appropriate number of replications

and provide statistical accuracy of the algorithm. At the same

time, we have attempted to control the total computational

effort.

Note that our method does not assume Common Random

Numbers (CRN) (Law and Kelton 2000) are implemented

in the simulations. Therefore, we cannot generate a deter-

ministic approximation function 1
N

∑N
i=1 f (·,ωi) to F(·) by

fixing a sequence of samples ωi, i = 1,2, . . . ,N. The use of

CRN is a topic for future research.

The modifications can be generalized to other model-

based algorithms, such as the WEDGE algorithm. Our

modifications are not intended to be applied to linear model

based algorithms, since linear models are more sensitive

to noise than quadratic models. In a stochastic algorithm,

quadratic models are robust against noise and preferable to

use.
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