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ABSTRACT

We propose two-stage methods for selection and multi-

ple comparisons with the best (MCB) of steady-state per-

formance measures of regenerative systems. We assume

the systems being compared are simulated independently,

and the methods presented are asymptotically valid as the

confidence-interval width parameter shrinks and the first-

stage run length grows at a rate that is at most the inverse

of the square of the confidence-interval width parameter.

When the first-stage run length is asymptotically negligi-

ble compared to the total run length, our procedures are

asymptotically efficient. We provide an asymptotic com-

parison of our regenerative MCB procedures with those

based on standardized time series (STS) methods in terms

of mean and variance of total run length. We conclude

that regenerative MCB methods are strictly better than STS

MCB methods for any fixed number of batches, but the two

become equivalent as the number of batches grows large.

1 INTRODUCTION

In many simulation studies the analyst wants to compare

different systems to determine which is best relative to some

performance measure. For example, one may be faced with

10 possible designs for a computer system, and the goal is

to determine which has the highest steady-state availability.

In this paper we assume that there are k < ∞ systems,

where each system i has unknown steady-state mean µi and

unknown time-average variance constant (TAVC) σ2
i . We

allow for the σ2
i , i = 1, . . . ,k, to be unequal. We assume

that bigger µi is better, and the goal is to use simulation to

identify the system i with the largest µi.

We attack this problem when the systems being sim-

ulated are regenerative. Loosely speaking, a stochastic

process is said to be regenerative if it has a sequence of

increasing times (known as regeneration points) at which
2871-4244-0501-7/06/$20.00 ©2006 IEEE
the process probabilistically restarts; see Shedler (1993) for

background on regenerative processes. An example is a

positive-recurrent Markov chain living on a discrete state

space, and returns to a fixed state constitute a sequence of

regeneration points. The sample path between two succes-

sive regeneration points is called a regenerative cycle, and

the sequence of such cycles are independent and identically

distributed (i.i.d.). The regenerative method (Iglehart 1978)

exploits this structure to construct asymptotically valid con-

fidence intervals for steady-state performance measures.

In this paper we develop two-stage selection and

multiple-comparison procedures for comparing the steady-

state means of regenerative systems. In general the aim

of selection procedures is to identify with pre-specified

probability 1−α the system with the largest mean. Our

selection procedure is developed under Bechhofer’s (1954)

“indifference zone” formulation, in which we assume we

are indifferent to systems whose means are within δ of

one other. In addition, our procedures implement multiple

comparisons with the best (MCB; Hsu 1984), where the

goal is to construct simultaneous confidence intervals for

µi −max 6̀=i µ`, i = 1, . . . ,k. Thus, MCB intervals provide

bounds on how close each system’s mean performance is

to that of the best of the rest. Bechhofer, Santner, and

Goldsman (1995), Swisher, Jacobson, and Yucesan (2003),

and Kim and Nelson (2006b) provide overviews of selection

and multiple-comparison methods.

The MCB intervals produced by our two-stage proce-

dures have a pre-specified width parameter δ > 0, which we

also use as an indifference-zone parameter of our selection

procedure. We consider both absolute-width and relative-

width parameters δ for MCB. Our methods are asymptoti-

cally valid as δ → 0 when the first-stage run length grows

at rate δ−λ with 0 < λ ≤ 2. When λ < 2, the first-stage

run length is asymptotically negligible compared to δ−2,

and the procedures are asymptotically efficient (Chow and

Robbins 1965) in the sense that the total run length is the

same (to first order) as when the variances are known.
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Our methods build on the work of Rinott (1978),

Mukhopadhyay (1979), and Matejcik and Nelson (1995).

Rinott (1978) develops two-stage selection procedures to

compare means of independent normal populations using

i.i.d. sampling within each population. For the case of

k = 2 normal populations, Mukhopadhyay (1979) modifies

Rinott’s procedure to be asymptotically efficient by letting

the first-stage sample size grow at rate 1/δ . Matejcik and

Nelson (1995) extend Rinott’s method to also construct

MCB intervals.

Iglehart (1977) proposes heuristic two-stage and fully

sequential selection methods for regenerative systems, but

does not prove the validity of his approach. Also, his

procedure is based on the “cycle time scale” (i.e., the method

determines the number of cycles to simulate), whereas our

two-stage selection and MCB methods use the “natural time

scale” in the sense that our approaches determine the total

run length needed.

Instead of assuming the systems are regenerative, as

we do here, some other papers require a functional central

limit theorem (FCLT) to establish the asymptotic validity

of MCB and selection procedures for steady-state simula-

tions. (A generalization of a standard central limit theorem,

an FCLT specifies that a centered and scaled version of a

process converges in distribution to a Brownian motion; see

Billingsley 1999). For example, Damerdji and Nakayama

(1999) consider the MCB problem for steady-state simula-

tions, and their two-stage procedures use standardized time

series (STS) methods (Schruben 1983, Glynn and Iglehart

1990). Also, Kim and Nelson (2006a) analyze fully se-

quential selection procedures for steady-state simulations

under an FCLT assumption. While the class of stochastic

processes that satisfy an FCLT (and thus for which STS

methods apply) is quite large, Glynn and Iglehart (1993)

provide an example of a regenerative process that does

not satisfy an FCLT. (On the other hand, there are also

non-regenerative processes for which a FCLT holds.)

We provide an asymptotic comparison of our regener-

ative MCB procedures with those based on STS methods

(Damerdji and Nakayama 1999) in terms of the average and

variability of total run length. We conclude that regenerative

MCB methods are strictly better than STS MCB methods for

any fixed number of batches, but the two become equivalent

as the number of batches grows large.

The rest of the paper has the following organization.

We describe our notation and assumptions in Section 2.

Section 3 presents a two-stage procedure to produce simul-

taneous MCB confidence intervals having an absolute-width

parameter δ , and Section 4 extends the method to also be a

selection procedure. Section 5 presents an MCB procedure

with relative-width parameter δ . In Section 6 we compare

our regenerative MCB procedures with STS MCB meth-

ods. Section 7 contains some concluding remarks. Proofs

of results from this paper are given in Nakayama (2006).
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2 NOTATION AND ASSUMPTIONS

Assume that we have k < ∞ systems to compare, where

the evolution of each system i is a stochastic process Xi =
[Xi(t) : t ≥ 0] living on a state space Si and having probability

measure Pi. Let fi : Si →< be a reward function on Si, and

for each t > 0, define

µi(t) =
1

t

∫ t

0

fi(Xi(s))ds,

which is the time-average reward of process i over the

interval [0, t]. We assume the following:

Assumption 1 For each system i, there exists a

sequence of times Ai,−1 = 0≤ Ai,0 < Ai,1 < · · · such that Xi

is regenerative with respect to the sequence (Ai, j : j ≥ 0)
under measure Pi.

For each j ≥ 1, [Xi(s) : Ai, j−1 ≤ s < Ai, j] is the jth

regenerative cycle of system i. Define Ni(t) = sup{ j ≥ 0 :
Ai, j ≤ t}, which is the number of regenerative cycles that

process i completes by time t. Let τi, j = Ai, j −Ai, j−1 be

the length of the jth regenerative cycle for process i, and

define

Yi, j =

∫ Ai, j

Ai, j−1

fi(Xi(t))dt,

which is the cumulative reward over the jth regenerative

cycle of the ith process. Let Ei denote the expectation

operator induced by probability measure Pi. The following

ensures the validity of the regenerative method in our context

(Glynn and Iglehart 1993):

Assumption 2 For each system i, Ei[τi,1] <∞, and

there exists a finite constant µi such that Ei[Yi,1−µiτi,1] = 0
and 0 < Ei[(Yi,1−µiτi,1)

2] < ∞.

In this case, µi = Ei[Yi,1]/Ei[τi,1], and it can be shown

that our assumptions imply µi(t)⇒ µi as t →∞, where ⇒
denotes convergence in distribution (Billingsley 1999); i.e.,

µi is the long-run time-average reward, which we assume is

unknown. For each i = 1, . . . ,k, let (i) denote the (unknown)

system with the ith smallest mean, so µ(1) ≤ µ(2) ≤ ·· · ≤
µ(k). Our goal is to identify the system (k) having the

largest µ(k).

Let σ2
i = Ei[(Yi,1−µiτi,1)

2]/Ei[τi,1], which is the TAVC

for the process Xi under reward function fi. Specifically,

σ2
i is the variance constant appearing in the central limit

theorem (CLT)

√
t (µi(t)−µi) ⇒ N(0,σ2

i )

as t →∞, which holds under Assumptions 1 and 2, where

N(a,b) denotes a normal random variable with mean a and

variance b; see Glynn and Iglehart (1993). We assume the

σ2
i are unknown, and we allow for the σ2

i , i = 1,2, . . . ,k,



Nakayama
to be unequal. For each t > 0, let

Vi(t) =
1

t

Ni(t)∑

j=1

[Yi, j −µi(t)τi, j]
2
, (1)

which is an estimator of σ2
i based on a simulation of system i

up to time t, and Glynn and Iglehart (1993) show that Vi(t)
is weakly consistent; i.e., Vi(t) ⇒ σ2

i as t →∞.

3 ABSOLUTE-WIDTH MCB

The following two-stage procedure constructs MCB intervals

whose absolute-width parameter is δ > 0.

Procedure A

1. Specify the number of systems 2 ≤ k < ∞, the

confidence level 1−α with 0 < α < 1, the desired

absolute-width parameter δ of the MCB confidence

intervals, and the first-stage run length T0 for each

system.

2. Independently simulate each system for a run length

of T0.

3. For each system i, compute the total run length

required as

Ti(δ ) = max

(
T0,

γ2Vi(T0)

δ 2

)
, (2)

where the constant γ =
√

2z(1−α)1/(k−1) , the con-

stant zβ satisfies Φ(zβ ) = β for 0 < β < 1, and Φ
is the distribution function of a standard (mean 0
and variance 1) normal distribution.

4. For each system i, continue to simulate from

time T0 to Ti(δ ), where the k systems are sim-

ulated independently, and form the point estimator

µ̃i(δ ) = µi(Ti(δ )) of µi.

5. Use the absolute-width parameter δ to construct

the simultaneously confidence intervals

Ii(δ ) =

[
−
(

µ̃i(δ )−max
6̀=i

µ̃`(δ )−δ

)−

,

(
µ̃i(δ )−max

6̀=i
µ̃`(δ )+δ

)+
]

for i = 1, . . . ,k, which are the MCB confidence in-

tervals for µi−max 6̀=i µ`, i = 1, . . . ,k, respectively,

where −(β )− = min(β ,0) and (β )+ = max(β ,0)
for β ∈ <.
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Before presenting some asymptotic properties of Proce-

dure A, we first define the constant γ̄ =
√

2z̄k−1,1−α , where

z̄p,β is the upper-β equicoordinate point of a p-variate stan-

dard normal distribution with unit variances and common

correlation coefficient 1/2. Table B.1 of Bechhofer, Santner,

and Goldsman (1995) provides values of z̄p,β for various

p and β . It can be shown that γ̄ < γ for each k ≥ 3 and

0 < α < 1. We then have the following.

Theorem 1 If Assumptions 1 and 2 hold and Pro-

cedure A is used with first-stage run length T0 = ζ δ−λ ,

where ζ > 0 and 0 < λ ≤ 2 are any constants, then the

following hold:

(i) limδ→0 P{µi −max 6̀=i µ` ∈ Ii(δ ), i = 1, . . . ,k}
> 1−α .

(ii) δ 2Ti(δ ) ⇒ ti as δ → 0, where

ti =

{
γ2σ2

i if 0 < λ < 2,
max(ζ ,γ2σ2

i ) if λ = 2.
(3)

(iii) In addition, suppose 0 < λ < 2, and replace γ in

(2) and (3) with γ̄ . Then (i) and (ii) still hold, and

Ti(δ )/(γ̄σi/δ )2 ⇒ 1 as δ → 0. Moreover, assume

0 and τi,1 are the first two regeneration times of

Xi, and Ei[Yi,1(| fi|)8 +τ8
i,1] <∞, where Yi,1(| fi|) =∫ τi,1

0
| fi(Xi(s))|ds. Then E[Ti(δ )/(γ̄σi/δ )2]→ 1 as

δ → 0.

Part (i) shows the asymptotic validity of the MCB

intervals. Part (ii) establishes that the total run length

for system i asymptotically equals ti/δ 2 to first order, as

δ → 0. Part (iii) shows that when the first-stage run length

is negligible compared to the total run length (i.e., λ < 2),

replacing γ by γ̄ results in Procedure A being asymptotically

efficient for k ≥ 3 systems in the sense that the total run

length is the same as what it would be if σ2
i were known

(Section 2.6 of Bechhofer, Santner, and Goldsman 1995).

Glynn and Iglehart (1986) show that the moment conditions

in (iii) ensure that [Vi(t) : t ≥ 0] is uniformly integrable.

4 SELECTION PROCEDURE

As Matejcik and Nelson (1995) note, MCB procedures can

often be modified to be selection procedures as well under

the “indifference zone” formulation of Bechhofer (1954).

Specifically, suppose we use the MCB width parameter δ
also as an indifference parameter, in the sense that we assume

we are indifferent to systems whose means are within δ of

one another. Thus, our goal is to identify a system i such

that µi ≥ µ(k)−δ .

Let [1], [2], . . . , [k] be defined such that µ̃[1](δ ) ≤
µ̃[2](δ ) ≤ ·· · ≤ µ̃[k](δ ), so system [i] has the ith smallest

sample mean at the end of the second stage in Procedure A.

We then modify Procedure A as follows:
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Procedure A2

Use steps 1–5 of Procedure A and add the following step:

6. Select system [k] as the best.

Let µ = (µ1, . . . ,µk), and when δ is the indifference

parameter, define

Ω(δ ) = {µ = (µ1, . . . ,µk) : µ(k)−δ > µ(k−1)},

which is the set of configurations of means such that only the

best system is desirable. We then define a correct selection

to be the event

CSµ(δ ) =
{

µ̃(k)(δ ) > µ̃i(δ ),∀i 6= (k)
}

when µ ∈ Ω(δ ).

When analyzing the asymptotic properties of Proce-

dure A2, we need to modify our problem formulation to

avoid theoretical trivialities. In Procedure A2 the systems

and their means are fixed as δ → 0, so, because the total

run length Ti(δ )≥ T0 = ζ/δ 2 →∞ as δ → 0, we have that

µ̃i(δ ) → µi with probability 1 by the strong law of large

numbers. Hence, the probability of correct selection ap-

proaches 1 as δ → 0. To avoid this uninteresting theoretical

result, we let the vector µ of means vary as δ shrinks, which

leads to the probability of correct selection converging to

a value less than 1. However, this significantly compli-

cates the analysis (Damerdji et al. 1996), so we make the

following simplifying assumption:

Assumption 3 For each system i, there exists a

process Zi = [Zi(t) : t ≥ 0] such that fi(Xi(t)) = µi + Zi(t)
for all t ≥ 0, where the distribution of Zi does not depend

on µi, and Z1, . . . ,Zk are independent.

We can think of Zi as a “noise process” added to

the mean µi we are trying to estimate. Kim and Nelson

(2006b) make a similar simplifying modeling assumption

for their selection procedures for steady-state simulations.

The following result establishes the asymptotic validity of

our combined selection and MCB procedure.

Theorem 2 If Assumptions 1–3 hold and Proce-

dure A2 is used with first-stage run length T0 = ζ δ−λ ,

where ζ > 0 and 0 < λ ≤ 2 are any constants, then

lim
δ→0

inf
µ∈Ω(δ)

P

{
CSµ(δ ), µi −max

6̀=i
µ` ∈ Ii(δ ),

i = 1, . . . ,k

}
> 1−α.

5 RELATIVE-WIDTH MCB

Procedure A produces MCB intervals with absolute-width

parameter δ . However, in many situations, one desires
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confidence intervals having a pre-specified relative precision,

e.g., ±10%. Below we present a procedure to do this.

For i = 1, . . . ,k, define 〈i〉 to be the system with the

ith smallest sample mean after simulating each of the pro-

cesses for run length T0. Thus, µ〈1〉(T0)≤ µ〈2〉(T0)≤ ·· · ≤
µ〈k〉(T0).

Procedure R

1. Specify the number of systems 2 ≤ k < ∞, the

confidence level 1−α with 0 < α < 1, the desired

relative-width parameter δ of the MCB confidence

intervals, and the first-stage run length T0 for each

system.

2. Independently simulate each system for a run length

of T0.

3. For each system i, compute the total run length

required as

Ti,r(δ ) = max

(
T0,

γ2Vi(T0)

δ 2 ε2
i (T0)

)
, (4)

where the constant γ is the same as in (2), εi(T0) =
µ〈k〉(T0)−µi(T0) if µi(T0) < µ〈k〉(T0), and εi(T0) =
µ〈k〉(T0)−µ〈k−1〉(T0) if µi(T0) = µ〈k〉(T0).

4. For each system i, continue to simulate from

time T0 to Ti,r(δ ), where the k systems are simu-

lated independently, and form the point estimator

µ̂i(δ ) = µi(Ti,r(δ )) of µi.

5. Use the relative-width parameter δ to construct the

simultaneously confidence intervals

Ji(δ ) =

[
−
(

µ̂i(δ )−max
6̀=i

µ̂`(δ )−δdi(δ )

)−

,

(
µ̂i(δ )−max

6̀=i
µ̂`(δ )+δdi(δ )

)+
]

,

for i = 1, . . . ,k, which are the MCB confidence in-

tervals for µi−max 6̀=i µ`, i = 1, . . . ,k, respectively,

where di(δ ) = |µ̂i(δ )−max 6̀=i µ̂`(δ )|.

Theorem 3 Suppose Assumptions 1 and 2 hold and

µ(k−1) < µ(k). If Procedure R is used with first-stage run

length T0 = ζ δ−λ , where ζ > 0 and 0 < λ ≤ 2 are any

constants, then the following hold:

(i) limδ→0 P{µi −max 6̀=i µ` ∈ Ji(δ ), i = 1, . . . ,k}
> 1−α .

(ii) δ 2Ti,r(δ ) ⇒ ti,r as δ → 0, where

ti,r =

{
(γσi/εi)

2 if 0 < λ < 2,
max(ζ ,(γσi/εi)

2) if λ = 2,
(5)
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εi = µ(k) − µi if i 6= (k), and εi = µ(k) − µ(k−1) if

i = (k).
(iii) In addition, suppose 0 < λ < 2, and replace γ in

(4) and (5) with γ̄ . Then (i) and (ii) still hold,

and Ti,r(δ )/(γ̄σi/δ )2 ⇒ 1 as δ → 0. Moreover,

under the moment conditions in Theorem 1(iii),

E[Ti,r(δ )/(γ̄σi/δ )2] → 1 as δ → 0.

6 ASYMPTOTIC COMPARISON OF

REGENERATIVE MCB AND STS MCB

We now compare our regenerative MCB methods and the

STS MCB procedures of Damerdji and Nakayama (1999),

the latter of which requires each system to satisfy a functional

central limit theorem (FCLT), which we now describe. For

each system i and T > 0, define the processes X̄i,T = [X̄i,T (t) :
t ≥ 0] and Wi,T = [Wi,T (t) : t ≥ 0] with

X̄i,T (t) =
1

T

∫ tT

0

fi(Xi(s))ds,

Wi,T (t) =
√

T [X̄i,T (t)−µit] .

Then we assume the following FCLT holds for each system i:

Wi,T ⇒ σiBi (6)

as T →∞, where Bi is a standard Brownian motion. Be-

cause we simulated X1, . . . ,Xk independently, B1, . . . ,Bk are

independent.

When using m≥ 1 batches, each STS method has a cor-

responding function gm, whose square, when applied to X̄i,T ,

provides an estimate of the process’s TAVC. Specifically,

we let

V ′
i,m(T0) = T0g2

m(X̄i,T0)

be the STS estimator of σ2
i based on the first stage of length

T0. To facilitate the comparison of STS MCB procedures

with regenerative MCB methods, we will assume that STS

functions gm are scaled such that E[g2
m(B)] = 1, where B is

a standard Brownian motion.

The STS MCB method for constructing intervals with

absolute-width parameter δ is the same as Procedure A in

Section 3 except (2) is changed to

T ′
i,m(δ ) = max

(
T0,

γ ′
2
V ′

i,m(T0)

δ 2

)
, (7)

where γ ′ is a constant to be discussed shortly, and we replace

µ̃i(δ ) in steps 4 and 5 with µ̃ ′
i (δ ) = µi(T

′
i,m(δ )). Similar

modifications can be made to Procedure R of Section 5 to

construct STS MCB intervals with relative-width parameter

δ . (Damerdji and Nakayama 1999 actually define their two-
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stage STS MCB procedures to determine the total number of

batches to simulate for each system, but these can easily be

modified to determine instead the total run length required,

as in (7).)

We now provide more details on the constant γ ′ in

(7). Suppose that we want to construct STS MCB intervals

having asymptotic joint confidence level at least 1− α
when using STS function gm based on m ≥ 1 batches. Then

γ ′ = γ ′(k,1−α,gm) in (7) is chosen to satisfy

E

[
k−1∏

i=1

Φ

(
γ ′

[(1/g2
m(Bi))+(1/g2

m(Bk))]
1/2

)]
= 1−α,

where B1, . . . ,Bk are independent standard Brownian mo-

tions. In contrast our regenerative MCB method requires

the constant γ = γ(k,1−α) in (2), which satisfies

[
Φ

(
γ√
2

)]k−1

= 1−α,

so γ =
√

2z(1−α)1/(k−1) .

If we use the STS function gbm,m corresponding to

batch means (BM) with a fixed number m ≥ 2 of batches,

the parameter γ ′ is the solution to

E

[
k−1∏

i=1

Φ

(
γ ′

[
(m−1)/χ2

i +(m−1)/χ2
k

]1/2

)]
= 1−α,

where χ2
1 , . . . ,χ2

k are independent χ2 random variables, each

with m−1 degrees of freedom. In this case the parameter

γ ′(k,1−α,gbm,m) is exactly Rinott’s (1978) constant in his

two-stage selection procedure for comparing independent

normal populations when the first-stage sample size for each

population is m. Wilcox (1984) and Bechhofer, Santner,

and Goldsman (1995) provide tables of values for γ ′.
We now provide a comparison of the STS and regener-

ative MCB methods in terms of their total run lengths. We

also compare the methods in terms of the potential total

run lengths, which we define as the second terms in the

maxima in (7) and (2). Specifically, these are

T̄ ′
i,m(δ ) =

γ ′
2
V ′

i,m(T0)

δ 2
,

T̄i(δ ) =
γ2Vi(T0)

δ 2
,

for the STS and regenerative MCB methods, respectively.

We analyze the ratios Ri,m(δ ) = T ′
i,m(δ )/Ti(δ ) and R̄i,m(δ ) =

T̄ ′
i,m(δ )/T̄i(δ ).

Theorem 4 Suppose an STS MCB procedure is ap-

plied with any STS function gm based on a fixed number

m ≥ 1 of batches and scaled such that E[g2
m(B)] = 1. Also,
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suppose the first-stage run length for both the regenerative

and STS MCB methods is T0 = ζ δ−λ for any constants

ζ > 0 and 0 < λ ≤ 2. Then the following hold:

(i) δ 2T ′
i,m(δ ) ⇒ t′i,m as δ → 0, where

t′i,m =

{
γ ′

2
σ2

i g2
m(Bi) if 0 < λ < 2,

max[ζ ,γ ′
2
σ2

i g2
m(Bi)] if λ = 2.

(ii) γ ′(k,1−α,gm) > γ(k,1−α).
(iii) Ri,m(δ )⇒Ri,m and R̄i,m(δ )⇒ R̄i,m as δ → 0, where

Ri,m =
t′i,m

ti
, R̄i,m =

γ ′
2
g2

m(Bi)

γ2
,

and ti is defined in (3).

(iv) If λ = 2 and {V ′
i,m(t) : t > 0} is uniformly inte-

grable, then limδ→0 E [Ri,m(δ )] > 1. If λ < 2 and

{V ′
i,m(t)/Vi(t) : t > 0} is uniformly integrable, then

lim
δ→0

E [Ri,m(δ )] = ri,m

≡
(

γ′(k,1−α,gm)
γ(k,1−α)

)2

> 1.

(v) If {V ′
i,m(t)/Vi(t) : t > 0} is uniformly integrable,

then limδ→0 E [R̄i,m(δ )] = ri,m.

Theorem 4 shows that in terms of average total run

length, regenerative MCB methods are strictly better than

STS MCB methods. As for the variability, Theorem 1(ii)

establishes that the total run length Ti(δ ) for regenerative

MCB is asymptotically equal to tiδ
−2 to first order as δ → 0,

where ti is a degenerate random variable. In contrast, by

Theorem 4(i), STS MCB methods have a total run length

T ′
i,m(δ ) that is asymptotically equivalent to t′i,mδ−2 to first

order, where t′i,m is nondegenerate. Therefore, the run length

for regenerative MCB has no random variability of order δ−2

but it does for STS MCB, so regenerative MCB methods have

asymptotically less variable run lengths than STS methods.

We now examine what happens when we let the number

m of batches grow large.

Theorem 5 Under the same assumptions as in The-

orem 4, the following hold:

(i) γ ′(k,1−α,gm) → γ(k,1−α) as m →∞.

(ii) limm→∞ limδ→0 δ 2T ′
i,m(δ )⇒ ti, where ti is defined

in (3).

(iii) Ri,m ⇒ 1 and R̄i,m ⇒ 1 as m →∞.

(iv) E [Ri,m] → 1 and E [R̄i,m] → 1 as m →∞.

From Theorems 4 and 5, we now can make the follow-

ing comparisons of the STS MCB procedures applied to

the limiting Brownian motions and our regenerative MCB
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methods. As the number of batches grows large, STS MCB

methods become comparable on average to our regenerative

MCB methods in terms of the asymptotic total run length.

But for any fixed number of batches, STS MCB methods are

inferior to regenerative MCB methods. The reason for this

is that for a fixed number m of batches, the STS estimator

of the TAVC is not consistent as the first-stage run length

grows, whereas the regenerative estimator Vi(t) in (1) of the

TAVC is consistent. However, this comparison does not ad-

dress which approach is better in the small-sample context,

where it is possible that STS MCB procedures outperform

regenerative ones. See Nakayama (2006) for an empirical

comparison.

As an illustration, we list below some values of γ ′(k,1−
α,gbm,m) (taken from Wilcox 1984) for the BM MCB

methods and γ(k,1−α) for the regenerative MCB methods

for k = 5 systems and confidence level 1−α = 0.9:

γ ′(5,0.9,gbm,10) = 3.137,

γ ′(5,0.9,gbm,30) = 2.855,

γ ′(5,0.9,gbm,50) = 2.811,

γ(5,0.9) = 2.748.

Observe that γ ′ > γ for each m and the two values become

close as m gets large, which is consistent with Theorems 4(ii)

and 5(i). For comparison, γ̄ = γ̄(k,1−α) in Theorems 1(iii)

and 3(iii) has γ̄(5,0.9) = 2.599.

7 CONCLUSIONS

We presented two-stage procedures selection and MCB

procedures for steady-state performance measures when

simulating regenerative systems. Procedure A produces

asymptotically valid MCB intervals having absolute-width

parameter δ , and Procedure A2 modifies A to also be a se-

lection method. Procedure R constructs relative-width MCB

intervals. When the first-stage run length is asymptotically

negligible compared to δ−2, our methods are asymptotically

efficient in the sense that the total run lengths are equivalent

(to first order) to what they would be if the variances were

known. In terms of the average and variability of total run

lengths, our regenerative MCB procedures are asymptoti-

cally more efficient than the STS MCB methods of Damerdji

and Nakayama (1999), but they become equivalent as the

number of batches grows large.

Although this paper focused on comparing steady-state

means of regenerative systems, the selection and MCB

procedures presented hold more generally. Specifically,

suppose that each system i has a parameter θi, which is not

necessarily the steady-state mean of system i, and we want

to compare the k systems in terms of θ1, . . . ,θk. Assume that

we have for each parameter θi an estimation process θi(t) that

satisfies a CLT, and there is a weakly consistent estimator
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of the variance parameter appearing in the CLT. Then

we show in Nakayama (2006) how to develop analogous

selection and MCB procedures in this setting. This general

framework encompasses comparing means of independent

(not necessarily normally distributed) populations, functions

of means, quantiles, steady-state means of non-regenerative

systems, and functions of steady-state means. Moreover,

the estimation process θi(t) need not converge at rate t−1/2.

For details, see Nakayama (2006).
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