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ABSTRACT

In many stochastic models, it is known that the response

surface corresponding to a particular performance measure

is monotone in the underlying parameter. For example, the

steady-state mean waiting time for customers in a single

server queue is known to be monotone in the service rate.

In other contexts, the simulator may believe, on the basis of

intuition, that the response surface is monotone. This pa-

per describes an appropriate methodology for incorporating

such monotonicity constraints into one’s response surface

estimator.

1 INTRODUCTION

One of the main challenges presented to simulation-based

computation is that of computing response surfaces. In

particular, suppose that we wish to compute a function (or

“response surface”) α(·) via simulation. Specifically, we

assume that for each θ in the domain of α(·), we can

compute the function value α(θ) via simulation. The goal

of a response surface computation is to accurately compute

a global approximation to the function α(·).
One widely used approach is to assume that α(·) can

be well approximated by a low order polynomial, and to

use regression-based methods to estimate the coefficients

of the polynomial; see, for example, Chapter 12.4 of Law

and Kelton (2000). In this paper, we propose a different

approach that is applicable to response surface that are

known or believed to be monotone in the parameter θ . It

should be noted that a large number of different stochastic

models are provably known to be monotone in various

parameters; see, for example, Weber (1983), Van Oyen

(1997), Chang et al. (1990, 1991), Bauerle (1997), and

Shaked and Shanthikumar (1988).

In the presence of monotonicity, we suggest a general

framework for enforcing the monotonicity constraints on our

estimator. Our approach leads to a new estimator, called the

isotonic regression estimator, for computing the response
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surface. The isotonic regression estimator involves solving a

quadratic program (with a positive definite objective function

and linear inequality constraints) with as many decision

variables as there are points at which function values have

been computed.

Isotonic regression has been previously proposed within

the statistics literature; see, for example, Brunk (1958).

The simulation environment requires several generalizations

relative to the statistical setting, including the possibility of

correlation across the points (due to use of common random

numbers, common control variates, etc.) and greater interest

in the case where the number m of points is small relative

to the overall computational budget.

In Section 2 of this paper, we discuss a general frame-

work for analysis of isotonic regression that is appropriate to

the simulation setting, and describes the isotonic regression

estimator. Section 3 deals with the particular case in which

the function evaluation simulations are independent across

the different points, and argues that the isotonic regres-

sion estimator can generally be expected to dominate the

conventional Monte Carlo estimator in terms of asymptotic

performance. In Section 4, we discuss the general isotonic

estimator in the case of two points, taking advantage of the

explicit solution of the quadratic program that is available

in the context. Section 5 surveys some of the limit theory

that is available when the number m of points is large, while

Section 6 discusses some numerical computation that com-

pares the performance of the proposed estimators against

the conventional alternatives.

2 PROBLEM FORMULATION AND BASIC

APPROACH

Our goal is to compute a function α : Θ → R via Monte

Carlo (stochastic) simulation. We assume that Θ is a subset

of Rd . If θ1 = (θ11, . . . ,θ1d)
T , θ2 = (θ21, . . . ,θ2d)

T with

θ1, θ2 ∈ Θ, we say that θ1 is less than or equal to θ2 (and

write θ1 4 θ2) if θ1i ≤ θ2i for 1≤ i ≤ d. The relation 4 is a

partial order on Rd ; see Shen and Vereshchagin (2002) for
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the definition of a partial order. We assume throughout this

paper that α is non-decreasing with respect to the partial

order 4 over Θ, so that α(θ1)≤α(θ2) whenever θ1,θ2 ∈Θ
and θ1 4 θ2.

The function α is assumed to be computable via simu-

lation. In particular, given a computational budget c (mea-

sured in terms of total computer time expended) and points

θ1,θ2, . . . ,θm ∈ Θ, we assume that there exist estimators

αc(θ1), . . . ,αc(θm) such that

αc(θi) ⇒ α(θi) (1)

as c → ∞ for 1 ≤ i ≤ m where ⇒ denotes “weak

convergence” or, equivalently, “convergence in distribu-

tion”. In fact, we impose the stronger requirement that

(αc(θ1), . . . ,αc(θm)) satisfy a joint central limit theorem

(CLT):

A1. c1/2(αc(θ1)−α(θ1), . . . ,αc(θm)−α(θm))T

⇒ N(
−→
0 ,Γ)

as c → ∞, where N(
−→
0 ,Γ) is an m-dimensional normal

random vector with mean
−→
0 and covariance matrix Γ with

(i, j)’th entry given by Γ(θi,θ j) for 1 ≤ i, j ≤ m.

Of course, A1 clearly implies (1). Note that if the

simulations at the points θ1, . . . ,θm are independently gen-

erated, then Γ is a diagonal matrix. On the other hand, if

the m simulations are correlated via use of common random

numbers, Γ will have non-zero off-diagonal entries.

Assumption A1 covers both the case where αc(θi) is a

sample mean obtained by averaging the results of multiple

independent and identically distributed (iid) simulations at

the point θi (as occurs when α(θi) can be computed via

a terminating simulation) and the case where αc(θi) is a

time-average of a single replication of a stochastic model

(as is the case when α(θi) is a steady-state expectation).

Our second assumption asserts that the covariance ma-

trix Γ can be consistently estimated from the simulated data

associated with computational budget c.

A2. There exists an m×m matrix Γc (with (i, j)’th
entry given by Γc(θi,θ j)) such that

Γc ⇒ Γ

as c →∞.

In addition, we assume that the simulations at the points

θ1,θ2, . . . ,θm are not trivially dependent.

A3. The covariance matrix Γ is positive definite.

We now proceed to describe our basic approach to computing
−→
α (θ) , (α(θ1), . . . ,α(θm))T when α(·) is known to be non-
265
decreasing in the partial order 4. LetR= {(θi,θ j) : θi 4 θ j}
be the set of pairs of points that are partially ordered

under 4. Assumption A1 asserts that the random vector

αc(θ) , (αc(θ1), . . . ,αc(θm))T is approximately Gaussian

with mean
−→
α (θ) and covariance matrix c−1Γ. This suggests

that we estimate
−→
α (θ) as the maximizer of the likelihood

(2π)−m/2|detΓ|−1/2

×exp
(
−(αc(θ)− z)T Γ−1/2(αc(θ)− z)

)
(2)

over z = (z1, . . . ,zm)T ∈ Rm. If no monotonicity constraints

are imposed, then the maximum likelihood estimator is,

of course, just α̂c(θ) = αc(θ). However, when α(·) is

assumed a priori to be monotone, the likelihood (2) should

be maximized subject to the monotonicity constraints

zi ≤ z j for (θi,θ j) ∈R.

Because the logarithm of the likelihood is maximized

at the same point as the likelihood itself, this leads to the

constrained minimization problem

min
z=(z1,...,zm)T

(αc(θ)− z)T Γ−1/2(αc(θ)− z) (3)

s/t zi ≤ z j, (θi,θ j) ∈R.

This optimization problem involves minimizing a

strictly convex quadratic objective function, subject to lin-

ear inequality constraints, and can be effectively solved

numerically; see, for example, Gill et al. (2006). Of course,

in practice, the simulationist does not know Γ; only the

estimate Γc for Γ is generally available. Hence, our gen-

eral approach for computing a monotone function α(·) via

simulation involves solving the quadratic program

min
z=(z1,...,zm)T

(αc(θ)− z)T Γ−1
c (αc(θ)− z) (4)

s/t zi ≤ z j, (θi,θ j) ∈R.

The minimizer of (4) is known to exist uniquely; see Frank

and Wolfe (1956). The unique minimizer, call it α̂c(θ), is

then our recommended estimator of
−→
α (θ). In contrast to

the estimator αc(θ) (that we shall henceforth refer to as the

“conventional estimator”), α̂c(θ) is guaranteed to possess the

desired monotonicity property. Related estimators have been

previously considered in the statistics literature (specifically,

when Γ is diagonal), under the term “isotonic regression”.

We will follow this practice, and refer to α̂c(θ) as the

“isotonic (regression) estimator” for
−→
α (θ).

Before proceeding further, we establish that the esti-

mator α̂c(θ) is consistent as an estimator of
−→
α (θ).

Proposition 1 Under A1–A3, α̂c(θ) ⇒ α(θ) as

c →∞.
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Proof Because
−→
α (θ) is feasible for (4), it follows

that

(αc(θ)− α̂c(θ))
T

Γ−1
c (αc(θ)− α̂c(θ))

≤
(
αc(θ)−−→

α (θ)
)T

Γ−1
c

(
αc(θ)−−→

α (θ)
)
.

But

(
αc(θ)−−→

α (θ)
)T

Γ−1
c

(
αc(θ)−−→

α (θ)
)

=
(
αc(θ)−−→

α (θ)
)T

Γ−1
(
αc(θ)−−→

α (θ)
)

(5)

+
(
αc(θ)−−→

α (θ)
)T

(Γ−1
c −Γ−1)

(
αc(θ)−−→

α (θ)
)
.

The first term on the right-hand side of (5) goes to zero

(weakly) because αc(θ)⇒−→
α (θ) as c→∞ (by A1). On the

other hand, Γ−1
c ⇒ Γ−1 as c →∞ (due to A2 and the fact

that a matrix inverse is a continuous function of the matrix

entries) and (αc(θ)−−→
α (θ)) is bounded in probability as

c →∞ (by virtue of A1). Consequently, the second term on

the right-hand side of (5) tends to zero (weakly) as c →∞.

It follows that the left-hand side of (5) goes to zero (weakly)

as c →∞, thereby implying that αc(θ) ⇒ α(θ) as c →∞
(due to the positive definiteness of Γ ensured by A3). 2

Of course, the conventional estimator is also consistent

as an estimator of
−→
α (θ). This raises the question of whether

the isotonic α̂c(θ) is superior to αc(θ) and, if so, in what

ways. One result that suggests that the isotonic estimator

will frequently outperform the conventional estimator is the

following result due to Theorem 1.1 of Barlow et al. (1972).

Theorem 1 Suppose d = 1 and Γ is diagonal (so

that the estimators αc(θi) for 1 ≤ i ≤ m are independent).

Then, the minimizer α̃c(θ) of (3) satisfies

E[
(
α̃c(θ)−−→

α (θ)
)T

Γ−1
(
α̃c(θ)−−→

α (θ)
)
]

≤ E[
(
αc(θ)−−→

α (θ)
)T

Γ−1
(
αc(θ)−−→

α (θ)
)
]. (6)

Note that

E[
(
α̃c(θ)−−→

α (θ)
)T

Γ−1
(
α̃c(θ)−−→

α (θ)
)
]

=
m∑

i=1

1

Γ(θi,θi)
E[(α̃c(θi)−α(θi))

2];

a similar equality holds for the right-hand side of (6). Hence,

(6) establishes that α̃c(θ) has smaller “total mean square

error” than does the conventional estimator. Since we expect

the minimizers of (3) and (4) to be (very) close, this suggests

that α̂c(θ) will often outperform the conventional estimator

(in terms of total mean square error).

In fact, a stronger result can be established.

Theorem 2 Suppose that d = 1 and αc(θ) is multi-

variate normal with Γ being diagonal. Then, the minimizer
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α̃c(θ) of (3) satisfies

E
[
(α̃c(θi)−α(θi))

2
]
≤ E

[
(αc(θi)−α(θi))

2
]

for 1 ≤ i ≤ m.

For a proof, see Lee (1981). This result asserts that

when the simulation produces (exactly) normally distributed

simulation outputs that are independent across the m points,

then α̃c(θi) outperforms the conventional estimator at each

point θi (1 ≤ i ≤ m).

3 INDEPENDENT SIMULATIONS ACROSS THE

POINTS

In this section, we focus on the case where the estimators

αc(θi) (1 ≤ i ≤ m) are independent, so that the covariance

matrix Γ is known a priori to be diagonal. In this diagonal

setting, there is an explicit solution to the optimization

problem (4). Before proceeding further, we make some

necessary definitions. Denote {θ1, . . . ,θm} by Θm. A subset

L of Θm is a lower set with respect to the partial order 4 if

θ1 ∈ L, θ2 ∈ Θm, θ2 4 θ1 imply θ2 ∈ L. A subset U of Θm

is an upper set if θ1 ∈U , θ2 ∈ Θm, θ2 < θ1 imply θ2 ∈U .

The explicit solution to (4) can be written as

α̂c(θi) =
min

L
max

U

θi∈L∩U

P

θ j∈L∩U αc(θ j)Γ
−1
c (θ j ,θ j)

P

θ j∈L∩U Γ−1
c (θ j ,θ j)

, (7)

where L is a lower set and U is an upper set of Θm.

See Theorem 2.8 of Barlow et al. (1972) for details. This

estimator can also be computed via the Pool-Adjacent-

Violators (PAV) algorithm due to Ayers et al. (1955).

Here we briefly describe one variant of the PAV al-

gorithm, called the Minimum Lower Sets algorithm; see

Barlow et al. (1972) for details. For any subset B of Θm,

let

κ(B) ,

P

θ j∈B αc(θ j)Γ
−1
c (θ j ,θ j)

P

θ j∈B Γ−1
c (θ j ,θ j)

.

Minimum Lower Sets Algorithm

1. Select a lower set B1 that achieves the minimum

value of κ and let α̂c(θ j) = κ(B1) = min{κ(L) :
L is a lower set} for all θ j ∈ B1. If more than one

lower set has the same lowest value of κ , take

their union. Now we have determined α̂c(·) for all

θ j ∈ B1.

2. Consider sets of the form L∩Bc
1 where L is a lower

set. Select the largest level set B2 that achieves the

minimum value of κ among those and let α̂c(θ j) =
κ(B2) = min{κ(L∩Bc

1) : L is a lower set} for all

θ j ∈ B2.
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3. Go to 2 and continue this process until α̂c(·) is

determined for all elements in Θm.

Suppose that the function α(·) is strictly increasing

in the partial order 4 (so that α(θi) < α(θ j) whenever

(θi,θ j ∈R)). We then expect the monotonicity constraints

in the quadratic program (4) to not be binding for large values

of the computer budget c. As a consequence, the solution

to (4), for large c, should be identical to that associated

with the unconstrained version of (4), namely the estimator

αc(θ).
Proposition 2 Suppose that α(·) is strictly increas-

ing. Under A1,

P(α̂c(θ) = αc(θ)) → 1

as c →∞.

Note that Proposition 2 holds even when Γ is non-

diagonal (as occurs when common random numbers are used

across the m points). A simple consequence of Proposition

2 is that if α(·) is strictly increasing, then

c1/2
(
α̂c(θ)−−→

α (θ)
)
⇒ N(0,Γ)

as c→∞, so that α̂c(θ) enjoys the same asymptotic behavior

as does the estimator αc(θ) in this setting.

Proof Note that if αc(θ) is feasible for (4), then

α̂c(θ) = αc(θ). Hence, the result follows if P(αc(θi) ≤
αc(θ j))→ 1 for each (θi,θ j)∈R. But this is a consequence

of the fact that A1 implies that αc(θi) ⇒ α(θi) as c →∞
for 1 ≤ i ≤ m. 2

Of course, if the number m of points is large, the

computer budget c required for αc(θ) to become feasible

for (4) may be (extremely) large. Thus, perhaps the most

interest in our proposed isotonic regression estimator arises

when m is large ( so that α̂c(θ) does not coincide with the

standard estimator αc(θ)). When m is large and α(θ) is

differentiable, the difference α(θi)−α(θ j) will tend to be

small for (θi,θ j) pairs in R for which ‖θi −θ j‖ is small.

As a means of understanding the behavior of the isotone

estimator in such settings, we now consider the behavior

of α̂c(θ) when α(θi) = α(θ j) for some pairs (θi,θ j) ∈R.

Theorem 3 Assume A1–A3 and suppose that

{αc(θi) : 1 ≤ i ≤ m} is a collection of independent rv’s.

Then, for 1 ≤ i ≤ m,

c1/2 (α̂c(θi)−α(θi)) ⇒W (θi)

as c →∞. Furthermore, if d = 1,

EW 2(θi) ≤ Γ(θi,θi).

The above result shows that, when θ is real-valued, the

isotonic estimator has a smaller asymptotic mean square
267
error than does the estimator αc(θi) (in the independent

setting).

Proof It follows from (7) that

c1/2 (α̂c(θi)−α(θi)) =

min
L

max
U

θi∈L∩U

P

θ j∈L∩U c1/2(αc(θ j)−α(θi))Γ
−1
c (θ j ,θ j)

P

θ j∈L∩U Γ−1
c (θ j ,θ j)

.

Note that if θ j < θi with α(θ j) > α(θi), then c1/2(αc(θ j)−
α(θi))⇒+∞ as c→∞. Similarly, if θ j 4 θi with α(θ j) <

α(θi), then c1/2(αc(θ j)−α(θi)) ⇒−∞ as c →∞. As a

consequence,

c1/2(α̂c(θi)−α(θi)) = (8)

min
L

max
U

θi∈L∩U

{
P

θ j∈L∩U∩Ai
c1/2(αc(θ j)−α(θi))Γ

−1
c (θ j ,θ j)

P

θ j∈L∩U∩Ai
Γ−1

c (θ j ,θ j)

}

with probability converging to one as c →∞, where Ai =
{θ j : α(θ j) = α(θi), 1≤ j ≤ m}. The right-hand side of (8)

converges weakly (by the continuous mapping principle) to

min
L

max
U

θi∈L∩U

P

θ j∈L∩U∩Ai
Z(θ j)Γ

−1(θ j ,θ j)

P

θ j∈L∩U∩Ai
Γ−1(θ j ,θ j)

(9)

as c →∞, where the Z(θ j)’s are independent normal rv’s

with mean zero and variance Γ(θi,θi).
Call the right-hand side of (9) W (θi). Note that any

lower set Li in Ai can be written as L∩Ai where L is the

smallest lower set of Θm containing Li. Conversely, any set

of the form L∩Ai where L is a lower set of Θm is a lower

set of Ai. Hence {Li : Li is a lower set of Ai} = {L∩Ai :
L is a lower set of Θm}. A similar argument applies to

upper sets of Ai. Hence, W (θi) is precisely the isotone

mapping (7) as applied to the collection of independent mean

zero Gaussian rv’s (Z(θ j) : θ j ∈ Ai). When d = 1, we can

now apply Lee (1981) to conclude that EW 2(θi)≤ Γ(θi,θi).
2

4 ISOTONE REGRESSION FOR TWO POINTS

In this setting, we consider isotonic regression in the special

setting of two points θ1 and θ2 for which θ1 4 θ2. In this two

point context, we can explicitly write down the solution to

(4) when Γ is non-diagonal (thereby permitting us to analyze

the case in which correlation across the points is induced

by use of some variance reduction method).

When m = 2, we write Γc in the form

Γc =

(
σ2

1 (c) ρ(c)σ1(c)σ2(c)
ρ(c)σ1(c)σ2(c) σ2

2 (c)

)
,
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so that σ2
i (c) is an estimator for the (asymptotic) variance of

αc(θi) for i = 1,2 and ρ(c) is an estimator of the (asymptotic)

coefficient of correlation between αc(θ1) and αc(θ2).
The optimization problem (4) then can be re-written as

the minimization of a quadratic function subject to a single

inequality constraint:

min
z1,z2

[
(αc(θ1)− z1)

2

σ2
1 (c)

+
(αc(θ2)− z2)

2

σ2
2 (c)

(10)

−2(αc(θ1)− z1)(αc(θ2)− z2)
ρ(c)

σ1(c)σ2(c)

]
1

1−ρ(c)2

s/t z1 ≤ z2.

The solution can be explicitly written down. In particular,

α̂c(θ1) ={
αc(θ1) , if αc(θ1) ≤ αc(θ2)
âαc(θ1)+(1− â)αc(θ2) , otherwise

and

α̂c(θ2) ={
αc(θ2) , if αc(θ1) ≤ αc(θ2)
âαc(θ1)+(1− â)αc(θ2) , otherwise

where

â =

(
1

σ2
1 (c)

−
ρ(c)

σ1(c)σ2(c)

)
·

(
1

σ2
1 (c)

−
2ρ(c)

σ1(c)σ2(c)
+

1

σ2
2 (c)

)−1

.

As noted in Section 3, (α̂c(θ1), α̂c(θ2)) has identical asymp-

totic behavior to that of (αc(θ1),αc(θ2)) when α(θ1) <
α(θ2) (even when ρ 6= 0). We therefore focus on the spe-

cial case in which α(θ1) = α(θ2).
Theorem 4 Suppose that α(θ1) = α(θ2). If A1–A3

hold, then

c1/2(α̂c(θi)−α(θi)) ⇒W (θi)

for i = 1,2 as c →∞, where

EW 2(θi) ≤ Γ(θi,θi) (= σ2
i )

for i = 1,2.

In other words, the above result establishes that the

isotonic estimator reduces mean square error relative to

αc(θ), even in the presence of correlation between the

estimators at the two points.
268
Proof Set βc(θi) = c1/2 (αc(θi)−α(θi)) and note

that

c1/2 (α̂c(θ1)−α(θ1))

= βc(θ1)I (βc(θ1) ≤ βc(θ2))

+(âβc(θ1)+(1− â)βc(θ2)) I (βc(θ1) > βc(θ2)) .

Then,

c1/2 (α̂c(θ1)−α(θ1))

⇒ Z(θ1)I (Z(θ1) ≤ Z(θ2))

+(aZ(θ1)+(1−a)Z(θ2)) I (Z(θ1) > Z(θ2))

, W (θ1)

where

a =
(1−ρσ1/σ2)/σ2

1

(1−ρσ1/σ2)/σ2
1 +(1−ρσ2/σ1)/σ2

2

,

σ2
i is the (asymptotic) variance of αc(θi) for i = 1,2, ρ is

the (asymptotic) coefficient of correlation between αc(θ1)
and αc(θ2), and (Z(θ1),Z(θ2)) has a bivariate N(0,Γ) dis-

tribution. Because I(Z(θ1) ≤ Z(θ2)) and I(Z(θ1) > Z(θ2))
can not simultaneously be non-zero,

EW 2(θ1) = EZ2(θ1)I (Z(θ1)−Z(θ2) ≤ 0)

+E (aZ(θ1)+(1−a)Z(θ2))
2

I (Z(θ1)−Z(θ2) > 0) .

Let (Z1,Z2) be a bivariate mean zero Gaussian random

vector. Because (−Z1,−Z2) has the same mean and covari-

ance structure as does (Z1,Z2), it follows that (Z1,Z2)
D
=

(−Z1,−Z2), where
D
= denotes equality in distribution. Con-

sequently,

EZ2
1 I(Z2 ≤ 0)

= E(−Z1)
2I(−Z2 ≤ 0) = EZ2

1 I(Z2 ≥ 0)

and so

EZ2
1 I(Z2 ≤ 0) =

1

2
EZ2

1 ,

regardless of the correlation structure between Z1 and Z2.

Hence,

EZ2(θ1)I (Z(θ1)−Z(θ2) ≤ 0) =
1

2
EZ2(θ1) =

σ2
1

2
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and

E (aZ(θ1)+(1−a)Z(θ2))
2

I (Z(θ1)−Z(θ2) > 0)

=
1

2
a2EZ2(θ1)+

1

2
(1−a)2EZ2(θ2)

+a(1−a)E(Z(θ1)Z(θ2))

=
1

2
a2σ2

1 +
1

2
(1−a)2σ2

2 +a(1−a)ρσ1σ2.

Let

g(ρ) , 2
(
a2 +(1−a)2

)(
Γ(θ1,θ1)−EW 2(θ1)

)
.

We will show g(ρ) ≥ 0 for all −1 ≤ ρ ≤ 1. Note that

g(ρ) =

(
1

σ2
2

−
ρ

σ1σ2

)2

(σ2
1 −σ2

2 )

+2

(
1

σ2
1

−
ρ

σ1σ2

)(
1

σ2
2

−
ρ

σ1σ2

)
(σ2

1 −ρσ1σ2)

and g′(ρ) vanishes at ρ1 = σ1/σ2 and ρ2 = (2σ1)/(3σ2)+
σ2/(3σ). If σ1 ≤ σ2, then 0 ≤ ρ1,ρ2 ≤ 1, g(ρ1) = 0,

g(ρ2)≥ 0, and g(1)≥ 0. Hence g(ρ)≥ 0 for all−1≤ ρ ≤ 1.

If σ1 > σ2, then ρ1,ρ2 > 1, hence from g(1) ≥ 0 it follows

that g(ρ) ≥ 0 for all −1 ≤ ρ ≤ 1.

A similar argument establishes the result for

c1/2(α̂c(θ2)−α(θ2)). 2

This result depends crucially on the fact that the asymp-

totic distribution for c1/2(αc(θ)−−→
α (θ)) is Gaussian. The

example below shows that α̃c(θ) can have larger mean

square error than αc(θ) if the distribution of αc(θ) is ap-

propriately chosen. This suggests that α̂c(θ) can have worse

mean square error than αc(θ) for small values of c.

Example 1 Suppose that (αc(θ1),αc(θ2)) takes val-

ues (4,3), (2,4), (−4,−4), and (−2,−3) with probability

1/4 each. Then σ2
1 = 10, σ2

2 = 25/2, ρ = 21/2, and

E (α̃c(θ1)−α(θ1))
2

> E (αc(θ1)−α(θ1))
2
. 2

We conclude this section by noting that α̂c(θ1) can

have unusually large bias when α(θ1) = α(θ2). Note that

W (θ1) = Z(θ1)

+(1−a)(Z(θ2)−Z(θ1)) I (Z(θ1) > Z(θ2))

so

EW (θ1) =
(a−1)

2
E|Z(θ2)−Z(θ1)|.
269
Hence, if (c1/2(α̂c(θ1)−α(θ1)) : c ≥ 1) is uniformly inte-

grable, evidently

Eα̂c(θ1) = α(θ1)

+c−1/2 (a−1)
2 E|Z(θ2)−Z(θ1)|+o(c−1/2)

as c →∞, where o(c−1/2) is a term tending to zero faster

than c−1/2 as c →∞. Thus, the isotonic estimator has a

bias of order c−1/2 for c large. This is to be contrasted with

the bias of order c−1 that is more typical of Monte Carlo

estimators; see, for example, Asmussen and Glynn (2007).

However, despite the large bias, Theorem 3 shows that the

isotonic estimator reduces asymptotic mean square error.

5 ISOTONIC REGRESSION FOR LARGE

NUMBERS OF POINTS

As mentioned in Section 3, our main motivation for suggest-

ing isotonic regression as an alternative means of computing

a response surface arises when the number m of points is

large. Of course, when functional estimation is a principal

goal, the number m of points will often be large. Conse-

quently, the asymptotic regime in which m is sent to infinity

is of clear practical interest.

Here, we consider only the case in which the simulations

at θ1, . . . ,θm are generated independently. We assume,

throughout the remainder of this section, that d = 1, Θ =
[0,1], and c is fixed. We also assume that, for any θ ∈
Θ, αc(θ) is unbiased for α(θ), so that Eαc(θ) = α(θ).
Consistency and asymptotic behavior of the minimizer α̃c(θ)
of (3) were investigated by Brunk (1970) and presented

below. Define α̃c(·) by the linear interpolation of α̃c(θi),
i = 1, . . . ,m, between two adjacent points.

Theorem 5 Assume that α(·) is continuous and

σ2(·) , var(αc(·)) is bounded. Then, for any 0 < a < b < 1,

P

(
lim

m→∞
sup

bamc≤ j≤bbmc

|α̃c( j/m)−α( j/m)| = 0

)
= 1.

Theorem 6 Let θ j = j/m, j = 1, . . . ,m and θ0 be

fixed. Suppose that (α2
c (θ) : θ ∈ [0,1]) is a uniformly inte-

grable family of rv’s. Suppose that σ2(·) and the derivative

α ′(·) of α(·) are continuous in a neighborhood of θ0. Then

( 2m

σ2(θ0)α ′(θ0)

) 1

3

(α̃c(θ0)−α(θ0))

converges in distribution to the slope at 0 of the greatest

convex minorant of W (t)− t2 where W is a standard two-

sided Brownian motion originating from 0.
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6 NUMERICAL RESULTS

In this section, we investigate the performance of our pro-

posed isotonic estimator in the setting of a simple queueing

model. Specifically, we let α(θ) = EW∞(θ), where W∞(θ)
is the steady-state waiting time (exclusive of service) in

M/M/1 queue with first in/first out (FIFO) queue discipline,

unit arrival rate, and service rate equal to θ . For this model,

α(θ) =
1

θ(θ −1)
;

clearly, α(·) is strictly decreasing in θ . We consider two

different computational strategies. In the first, a total of

r customers is simulated across the m points, with r/m

customers per point. With an equal number of customers

per point, we can easily apply common random numbers

in this setting (by using the same sequence of inter-arrival

times across all values of θ , and by using a scaled version

of a single service time sequence, scaled so that the mean

service time at θ is 1/θ ). For this simple model, the use of

common random numbers forces α(·) to be automatically

monotone, so that the isotonic estimator, as applied to the

common random numbers simulation output, coincides with

the common random numbers estimator. So, let estimator

1 be the estimator of α(·) when common random numbers

are applied with r/m customers per point. Estimator 2

is the conventional estimator of α(·) when independent

simulations are conducted at each point (with r/m customers

per point). Estimator 3 is the isotonic estimator of α(·)
obtained from estimator 2. The diagonal sample covariance

matrix Γc of A2 is obtained by using the regenerative

variance estimator at each θ value; see Bratley et al. (1987)

for details.

The second computational strategy recognizes that the

computation of α(θ) increases in difficulty as θ decreases

to 1, and allocates the computational budget accordingly.

Because of the unequal sample sizes across the differing θ
values, common random numbers can no longer be applied.

To determine the appropriate number n(θ) of customers

to simulate at service rate θ , we note that Whitt (1989)

suggests choosing n(θ) in proportion to θ2(1− 1/θ)−2.

Hence, we select

n(θi) =
rθ2

i (1−1/θi)
−2

∑m
j=1 θ2

j (1−1/θ j)−2
.

Estimator 4 is the conventional estimator in which n(θi)
customers are independently simulated at each θi, 1≤ i≤m.

Estimator 5 is the isotonic version of estimator 4 (Γc obtained

using the regenerative variance estimator).

To measure the accuracy of the above estimators, we

compute the normalized root mean square error (NRMSE)

for each estimator at each θ value. The NRMSE was

obtained by generating 600 independent replications of our
270
five estimators, each computed with a total of r = 10843
customers suitably allocated across the ten different θ values

1.1,1.2, . . . ,2.0. The NRMSE for a particular estimator at

a given θ value is its sample root mean square error RMSE

divided by α(θ). Table 1 lists the NRMSE values for the

five estimators at each of the ten different θ values. We

include the maximum NRMSE value across θ (MNRMSE)

as a summary statistic that characterizes each estimator’s

performance.

The table shows the superior performance of the isotonic

versions (estimators 3 and 5) of estimators 2 and 4 across a

wide range of θ values. Also, estimator 5 has the smallest

MNRMSE. Finally, it should be noted that estimators 1, 2,

and 3 exhibit a significantly broader range of NMRSE values

than do estimators 4 and 5, in large part because the equal

allocation of computational effort across θ undersamples

those values of θ corresponding to the M/M/1 queue in

“heavy traffic”.

Table 1: NRMSE and MNRMSE for Estimator 1–5

NRMSE

θ 1.1 1.2 1.3 1.4 1.5

Estimator 1 0.521 0.377 0.301 0.257 0.225

Estimator 2 0.465 0.369 0.288 0.271 0.222

Estimator 3 0.461 0.304 0.229 0.194 0.177

Estimator 4 0.286 0.308 0.301 0.335 0.303

Estimator 5 0.285 0.275 0.248 0.232 0.210

NRMSE MNRMSE

1.6 1.7 1.8 1.9 2.0

0.204 0.189 0.179 0.171 0.165 0.521

0.185 0.185 0.169 0.171 0.163 0.465

0.150 0.147 0.138 0.128 0.132 0.461

0.255 0.268 0.246 0.260 0.228 0.335

0.188 0.191 0.177 0.179 0.179 0.285
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