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ABSTRACT 

In this paper, we consider a multi-objective simulation op-
timization problem with three features: huge solution 
space, high uncertainty in performance measures, and 
multi-objective problem which requires a set of non-
dominated solutions. Our main purpose is to study how to 
integrate statistical selection with search mechanism to ad-
dress the above difficulties, and to present a general solu-
tion framework for solving such problems. Here due to the 
multi-objective nature, statistical selection is done by the 
multi-objective computing budget allocation (MOCBA) 
procedure. For illustration, MOCBA is integrated with two 
meta-heuristics: multi-objective evolutionary algorithm 
(MOEA) and nested partitions (NP) to identify the non-
dominated solutions for two inventory management case 
study problems. Results show that, the integrated solution 
framework has improved both search efficiency and simu-
lation efficiency. Moreover, it is capable of identifying a 
set of non-dominated solutions with high confidence.  

1 INTRODUCTION 

Discrete event simulation has been a commonly used tool 
for evaluating the performance of systems which are too 
complex to be modeled analytically. However, simulation 
can only evaluate performance measures for a given set of 
values of the system decision variables, i.e., it lacks the 
ability of searching optimal values for the decision vari-
ables which would maximize or minimize a given response 
or a vector of responses of the system. This explains the 
increasing popularity of research in integrating both simu-
lation and optimization, known as simulation optimization: 
the process of finding the best values of decision variables 
for a system where the performance is evaluated based on 
the output of a simulation model of this system.  
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A simulation optimization problem which minimizes 
the expected value of the objective function with respect to 
its constraint set can be expressed as:  

 
 min ( ).J

θ
θ

∈Θ
 (1) 

 
where ( ) [ ( , )]J E Lθ θ ε=  is the performance measure of 
the problem, ( , )L θ ε  is the sample performance, ε  repre-
sents the stochastic effects in the system, θ  is a p-vector of 
discrete controllable factors and Θ  is the discrete con-
straint set on θ . If ( )J θ  is a scalar function, the problem 
is single objective optimization; whereas if it is a vector, 
the problem becomes multi-objective optimization. 

The above simulation optimization problem has been 
extensively studied in the literature. When the search space 
Θ  is finite and relatively small, the problem of selecting 
the best system is usually known as Ranking and Selection 
(R&S) problem (Swisher, Jacobson, and Yücesan 2003). 
Solution approaches proposed for the R&S problem in-
clude: indifference-zone ranking and selection (Nelson et 
al. 2001), optimal computing budget allocation (Chen et al. 
2000), and decision theoretic methods (Chick and Inoue 
2001). When the search space Θ  is either infinite or finite 
but with a huge number of alternatives, search powers of 
optimization procedures need to be explored so that we can 
search efficiently through the given set to find improving 
solutions. The most straightforward search method is ran-
dom search, such as the Stochastic Ruler (SR) algorithm 
(Yan and Mukai 1992), the stochastic comparison (SC) al-
gorithm (Gong, Ho and Zhai 1999), and modified SC or 
SR algorithms aiming at improving the convergence prop-
erty (Alrefaei and Andradóttir 1997; Andradóttir 1999). To 
deal with the randomness of the objective function value, 
the above solution methods exploit the robustness of order 
statistics within the random search framework. To search 
more systematically rather than randomly, most research 
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integrates meta-heuristics with certain statistical analysis 
techniques: Genetic algorithm (GA) with both a multiple 
comparison procedure and a R&S procedure (Boesel, Nel-
son, and Ishii 2003); GA with indifference-zone R&S pro-
cedure (Hedlund and Mollaghasemi 2001); modified simu-
lated annealing (SA) algorithm with confidence interval 
(Alkhamis and Ahmed 2004); SA with R&S procedure 
(Ahmed and Alkhamis 2002); and nested partitions search 
with two-stage R&S procedure (Ólafsson 1999). 

When the simulation optimization problem has more 
than one performance measure, the problem is often trans-
formed into a single objective problem so that existing so-
lution techniques can be applied. In Baesler and Sepúlveda 
(2000), goal programming is incorporated into genetic al-
gorithms to handle the multi-objectives. In papers such as 
Butler, Morrice, and Mullarkey (2001) and Swisher and 
Jacobson (2002), the multiple attribute utility (MAU) the-
ory is applied to form a single measure of effectiveness of 
the objectives. Within such solution frameworks, the opti-
mal solution is a single compromise solution. In case a set 
of non-dominated solutions are more desirable, the multi-
objective problem needs to be solved directly. When 
search space Θ  is finite and relatively small, Lee et al. 
(2004, 2005) developed a multi-objective computing 
budget allocation (MOCBA) procedure which incorporates 
the concept of Pareto optimality into the R &S  scheme to 
find all non-dominated solutions. When the search space 
Θ  is infinite or finite but very large, MOCBA needs to be 
integrated with search procedures for efficient exploration 
of more promising solutions, such as integration with 
multi-objective evolutionary algorithm (MOEA) in Lee et 
al. (2006), and integration with nested partitions (NP) algo-
rithm in Chew et al. (2006). 

In this study, we consider a simulation optimization 
problem formulated in (1) with the following features: 
huge size of solution space ( Θ ), large uncertainties ( ε ) in 
performance measures, and multi-objective problem which 
requires a non-dominated Pareto set of solutions. These 
features of the problem make it both challenging and diffi-
cult to solve. On one hand, to improve simulation effi-
ciency and to guarantee that final solutions are non-
dominated with high confidence, certain statistical selec-
tion procedure is needed; on the other hand, to search more 
efficiently, search mechanism of optimization techniques is 
also required. Lee et al. (2006) and Chew et al. (2006) pre-
sented how to integrate MOCBA (a statistical selection 
procedure) with MOEA and NP (meta-heuristics). In this 
paper, we summarize the main ideas from the above two 
papers with focus on how to incorporate the statistical se-
lection procedure (such as MOCBA) into some meta-
heuristic procedures so that either of them will benefit 
from the other and together they improve both search effi-
ciency and simulation efficiency through the integration. 
The paper is organized as follows. In Section 2, we first 
discuss why there is a need to integrate MOCBA with a 
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search procedure for simulation optimization problems. 
Then based on a brief description of the MOCBA proce-
dure, we present a general solution framework which inte-
grates MOCBA with a search procedure to efficiently allo-
cate simulation replications and identify the non-dominated 
solutions for the problem. In Section 3, the solution 
framework is illustrated by integrating MOCBA with two 
meta-heuristics (MOEA and NP) for solving two inventory 
management problems. Some computational results are 
also reported in this section. Finally some conclusions and 
future research directions are summarized in Section 4. 

2 THE INTEGRATION OF STATISTICAL 
SELECTION WITH SEARCH IN SIMULATION 
OPTIMIZATION 

In this section, we discuss why there is a need to integrate 
statistical selection with search procedures in simulation 
optimization, and how to incorporate the selection into the 
search procedure  

2.1 The need to integrate search and selection in 
simulation optimization 

A key feature of simulation optimization problem that 
makes it difficult is the need to address the search versus se-
lection trade-off: with a limited computing budget, how to 
allocate the budget between searching over the feasible 
space for (potentially) better solutions, and determining 
which of the solutions that have been examined are actually 
good. Before addressing this issue, we first study the follow-
ing two extreme problems in simulation optimization. 

When the solution space Θ  in (1) is finite and small, it 
is possible to evaluate exhaustively all members from the 
given (fixed and finite) set of alternatives and compare the 
performance. In this case, the focus is entirely on selection: 
the comparison aspect unique to the stochastic setting. An-
other extreme of the problem is to ignore the stochastic na-
ture of the problem. To evaluate the performance meas-
ures, a fixed number of simulation replications are 
allocated to each design alternative identified as promising 
solution by the search procedure. In this case, the focus is 
entirely on search: solution exploration aspect important to 
deterministic optimization problem.  

Obviously, for the general simulation optimization 
problem such as the one considered in this study, it is neither 
a pure search nor a pure selection problem. When the solu-
tion space is huge, exhaustive search becomes either imprac-
tical or impossible. Hence one critical issue is to find out 
which decision scenarios are the ones desirable to be inves-
tigated, and how to identify those good scenarios automati-
cally by a search process designed to find the best set of de-
cisions. This makes the search mechanism of optimization 
procedures a necessity when exploring the solution space for 
more promising solutions. On the other hand, when selection 



Lee, Chew, and Teng 

 
aspect is neglected, we may encounter the following diffi-
culties. Firstly there is no statistical guarantee on the quality 
of the final set of solutions. Secondly, the fixed number of 
simulation replications are either too few to handle the sto-
chastic noise or too many to be of computational efficiency. 
In the former case, inaccurate estimations of the perform-
ance measures may lead the search to unproductive regions. 
This is due to the fact that search direction is guided by the 
evaluation of the objectives in any search mechanism. For 
example, in MOEA, parents are selected to generate new 
offspring based on fitness values. In case fitness values are 
estimated inaccurately, less fit solutions may be selected and 
survive into the next generation, whereas truly fit solutions 
may be neglected and lose the chance for further considera-
tion. Similarly in NP, promising index for each region is cal-
culated based on performance measures of the samples 
picked in that region, and future promising region is selected 
according to the promising indices calculated. With inaccu-
rate estimation of the performance measures of the samples, 
the promising region that the future search will focus on may 
turn out to be less promising. In the latter case, when the 
search needs to explore a large number of design alternatives 
each with a large number of simulation replications, which is 
usually the case for meta-heuristics, the total simulation cost 
can easily become very high. To avoid unnecessary waste in 
simulation budget, a more efficient way of allocation than 
uniform allocation is desirable. Intuitively, for designs with 
poor performances which are obviously dominated by other 
designs, it is a waste if further simulation replications are to 
be allocated to them, though the noise involved in the per-
formance measures maybe still high. Thus a statistical selec-
tion procedure is required to single out those designs likely 
to be competitors for the “best” and to optimally determine 
the number of simulation replications needed for each of the 
designs while identifying those non-dominated designs. The 
MOCBA procedure presented in Lee et. al. (2005) is spe-
cially developed for the above purposes. 

2.2 The MOCBA procedure and its integration with 
search mechanisms 

Given a set of n design alternatives with H performance 
measures which are evaluated through simulation, a multi-
objective R&S problem is to determine an optimal alloca-
tion of the simulation replications to the designs, so that 
the non-dominated set of designs can be found at the least 
expense in terms of simulation replications. In this section, 
we present a brief description of a solution framework for 
this problem: the Multi-objective Optimal Computing 
Budget Allocation (MOCBA) algorithm. For more details 
about how MOCBA works, please refer to Lee et al. 
(2005). 
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2.2.1 A Performance Index to Measure the Non-
dominated Designs 

Suppose we have a set of designs ( 1, 2,..., )i i n= , each of 
which is evaluated in terms of H performance measures 

ikμ ( 1, 2,...,k H= ) through simulation. Within the Bayes-
ian framework, ikμ  is a random variable whose posterior 
distribution can be derived based on its prior distribution 
and the simulation output (Lee et al. 2004). We use the fol-
lowing performance index to measure how non-dominated 
design i is: 

 

 
1,

[1 ( )].
n

i
j j i

Pψ
= ≠

= −∏ pj iμ μ  (2) 

 
where ( )P pj iμ μ  represents the probability that design j  
dominates design i . Under the condition that the perform-
ance measures are independent from one another and they 
follow continuous distributions, we have 
 

 
1

( ) ( ).
H

jk ik
k

P P μ μ
=

= ≤∏pj iμ μ  (3) 

 
Performance index iψ  measures the probability that design 
i is non-dominated by all the other designs. At the end of 
simulation, all designs in the Pareto set should have iψ  
close to 1, and those designs outside of the Pareto set 
should have iψ  close to 0, because they are dominated.  

2.2.2 Two Types of Errors of the Selected Pareto Set 

During the allocation process, the Pareto set is constructed 
based on observed performance. Here we call it the se-
lected Pareto set ( pS ). The quality of the selected Pareto 
set depends on whether designs in pS  are all non-
dominated and designs outside pS  are all dominated. We 
evaluate it by two types of errors: Type I error ( 1e ) and 
Type II error ( 2e ) as follows. 

Type I error ( 1e ) is defined as the probability that at 
least one design in the selected non-Pareto set ( pS ) is non-
dominated; while Type II error ( 2e ) is defined as the prob-
ability that at least one design in the selected Pareto set is 
dominated by other designs. When both types of errors ap-
proach 0, the true Pareto set is found. The two types of er-
rors can be bounded by the approximated errors 1ae  and 

2ae  respectively as given below. 
 

 1 1 .
p

i
i S

e ae ψ
∈

≤ = ∑  (4) 
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p

i
i S

e ae ψ
∈

≤ = −∑  (5) 

 
When the noise in the simulation output is high, 1ae  

and 2ae  can be large. However, once the selected Pareto 
set approaches the true Pareto set, both 1ae  and 2ae  ap-
proach 0, as iψ  approaches 1 for pi S∈  and  iψ  ap-
proaches 0 for pi S∈ . 

2.2.3 Construction of the Selected Pareto Set 

Ranking all the designs in descending order of perform-
ance index iψ , then the selected Pareto set can be con-
structed according to the criteria below. 

 
C1: Assign a maximum number of k designs with the high-

est iψ  into pS , so that 2
1

(1 )
k

i
i

ae ψ ε
=

= − ≤∑ , where 

ε  is a predefined error limit.  
C2: Construct pS  so that both 1ae  and 2ae  are minimized 

by simply putting those designs with 0.5iψ ≥  into pS  

and the rest into pS .  

2.2.4 The Asymptotic Allocation rules and a 
Sequential Solution Procedure 

To get the true Pareto set with high probability, we need to 
minimize both Type I and Type II errors. In the MOCBA 
algorithm of Lee et al. (2005), this is done by iteratively 
allocating the simulation replications until both 1ae  and 

2ae  are within error limit *ε  according to some asymp-
totic allocation rules as follows:  

1). For a design pl S∈ , max

p p

l
l

l d
l S d S

T N
α

α α
∈ ∈

=
+∑ ∑

    

2). For a design pd S∈ , max

p p

d
d

l d
l S d S

T N
α

α α
∈ ∈

=
+∑ ∑

 

with 
( )

( )
2 2 2

2 2 2

l l l
j l j l jl l l

m m m
j m j m jm m m

llk j k lj k
l

mmk j k mj k

σ σ ρ δ
α

σ σ ρ δ

+
=

+
, given m  is any 

fixed design in pS ; 
2

2
2

i
d

i
d d

dk
d i

i ik

σ
α α

σ∈Ω

= ∑  

where maxN  is the maximum number of replications avail-
able; pS  and pS  represent the selected Pareto and non-

Pareto set respectively; iT  is the number of replications to 
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be allocated to design i; 2
ikσ is the sample variance of kth 

objective of design i; ijkδ  is the difference between sample 
means of kth objective of design i and design j; 

1

[design | , , ( ) max ( )]
H

i d i jk ik
j S

kj i

j d d S d i P Pμ μ μ μ
∈

=≠

≡ ∈ ≠ = ≤∏p  

is the design that dominates design i with the highest prob-
ability; 

i

i
jk  is the objective of ij  that dominates the corre-

sponding objective of design i with the lowest probability, 

{1,..., }

{1,..., },
objective  of design ( ) min ( )i i i

i
ij j r ir j k ik

k H

r H
k r j P Pμ μ μ μ

∈

⎡ ⎤∈
⎢ ⎥≡ ≤ = ≤⎢ ⎥
⎢ ⎥⎣ ⎦

 

with 
2 2

' '( ) ~ ( , )jk ik
jk ik ijk

j i
P N

N N

σ σμ μ δ≤ + , and '
iT  is the 

number of replications allocated to design i at the immedi-
ate previous iteration; {design | , }d p ii i S j dΩ = ∈ = ; 

2

2

r
i ji

r
j ji i

j k
i

r rk

σ
ρ

σ∈Ω

= ∑  or 
'

'
ij

i
i

T

T
ρ = . 

 
The MOCBA algorithm is now outlined below. 
 
MOCBA algorithm 
Step 0: Perform 0T  replications for each design. Calcu-

late the sample mean and variance for each objec-
tive of the designs. Set iteration index v: = 0. 

1 2 0...v v v
nT T T T= = = = . 

Step 1: Construct the selected Pareto set pS  according to 

criterion C2. Calculate 1ae  and 2ae  according to 
equations (4) and (5).  If ( 1 2ae ae< ), construct 

pS according to the criterion C1 with 1aeε = . 

Step 2: If (( 1 *ae ε< ) and ( 2 *ae ε< )), go to Step 5. 
Step 3: Increase the simulation replications by a certain 

amount Δ , and calculate the new allocation 
1 1 1

1 2, ,...,v v v
nT T T+ + + according to the asymptotic al-

location rules.  
Step 4: Perform additional min( δ , 1max(0, )v v

i iT T+ − )  
replications for design i  (i =1,…,n). Update the 
sample mean and variance of each objective of 
design i based on cumulative simulation output.  
Set 1v v= +  and go to Step 1. 

Step 5: Output designs in the selected Pareto set (Sp). 
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2.2.5 The integration of MOCBA with search 

mechanism of optimization procedures 

In a general deterministic search procedure, whether it is 
developed for single objective or multi-objective, whether 
it is population based or single solution based, the search 
mechanism works more or less in a similarly way except 
that the mechanism of generating new solutions may differ 
significantly (Figure 1). Here “performance evaluation” 
and “fitness evaluation” are listed separately because, 
though most search procedures use performance measure 
of a solution to represent its fitness, in some procedures, 
such as EA and NP, fitness of a solution (region) is defined 
separately based on its performance for determining the 
search direction of the algorithm. Meanwhile, most proce-
dures keep an archive of best solutions ever visited and re-
turn it as final solution upon termination. A flow chart 
showing how general search procedures work is given in 
Figure 1. 
 

 
Figure 1: Integration of MOCBA with Search Procedures 

 
However, when we apply such a search procedure to 

solve multi-objective simulation optimization problems, 
we need to consider: a). the right number of simulation 
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its performance; b). how to define fitness of a solution con-
sidering both variability involved in the performance meas-
ures and the multi-objective nature of the problem; c). how 
to select those best solutions ever visited to form the Pareto 
set. The MOCBA procedure helps to answer the above 
questions simultaneously. A general framework of inte-
grating MOCBA (a statistical selection procedure) with 
search procedures is illustrated in Figure 1.  

Specifically, at each iteration, to rank the designs in 
the current population, performance index defined in (2) is 
used to measure the fitness (non-dominance) of the de-
signs. A design with larger value of performance index is 
non-dominated with higher probability. The performance 
index actually transforms the multi-objective problem into 
a problem with single objective, as we can now determine 
the “goodness” of a solution completely based on this sin-
gle performance index. To determine the right number of 
simulation replications needed for each design to accu-
rately estimate its finesses, the MOCBA algorithm based 
on allocation rules presented in 2.2.4 is run on the current 
set of solutions. At this stage, our main purpose of running 
MOCBA is not to determine precisely the Pareto set with 
very high confidence, but to efficiently rank the designs in 
terms of their fitness values to determine the right direction 
of the search procedure. Therefore, to save simulation 
budget and also to avoid loss of truly non-dominated de-
signs during the search procedure, the MOCBA is termi-
nated when each of the performance index inside the 
Pareto set is above a certain value and each of the perform-
ance index in the non-Pareto set is below a certain value. 
Then designs in the Pareto set are put into the archive. At 
the final iteration, MOCBA is run again on designs in the 
archive with very low limits on Type I and Type II errors, 
so that truly non-dominated designs are identified with 
least possible simulation replications upon termination of 
the search procedure. 

Though with slight modifications, single solution 
based search procedure can work with MOCBA for solving 
multi-objective simulation optimization problems, the ideal 
search procedures should be able to move with a set of so-
lutions from one iteration to the next, because the set of so-
lutions can provide a basis for generating (approximating) 
the Pareto set of solutions at each iteration by running 
MOCBA. Moreover, MOCBA can optimally determine the 
number of simulation replications needed for each of the 
set of solutions and therefore can effectively avoid waste 
of simulation budget. Meta-heuristics such as multi-
objective evolutionary algorithm (MOEA) and nested par-
titions (NP)  are nice candidates for the above purposes.    
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3 INTEGRATION OF MOCBA WITH META-

HEURISTIC PROCEDURES -- TWO CASE 
STUDY PROBLEMS 

In this section, we use two example meta-heuristic proce-
dures (MOEA and NP) to illustrate how to integrate a sta-
tistical selection procedure with a search procedure. The 
two integrated frameworks are then applied to solve two 
inventory management case study problems. This section 
briefly summarizes the solution procedures and some com-
putational results. For more details regarding problem de-
scription and results presentation, refer to Lee et al. (2006) 
and Chew et al. (2006). 

3.1 The integration of MOCBA with MOEA 

3.1.1 The integrated MOEA framework 

MOEA is an adaptive heuristic search algorithm which 
simulates the survival of the fittest among individuals over 
consecutive generations for solving a multi-objective prob-
lem. Based on an initial population randomly generated, at 
each generation, MOEA evaluates the chromosomes and 
ranks them in terms of their fitness; the fitter solutions will 
be selected to generate new offspring by recombination and 
mutation operators. This process of evolution is repeated un-
til the algorithm converges to a population which covers the 
non-dominated solutions. MOEA has been successfully ap-
plied in solving deterministic multi-objective problems 
(Fonseca and Fleming 1995, Hanne and Nickel 2005).  

To make MOEA work well for simulation optimization 
problems where variability is a main concern, MOCBA is 
needed mainly in the following two aspects: fitness evalua-
tion and formation of elite population. A detailed description 
of the integrated solution framework is given below. 

Outline of the Integrated MOEA 

Step 0: Initialization: Randomly generate an initial feasi-
ble population tPOP  of size tN ; set elite popula-
tion tE = ∅ ; set generation index 0t = . 

Step 1: Run MOCBA (Section 2.2.4) to determine the 
number of replications for each design in popula-
tion tPOP , and select designs into the Pareto set. 

Step 2: Formation of elite population: Form the elite 
population tE  with designs in the Pareto set. 

Step 3: Check the termination condition. If it is not satis-
fied, go to Step 5. 

Step 4: Termination: Run MOCBA on the Elite Popula-
tion tE  with both types of errors within error limit 

*ε . Output the Pareto set as the final set of non-
dominated designs.  

Step 5: Evaluation and fitness assignment: Use perform-
ance index iψ  at the termination of MOCBA as 
the fitness value of chromosome i. 
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Step 6: New population: Set 1t t= + ; let 1t tPOP POP−= . 
Create a new population by repeating the follow-
ing steps until M pairs of parents are selected.  
1) Selection: select one pair of chromosomes 

by tournament selection from population 
1tPOP− . 

2) Crossover: Perform arithmetic crossover 
and   one-point crossover with probability 
0.5 each, resulting in a pair of offspring. 
Check the   feasibility of the offspring. 

3) Add the new offspring into population 
tPOP . 

Step 7: Mutation: Run MOCBA on population tPOP  to 
determine fitness value for the new offspring. If 

maxtN N> , delete max( )tN N−  designs with least 
fitness value. For each chromosome i in tPOP , 
perform mutation with probability 0.1m iP ψ= . 
Check the feasibility of the mutated chromosome. 
Go to Step 1. 

3.1.2 The aircraft spare parts inventory allocation 
problem — case study 1 

When a repairable item on an aircraft becomes defective, it 
is removed and replaced by another item from the spare 
stock. The defective part then goes into some repair cycle 
at the Central Repair Depot (CRD). If the airport does not 
have the spare part in stock, the aircraft will be grounded 
until an incoming flight brings a replacement part from the 
CRD or from a neighboring airport. To reduce departure 
delays due to unanticipated failures, airlines need to keep 
inventory of spare parts at the associated airports, as well 
as at the CRD.  

Suppose we have an airport network which consists of 
S  airports and 1 CRD. We assume that N repairable spares 
of the same type are available in the network. At every 
maintenance check, a failure occurs at the probability of 
α . Upon a part failure, re-supply of the spare part comes 
from either the inventory at the airport, the CRD or from 
the neighboring airports. The repair time for a defective 
part is assumed to follow uniform distribution between 

1 2[ , ]R R . The problem is to determine the allocation of the 
spare parts among the airports, and the replacement policy 
(where to get a replacement part: airport’s own inventory, 
neighboring airport or CRD) upon the occurrence of a part 
failure, so that the average cost involved in the system is 
minimized and both the average fill-rate and the minimum 
fill-rate of the entire network are maximized. Here the cost 
is defined in terms of inventory cost and the transportation 
cost of shipping the defective part. The fill-rate of an air-
port is defined as the percentage of failures serviced by its 
own spare part inventory.  

With three objectives evaluated through simulation, 
the problem has the following difficult features: huge 
search space, multi-objective, and high variability. To ad-
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dress these difficulties, we apply the integrated MOEA to 
solve this problem. 

In the integrated MOEA, the coding scheme defines 
each chromosome as 1S +  genes ( 1,2,..., 1)iL i S= + , each 
of which represents the inventory level of spares at airport i 
(or CRD). At each MOEA generation, crossover and muta-
tion are performed to generate new offspring, and a set of 
best chromosomes are kept in the elite population. When 
termination condition (no new solutions are added into the 
elite population or a maximum number of generations has 
been executed) is met, MOCBA is run on the final elite 
population, and the resulted Pareto set is output as the final 
non-dominated set of solutions. Figures 2 and 3 illustrate 
the improvement of Pareto front as the number of MOEA 
generations increases from 1 to 200. 
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Figure 2 Improvement of Pareto Set in terms of Average 
Service Level and Cost 
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Figure 3 Improvement of Pareto Set in terms of Minimum 
Service Level and Cost 

 
Figures 2 and 3 show that, all three performance 

measures of the designs in the Pareto set are improved sig-
nificantly by the integrated MOEA from the 1st to the 100th 
generation. The integrated MOEA is capable of identifying 
those non-dominated designs with a lower cost, and a 
300
higher average as well as minimum service level. Mean-
while, from the 100th to 200th generation of the integrated 
MOEA, the improvement of the Pareto set can be observed 
but not as apparent as in the first 100 genetic generations. 
The new designs generated and added into the Pareto set 
are mostly in the same region as those generated during the 
first 100 generations, less than 20 new designs have been 
found are superior to the designs in the Pareto set found at 
the 100th generation. This implies that, the integrated 
MOEA has started to converge to a local optimum. 

3.2 The integration of MOCBA with NP 

3.2.1 The integrated NP framework 

The NP method, proposed by Shi and Ólafsson (2000), is a 
randomized method based on the concept of adaptive sam-
pling for solving single objective global optimization prob-
lems. It systematically partitions the feasible region and 
concentrates the search in regions that are the most promis-
ing. It combines partitioning, random sampling, a selection 
of a promising index, and backtracking to create a Markov 
chain that converges to a global optimum. 

For the single objective deterministic NP to be appli-
cable for solving our problem, the performance index iψ  
introduced in MOCBA is used to calculate the promising 
index to determine the next promising region. Moreover, 
MOCBA is also used for effective allocation of simulation 
replications as well as forming the global Pareto set. The 
integrated NP framework (described below) is developed 
for problems with two-dimensional search space: and s Q .  

Outline of the Multi-objective Integrated NP 

Step 0: Initialization: Determine the feasible region of 
[ ],s Q  and denote it as Ω ; let it be the current 
most promising region bΩ ; set the surrounding 
region as sΩ = ∅ ; set the global Pareto set 

pS = ∅ . 
Step 1: Partition and sampling: Partition bΩ  into M  sub-

regions; take ω  samples from each sub-region 
and the surrounding region sΩ . 

Step 2: Promising index calculation: Run r replications of 
the simulation model for each sample taken; cal-
culate performance index iψ for each sample; cal-
culate the promising index for each region. De-
note the region with the highest promising index 
as hΩ . Add those samples with 0.5iψ >  into the 
global Pareto set pS . 

Step 3: Update of global Pareto set pS : Run MOCBA on 
designs in pS . Find the Pareto set '

pS  with both 
types of errors within error limit *ε .  Replace pS  
with '

pS . 
Step 4: Check termination condition. If not satisfied, go to   

Step 6. 
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Step 5: Termination: Output the global Pareto set pS  as 

the final set of non-dominated solutions. 
Step 6: If h bΩ ⊆ Ω , set ,b h s hΩ = Ω Ω = Ω − Ω . Go to 

Step 1. 
Step 7: Backtracking: Backtrack to a super region of bΩ . 

Regard it as the current most promising region 
bΩ , and aggregate the surrounding region as sΩ . 

Go to Step 1. 

3.2.2 The differentiated service inventory problem — 
case study 2 

In a differentiated service inventory problem, customers 
are classified into different groups according to their im-
portance to the decision makers. The problem is to deter-
mine how to replenish inventories and how to allocate 
these inventories to different demand classes according to 
some performance measures such that each demand class is 
offered with different service level. In this study, we as-
sume that there are m  different demand classes where the 
demand for each class is stochastic, and the inventory is 
replenished according to a continuous ( , )s Q  inventory 
model. Under the dynamic threshold policy developed in 
Chew, Lee, and Liu (2005) to differentiate demand classes 
and to offer different services, the problem is to obtain a 
set of non-dominated reorder point s and order quantity Q 
with the best combination of cost and service level. Here 
the cost is defined in terms of average annual cost, which 
consists of setup cost, inventory holding cost and backor-
der cost. The service level is defined in terms of average 
backorder of each customer class, which is calculated as 
the average number of backorders per year. 

This problem involves two objectives which are also 
evaluated by simulation models. To search for the non-
dominated ( , )s Q  policies within the feasible region which 
is an area formed by upper bounds of both s  and Q , we 
employ the integrated NP to partition the search space it-
eratively and focus on the more promising region in 
searching for better solutions. The upper bound of Q  is 
estimated by the EOQ model. The upper bound of reorder 
point s  is determined by first minimizing the average an-
nual cost and then minimizing the average backorder. With 
similar termination condition as in the integrated MOEA, 
designs in the final global Pareto set are illustrated in Fig-
ures 4 and 5. 

Figures 4 and 5 indicate that, designs in the final run 
global Pareto set of the integrated NP form a curve which 
represents the efficient Pareto frontier. All designs from 
the initial run are above this curve and therefore are domi-
nated. Moreover, we can observe that, in the final run, 
unlike the initial run, designs are more evenly distributed 
along the Pareto frontier. This indicates that, the integrated 
NP is capable of finding a full spectrum of non-dominated 
designs for the decision makers, which is highly desirable 
30
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Figure 5 Pareto Front Improvement of Class 2 Customers  

 
in the practice. Moreover, the algorithm is capable of 
searching different regions of the search space rather than 
concentrating on a certain region, therefore it has a higher 
chance of finding the global optimal set of non-dominated 
solutions. 

4 CONCLUSIONS 

For the simulation optimization problem considered in this 
study, neither a statistical selection procedure nor a search 
procedure is enough to address the difficult issues involved 
in the problem: huge solution space, high variability and 
multi-objective. We therefore propose a solution frame-
work which integrates the two procedures for efficient al-
location of simulation replications as well as search and 
identification of non-dominated solutions. Due to the fact 
that the performance index introduced in MOCBA trans-
forms the multi-objectives into a single measure of effec-
tiveness which can be used to evaluate the solutions in 
terms of non-dominance, search procedures developed for 
both single objective and multi-objective optimization 
problems are applicable here. We illustrate the solution 
framework by integrating MOCBA with two meta-
heuristic procedures which move with a set of solutions at 
each iteration: MOEA and NP. The two integrated frame-
works are then applied to solve two inventory management 
case study problems. Results show that, throughout the in-
tegrated search procedure, the Pareto set is improved 
1
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greatly in terms of both individual solution quality and the 
distribution of the solutions along the Pareto frontier. The 
integrated solution framework is capable of identifying a 
set of non-dominated solutions with high confidence. In 
this study, the convergence and the quality of the Pareto set 
are analyzed by observing how performance measures of 
the non-dominated designs in the Pareto set change as the 
search progresses; and the termination condition of the al-
gorithms is based on this observation. In future research, it 
may be worthwhile to study the convergence property 
more systematically. Meanwhile, it is also important to in-
vestigate how to evaluate the quality of the final Pareto set 
in comparison with true Pareto set. 
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