
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

COMPUTING WORST-CASE TAIL PROBABILITIES IN CREDIT RISK

Soumyadip Ghosh

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598, U.S.A.

Sandeep Juneja

Tata Institute of Fundamental Research

Homi Bhabha Road, Colaba

Mumbai, MH 400005, INDIA
ABSTRACT

Simulation is widely used to measure credit risk in port-

folios of loans, bonds, and other instruments subject to

possible default. This analysis requires performing the dif-

ficult modeling task of capturing the dependence between

obligors adequately. Current methods assume a form for the

joint distribution of the obligors and match its parameters to

given dependence specifications, usually correlations. The

value-at-risk risk measure (a function of its tail quantiles)

is then evaluated. This procedure is naturally limited by the

form assumed, and might not approximate well the “worst-

case” possible over all joint distributions that match the

given specification. We propose a procedure that approx-

imates the joint distribution with chessboard distributions,

and provides a sequence of improving estimates that asymp-

totically approach this “worst-case” value-at-risk. We use

it to experimentally compare the quality of the estimates

provided by the earlier procedures.

1 INTRODUCTION

A remarkable increase in interest has been observed in the

past few years in methods that analyse credit related risk. An

accurate knowledge of the risk involved in the credit portfolio

of a financial institution helps it understand and choose an

appropriate risk trading, hedging and transferring strategy.

Developments in banking supervisions, for instance the

Basel accords (Basel Committee 2002), now require better

analysis and management of credit risk.

Monte Carlo simulation is amongst the most widely

used risk assessment tools. The basic principle remains

the same as in other applications: a number of possible

scenarios of the values of the portfolio are sampled from an

appropriately chosen model and the desired risk measure,

most commonly the value-at-risk, is then calculated. The

value-at-risk measure captures the likelihood of multiple

defaults occurrences resulting in large losses (Section 1.1

provides a formal definition).
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Portfolios consist typically of a large (∼ 200− 250)

collection of obligors who have been extended credit in

some form or the other. One of the fundamental problems

in this context is that of modeling the dependence within a

portfolio adequately. A popular framework used to model

the risk of a credit portfolio assumes that the portfolio

value is driven by latent variables that represent individual

obligor credit values. The dependence between the obligors

can be captured in their joint distribution, for instance by

representing the latent variables in terms of common factors

like various macro-economic or industry-specific effects.

The normal copula model which assumes that the obligor

credit values follow a multivariate normal distribution is

one of the most widely used models in practice. It is the

basis of the Importance-Sampling based risk assessment

methods constructed in Glasserman and Li (2005), and

finds application in many popular risk management tools

such as J.P. Morgan’s CreditMetrics (Gupta et al. 1997)

and Moody’s KMV system (Kealhofer and Bohn 2001).

Recent empirical work has shown that in certain in-

stances a significant co-movement of obligor values can be

observed (Mashal and Zeevi 2003). This leads Glasserman

et al. (2002) and Bassamboo et al. (2007) to consider

joint distributions with fatter tails that allow extremal de-

pendence (intuitively, this means that obligors can take on

large losses with non-negligible probability). These include

the multivariate t-distribution.

The distributional forms assumed above are customized

for a specific instance of a portfolio by finding appropri-

ate values for its parameters that match certain dependence

measures. The dependency is often assumed given as a

set of pairwise correlation values. These methods can thus

be considered within a common framework where a risk

measure (which is a function of the joint distribution of the

obligors) is evaluated or estimated for different joint distri-

butions that match the same set of specifications, namely

marginal distributions of each obligors and a matrix of

pairwise correlations.
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The normal- and t-copula based methods can thus pro-

duce risk estimates that differ for the same base marginals

and correlations. Choosing between these estimates can be

tricky since the nature of the difference will depend on the

risk measure and correlation values. Our contention here is

that in a risk analysis setting knowledge of the “worst-case”

is more important, and these estimates may not be close to

the worst-case value of the risk measure. This is because

the strong structural assumptions made by these methods

prevent them from fully “maximizing” the impact of the

risk.

We present an alternate approach that drops all structural

assumptions on the joint distribution beyond the marginals

and second moments. Section 1.1 gives the formal statement

of the value-at-risk problem we study, and Section 1.2

discusses our contributions.

1.1 Formal Definition

A financial institution maintains a portfolio of credits it has

extended to d obligors through various financial instruments

that include loans, corporate bonds, etc. We are interested in

evaluating the chance that the loan portfolio defaults after a

preset time period, that is, its value falls below a threshold.

Let Xi represent the value of the ith obligor at maturity, and Fi

its distribution, henceforth termed its marginal distribution.

We model the joint behaviour of the obligors by matching

the joint distribution of the random vector X = (X1, . . . ,Xd)
with the given set of marginals and a covariance matrix Σ.

The (i, j)th element of this matrix represents the Pearson

product-moment covariance between the two components

Xi and X j, defined when E(X2
i +X2

j ) < ∞, and is given by

Σ(i, j) = Cov(Xi,X j) = EXiX j −EXiEX j.

The ith obligor individually defaults if the value of her

instrument is below the threshold vi, where vi is the pth
i

quantile of Fi, i.e., Fi(vi) = pi, ∀i = 1, . . . ,d. The values

pi are pre-determined or fixed. Let ei represent the loss

incurred by the portfolio manager if obligor i defaults.

This may be a discounted value of the loan provided her.

We are interested in obtaining an accurate estimate of the

value-at-risk quantity

R(u)
4
= max

µ∈F
µ (L > u) , (1)

where

L
4
=

d
∑

1

eiI(Xi ≤ vi), the loss function (2)
247
F 4
= { all probability measures µ :

µ(i) = Fi,∀i = 1, . . . ,d, (3)

and Cov(µ) = Σ }, and

I(A) = 1 if event A is true, and 0 otherwise.

The set F is closed; the argument in the proof of

Theorem 3.1 can be modified to provide this result. Hence

the maximum in (1) makes sense.

1.2 Contributions

Our approach models the joint distribution of the obligor-

values Xi as a chessboard distribution. Section 2 gives a

brief primer on this class of distributions. A sequence of

specially formulated linear programs are solved to obtain

estimates for the R(u). The estimation procedure is described

in Section 3. The primary result of interest (Theorem 3.1)

shows that as the size of the linear program gets large,

the estimate values asymptotically approaches R. Thus, this

procedure provides estimates that approach the true maximal

value of R(u) as defined in (1).

Our primary aim in this study is to show that structural

assumptions on the joint distributions can have a pronounced

effect on the value-at-risk approximations. Towards this

end, we perform the numerical experiments described in

Section 6. These compare the estimates from the earlier

methods against those obtained from our procedure to see

how accurate the methods are in providing estimates of the

quantity R. The results of these tests will be presented at

the conference.

This procedure can conceivably be used as an alternate

method to estimate the value-at-risk R(u). The approximat-

ing linear programs (Section 3) however get harder to solve

with the parameter d since the sizes of these programs grow

very quickly with d. So, while credit-portfolios consist typi-

cally of hundreds of obligors, solving them exactly for values

higher than say d ≥ 20 may not be advisable. However, the

chessboard LPs have a very specific structure which can be

exploited to obtain approximations of high quality. Specif-

ically they are also known as axially symmetric multi-index

transportation problems (A-MITPs) with additional con-

straints (Queyranne and Spieksma 2001). Efficient approx-

imation algorithms are available for A-MITPs (Queyranne

and Spieksma 1997), and extending these to handle addi-

tional constraints is an avenue being actively pursued by

the authors.

Section 4 discusses how another aspect of risk analysis

of large-portfolios can provide some respite when applying

our proposed procedure. Essentially, large portfolios are

assumed to consist of groups of homogeneous obligors (de-

fined in Section 4). The structure of chessboard distributions

then allows us a simplification that can roughly be thought

of as replacing an entire group of homogeneous obligors
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with a single representative, thus reducing the overall di-

mension of the chessboard LP. This simplification is tested

in the results in Section 6.

2 CHESSBOARD DISTRIBUTIONS

Chessboard distributions were introduced in Ghosh and Hen-

derson (2002) where they were used to determine whether

a specified product-moment covariance matrix is feasible

for a given set of marginals. We shall illustrate the con-

struction of chessboard distributions for a 3−dimensional

random vector X = (X1,X2,X3) with marginal distributions

that have densities. These requirements are only for nota-

tional convenience; the results can be extended to include

all marginal distributions with finite second moments, and

extend transparently to higher dimensions.

Suppose we wish to construct a chessboard distribution

for X such that each of the marginals has a density fi and

finite variance. Furthermore, let domain dom(Fi) of the

marginal Fi be the entire real line (the method is easily

tailored for semi-infinite or finite dom(Fi)).
Let

{yn
i, ji

: i = 1,2,3, ji = 1, . . . ,m(n)}

be a set of points (not including ±∞) that divide the dom(Fi)
into m(n) sub-intervals. We shall occasionally drop the

super-script n when the contexts allows us the freedom. Let

M−
i and M+

i represent the leftmost and rightmost finite points

respectively. Thus, if Xi were exponentially distributed,

M−
i = yi,1 = 0, and M+

i = yi,m(n).

The range can be divided in any manner, as long as

the points satisfy two conditions. First, the internal mesh

becomes dense, i.e.,

lim
n→∞

sup
i, ji

|yn
i, ji

− yn
i, ji−1| = 0. (4)

Second, the end-points should satisfy

min
i

|M±
i | →∞ as n →∞. (5)

These conditions are satisfied for the general case of

marginals with dom(Fi) = (∞,+∞) by a choice of grid-

points

G(n) = {yn
i, ji

= −1

2

√
n+

ji −1√
n

: (6)

i = 1,2,3, ji = 1, . . . ,n+1}.

Here, |M+
i | = |M−

i | = 1
2

√
n. In the sequel, we will

work on the grid is G(n). Let y(v) be the grid-point nearest

to the point v = (v1, . . . ,vd) of individual default thresholds.
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We shall perturb the grid by (v− y(v)) so that the grid

contains the point v. In what follows, we shall then assume

that G(n) represents the grid defined in (6) perturbed by

(v− y(v)).
For 1 ≤ j1, j2, j3 ≤ n+1 define cell C( j1, j2, j3) to be

the ( j1, j2, j3)th rectangular region

{x = (x1,x2,x3) : yi, ji−1 < xi ≤ yi, ji , i = 1,2,3}∩<3.

Let q( j1, j2, j3) = P(X ∈C( j1, j2, j3)) to be the prob-

ability that the constructed random vector appears in the

( j1, j2, j3)th cell. The chessboard distribution is defined

so that within each cell the components of X are inde-

pendent and distributed according to the desired marginals

f1, f2, f3 restricted to the cell C( j1, j2, j3). Let pi,k = P(Xi ∈
(yi,k−1,yi,k]) be the probability that the ith marginal random

variable lies in the kth sub-interval. The density f (x) of X

evaluated at x ∈C( j1, j2, j3) is then given by

q( j1, j2, j3)
f1(x1)

p1, j1

f2(x2)

p2, j2

f3(x3)

p3, j3

. (7)

To be consistent with the given marginals, the q( j1, j2, j3)
values must satisfy the constraints

n
∑

j2, j3=1

q( j1, j2, j3) = p1, j1 , j1 = 1, . . . ,n+1

n
∑

j1, j3=1

q( j1, j2, j3) = p2, j2 , j2 = 1, . . . ,n+1 (8)

n
∑

j1, j2=1

q( j1, j2, j3) = p3, j3 , j3 = 1, . . . ,n+1

q( j1, j2, j3) ≥ 0 1 ≤ j1, j2, j3 ≤ n+1.

Theorem 2.3.1 in Ghosh (2004) asserts the following.

Theorem 2.1 If q satisfies the constraints (8), and

X is constructed with the chessboard density f defined in

(7), then X has the desired marginals Fi.

Ghosh and Henderson (2002) give a procedure to find

a chessboard distribution that matches desired values Σ of

the product-moment covariance matrix Σch of the chess-

board density (7). Chessboards, by construction, have the

right marginals, and the diagonal elements of the covari-

ance matrices Σ and Σch are determined by the marginal

distributions. So only the upper diagonal elements of the

(symmetric) correlation matrix have to be matched. Match-

ing correlations using chessboards is advantageous because

the correlations Σch(i, j) induced by the chessboard density

can be written as a linear function of the q(·)s. Specifically,

Σch(1,2) =
∑

j , j , j

γ1, j1γ2, j2q( j1, j2, j3)−EX1EX2, (9)
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where, for 1 ≤ i ≤ 3 and 1 ≤ m ≤ n,

γi,m = E[Xi|Xi ∈ (yi,m−1,yim]] (10)

is the conditional mean of Xi given that it lies in the mth

sub-interval (which is determined by its marginal density

fi). Thus the differences |Σch(i, j)−Σ(i, j)| too are linear

functionals of the q(·)s. The correlations can be matched

by minimizing the difference r(Σch,Σ), subject to the con-

straints (7), where

r(Σch,Σ) =
∑

1≤i< j≤3

∣

∣

∣
Σch(i, j)−Σ(i, j)

∣

∣

∣
. (11)

These linear programs can be augmented with upper

bounds on the value of the objective function via bounds

of the form

∣

∣

∣
Σch(i, j)−Σ(i, j)

∣

∣

∣
≤ Bn(i, j). (12)

Ghosh (2004) show that bounds B(i, j) can be constructed

such that with great generality they obey Bn(i, j) → 0 as

n →∞.

Ghosh and Henderson (2002) use chessboard LPs aug-

mented with the (12) bounds to investigate the feasibility

of correlation matrices. A correlation matrix is feasible

for a given set of marginals if a joint distribution function

exists with these marginals and correlation values. The

augmented LPs help Ghosh (2004) show in Theorem 2.3.5

that for almost any (in a precise probabilistic sense) fea-

sible covariance matrix Σ there exists a finite n such that

the corresponding linear program (11) augmented with the

bounds (12) has an optimal value of 0. Additionally, The-

orem 2.3.2 in Ghosh (2004) gives that a covariance matrix

is infeasible for the given marginals if, and only if, the

augmented chessboard LP is infeasible for some n ≥ 1.

Our objective here is to maximize the value-at-risk

probability in (1). We shall provide in Section 3 a linear

program formulation to estimate R(u) that shall use the den-

sity function equations (8) and the correlation bounds (12).

But first we provide some additional information on these

bounds and a proposition we shall require for the proof of

the asymptotic consistency in Theorem 3.1.

2.1 Bounds on the Covariances

Bounds Bn(i, j) are derived by first supposing that there

exists a random vector X̃ with the prescribed covariance

matrix Σ. We can then redistribute the probability mass of

its distribution within cells (thus keeping the cell probability

masses constant) so that the conditional density given a cell

is one of independent random variables with the desired

marginals, that is, it follows the chessboard pattern. Let X

denote a random vector with the redistributed probability
249
mass. We provide a bound on the change in covariance due

to this redistribution. This gives the bound (12).

We have for G(n) that |M−
i | = |M+

i |4=Mi = 1
2

√
n. Let

C(n) represent the the part of the support of X (and X̃)

bounded by the rectangle [−M1,M1]× [−M2,M2]. As per

our notation, C = C(n) is given by the collection of cells

C( j1, j2, j3) with indices j1 and j2 ranging over 2, . . . ,n−1.

The absolute change in covariance due to the redistribution

operation, |EX1X2−EX̃1X̃2|, is bounded above by the sum:

≤
∣

∣E[X1X2− X̃1X̃2|C}]
∣

∣ (13)

+
∣

∣E[X1X2− X̃1X̃2|Cc}]
∣

∣ . (14)

Ghosh (2004) show how the second term (14), which

includes cells of infinite length, can be bounded by terms

that approach 0 as n →∞. For the proof of the chief result

Proposition 2.2 in this section, it will be sufficient to note

that this bound has the form

≤ 2 E[X2
1 I{|X1| >

1

2

√
n} ]

1/2

E[X2
2 ]1/2 (15)

+ 2 E[X2
2 I{|X2| >

1

2

√
n} ]

1/2

E[X2
1 ]1/2.

Since the variances of all components of X are finite, the

bound approaches 0 as n →∞. The bound is independent

of the q(·)s, and the rate at which it vanishes depends on

the tail behaviour of the marginal distributions.

The first term (13) represents the change due to the

redistribution operation in a compact part C of the support.

This can be strongly bounded in a fashion similar to that

used in Ghosh and Henderson (2002). For the compact

region, observe that

E[X1X2−EX̃1X̃2|C] = (16)

n−1
∑

j1, j2, j3=1

{

(γ1, j1γ2, j2 −E[X̃1X̃2|X̃ ∈C( j1, j2, j3)]
}

× q( j1, j2, j3),

where γi,m is defined as in (10). But

y1, j1−1 y2, j2−1 ≤ E[X̃1X̃2|X̃ ∈C( j1, j2, j3)] ≤ y1, j1 y2, j2 .
(17)

Combining (16) with (17) we get the bounds

E[X1X2−EX̃1X̃2|C] (18)

≤
n

∑

j1, j2, j3=1

q̃( j1, j2, j3)(γ
n
1, j1

γ
n
2, j2

− yn
1, j1−1 yn

2, j2−1)

≥
n

∑

j1, j2, j3=1

q̃( j1, j2, j3)(γ
n
1, j1

γ
n
2, j2

− yn
1, j1

yn
2, j2

).
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The super-scripts n have been included to emphasize the

dependence on the discretization parameter n. Now, for the

gridG(n), γn
i, ji

−yn
i, ji−1 ≤ 1√

n
. An easy calculation yields that

the upper bound (18) is of O( 1√
n
), and a similar result holds

for the lower bound. In general, the terms on the right hand

of the bounds in (18) are O(|yn
i, ji

− yn
i, ji−1|). Assumption

(4) then ensures that these approach 0 as n →∞.

Putting together the bound (18) with (13), and the bound

in (15) with (14) then gives us a bound Bn(i, j) on the

difference |Σch(i, j)−Σ(i, j)|. By the properties observed

above, the rate at which Bn(i, j) approaches 0 depends on the

rates of the convergences in (4) and (15), and is equal to the

slower of the two. For instance, if the marginal distributions

have an exponential tail, then the terms from (15) also decay

exponentially, and the correlations that satisfy (12) differ

from Σ by no more than O( 1√
n
). On the other hand, if

the marginal distributions have a fat tail, for instance they

decay at a rate ∼ x−(2+ε), then the terms in (15) dominate,

with a decay rate of n−ε/2.

The preliminary result described next will be needed in

the main result Theorem 3.1. For each n≥ 1, let M(n,Σ) be

the collection of all chessboard density functions constructed

on grid G(n) that match the given marginals and satisfy the

bounds (12) for a target correlation matrix Σ.

Proposition 2.2 Suppose the mass of a chess-

board density µ4n ∈M(4n,Σ) (defined over G(4n)) is re-

distributed as described earlier in this section over the grid

G(n) to form a chessboard µn. Then, µn ∈M(n,Σ).
Thus, a chessboard on a finer grid G(4n) that satisfies

the tighter constraint on its correlation (but does not exactly

match Σ) can be re-distributed over a coarser grid G(n)
such that the new distribution satisfies the corresponding

relaxed bound.

Proof: Let qn and Σn represent the chessboard param-

eters and covariance matrix of µn, and Σ4n the covariance

matrix corresponding to µ4n. We need to show that the

covariance differences Σn(i, j)−Σ(i, j) are bounded above

by the values in (12). We will show this is true for the

(1,2)−element; the proof for the other elements is identical.

Condition, as before, on parts C(n) and Cc(n) of the grid

G(n) to get

|Σn(1,2)−Σ(1,2)| ≤ {|Σn(1,2)−Σ(1,2)| |C(n)}
+ {|Σn(1,2)−Σ(1,2)| |Cc(n)} .

The part conditioned on Cc(n) is bounded above by the terms

in (15). These depend only on the marginal distributions of

µn, and hence by construction the distribution µn matches

the Cc(n) part of Bn(i, j) in (12). Split the difference in the
250
C(n) term into

{Σn(1,2)−Σ(1,2)|C(n)}
≤

{

Σn(1,2)−Σ4n(1,2)|C((n)
}

+
{

Σ4n(1,2)−Σ(1,2)|C(n)
}

.

The first term in this split evaluates to

E[Xn
1 Xn

2 −EX4n
1 X4n

2 |C(n)] =
n−1
∑

j1, j2, j3=1

{

(γn
1, j1

γ
n
2, j2

−E[X4n
1 X4n

2 |X4n

∈Cn( j1, j2, j3)]
}

× qn( j1, j2, j3).

The compact region C(n) is contained within the compact

region C(4n) of grid G(4n), and the cells of G(4n) fit neatly

within the cells of G(n) with sides exactly half in length.

Moreover since µ4n is a chessboard distribution on G(4n),
the conditional moments of the distribution µ4n on the cell

Cn( j1, j2, j3) of grid G(n) satisfy

E[X4n
1 X4n

2 |X4n ∈Cn( j1, j2, j3)] ≥ γ
4n
1,2 j1−1 γ

4n
2,2 j2−1

≤ γ
4n
1,2 j1

γ
4n
2,2 j2

. (19)

The distribution µ4n also satisfies the 4n−version of the

upper bound (18) because of its membership in M(4n).
Combining (19) with this 4n-version ofB4n(1,2) in (18) we

see that the expression {Σn(1,2)−Σ(1,2)|C(n)} can indeed

be bounded by the n-version Bn(1,2). An analogous proof

for the lower bound thus gives us the result. 2

3 A CHESSBOARD FORMULATION

The theory developed for the chessboard distributions can

be modified for our objective of estimating the maximal

value-at-risk probability R(u) in (1). Split the region IRd

into 2d rectilinear sets St aligned to the standard axes and

centered at v = (vi, . . . ,vd). (Recall that the threshold vi is

the value below which the obligor i defaults.) The parts St

are indexed by

t = {ti = I(xi ≤ vi), ∀i = 1, . . . ,d,}. (20)

Let S(u) = {St :
∑d

1 eiI(xi ≤ vi) > u ∀x ∈ St}. The union

S(u) is the region of interest in evaluating the func-

tion L in (1). Observe that since v is a grid point in

G(n), each rectilinear set St and the region S(u) con-

sists of a collection of cells Cn( j1, j2, j3) each included

in its entirety. Denote the collection of cells in St as

Jn
t (u) = {( j1, j2, j3) : Cn( j1, j2, j3) ⊆ St(u)}, and the col-

lection Jn(u) =∪t:St⊆SJn
t (u). We solve a sequence of linear
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programs that find

Rn(u) = max
q

∑

Jn(u)

qn( j1, j2, j3) (21)

such that qn’s satisfy the constraints (8) and the n−version

covariance bounds in (12). Stated in other terms, the ob-

jective function (21) is maximized over the feasible set

qn ∈M(n,Σ). The chief advantage of this formulation is

that the estimates produced approach the true maximum

R(u) as n grows. Specifically, we have the following.

Theorem 3.1 Suppose Σ is a feasible covariance

matrix. Then the sequence of optimal objective values

{Rn(u),n ≥ 1} of the LPs (21) obey

Rn(u) → R(u) as n → 0.

The feasibility of the correlation matrix Σ can be de-

termined by the chessboard procedure of Ghosh (2004) in

Chapter 2.

Proof of Theorem 3.1: Since Σ is assumed feasible,

there exists a chessboard density of finite n0 that matches

the matrix Σ exactly(Ghosh and Henderson 2002). For

any large N ≥ n0, we shall show that the optimal objective

value Rn(u)→ R(u) along the sub-sequence {nk = 4kN,k =
0,1,2, . . .}. Every n ≥ n0 belongs to such a sub-sequence

(either as a 4k-multiple or as a seed N for such a sequence),

and thus any arbitrary sub-sequence of {Rn(u),n ≥ n0} has

R(u) as its limit. This, along with the fact that the sequence

is bounded (trivially by {0,1}), leads us to conclude that

Rn(u) → R(u) as n →∞.

Consider the fixed sub-sequence {nk} defined above.

Let µnk represent the chessboard density determined optimal

for the LP (21) of size nk. Each µnk is the distribution of

a random vector with marginals possessing finite second

moments. Hence, the sequence {µnk : k ≥ 1} is tight, and by

Theorem 29.3 on p. 392 of Billingsley (1986), it possesses a

weakly convergent sub-sequence {µnk(l) : l ≥ 1}, converging

to µ say.

Now, µ has the right marginals. This follows from the

Mapping theorem (Theorem 29.2, p. 391 of Billingsley 1986)

since each µnk(l) has the marginals we desire, µnk(l) ⇒ µ

as k → ∞, and the projection map π j : IRd(d−1)/2 → IR

that returns the jth coordinate of a vector in IRd(d−1)/2

is continuous. The marginals are assumed to possess a

density. This means that no point masses are allowed in the

marginals and so no mass is placed on the boundary of the

axis-aligned rectilinear region S(u). The set S(u) is then

µ−continuous, and

lim
l→∞

Rnk(l)(u) = lim
l→∞

µ
nk(l)(S(u)) = µ(S(u)). (22)
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If Cnk is the covariance matrix of the distribution µnk , then

d−1
∑

i=1

d
∑

j=i+1

|Cnk
i j −Σi j| → 0

as k →∞. This follows from the bounds B(i, j) described

in the preceding section.

Finally, if Xnk(l) has distribution µnk(l), then

(X
nk(l)
i X

nk(l)
j : l ≥ 1) is uniformly integrable. To see this,

note that (let m = nk(l))

sup
m

E [|Xm
1 Xm

2 I {|Xm
1 Xm

2 | > K}|]

≤ sup
m

E
[

|Xm
1 Xm

2 | I
{

|Xm
1 | >

√
K

}

+ |Xm
1 Xm

2 | I
{

|Xm
2 | >

√
K

}]

This holds because, for any two positive numbers x and y,

{xy > K} ⊆ {max{x,y} >
√

K} ⊆ {x >
√

K}∪{y >
√

K}.

An argument along the lines of those given in Section 2.1

in the context of the bounding expression in (15) shows

that the expression on the right side converges to 0 as

K →∞. This establishes the uniform integrability result. It

immediately follows (Theorem 25.12 in Billingsley 1995)

that the covariance matrix Λ of µ is given by

Λ = lim
k→∞

Cnk = Σ.

Thus, µ has the required marginals and covariance matrix.

In other words, µ ∈ F , where F is defined as in (3).

For any distribution in F that achieves the maximum

R(u), observe that this distribution can be rearranged (in the

fashion described in Section 2.1 to derive the bounds (12))

to obtain a feasible solution for each of the LPs (21) of size

n. Thus, the optimal values Rnk(l)(u) ≥ R(u) ∀l, and this

in conjunction with (22) and the fact that the limit µ ∈ F ,

gives us that Rnk(l)(u) → R(u) = µ(T (u)).
Proposition 2.2 tells us that the optimal chessboard

found over the grid G(4n) is a feasible solution to the

LP (21) over the grid G(n). Thus, Rnk(u) ≥ Rnk+1(u) for

each k. Since the sequence {Rnk ,k = 0,1,2, . . . ,} is bounded

and decreasing, it converges to the limit R(u) of its sub-

sequence {Rnk(l)}. This concludes the proof. 2

The chessboard based R(u)-estimating procedure in-

volves two computational steps. The first is performed

once at the beginning of the estimation procedure and com-

putes the collection of indices t that make up S(u). This

determines the collection of indices Jn(u) for each n. The

second involves iteratively solving the LP (21) for larger

values of n.

The collection S(u) is found by exploring the 2d com-

binations of the type in (20), but this computation can
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potentially take an exponential (in d) number of steps in

the worst case scenario. The computation can however be

speeded up for many cases, and we expect it to perform rea-

sonably on average. First note that only distinct values of vi

need be considered: the indices of form t = (t1, . . . , ti, . . . , td)
included in S(u) will be identical for obligors k and l if their

default losses satisfied vk = vl . The computation can also

be made less intensive by ordering all obligors i by their

(unique) default sizes vi and then exploring the possible

combinations in (20) in a depth-first fashion.

The second major computational step consists of solving

the chessboard LP (21) iteratively for increasing n to obtain

increasingly accurate estimates of R(u). Theorem 3.1 shows

that the estimates provided are always larger than the true

maximal value. Thus, a conservative estimate of the worst-

case value-at-risk is obtained from the approximation for

any n. These LPs have an nd number of variables, and

thus the size of the LP can grow fast with n. One would

ideally like to avoid iteratively solving the LP (21) by being

able to choose a value of n that will yield a sufficiently

accurate estimate of R(u). The chessboard distributions

constructed by the LP of size n might match the covariance

Σ only approximately (i.e., only satisfy (12)), but are within

a calculable bound from Σ (refer to Section 2.1). Thus, a

result on the nature of R(u) with regards to the Σ values

(continuity, differentiability, etc.) would help predict an

appropriate value of n. We are working towards such

results, but have no such to present as of this writing.

4 HANDLING LARGE PROBLEMS

The linear program based estimation procedure of Section 3

is increasingly harder to run with the parameter d, since

the sizes of these linear programs grow very quickly with

d. So, solving LPs in their naive formulation for large

portfolios typically with hundreds of obligors will not be

possible. One approach to get around this problem is to re-

formulate the LP (21) as an axially symmetric multi-index

transportation problem (Queyranne and Spieksma 2001) with

additional constraints, and then leverage this specialized

structure to provide high quality approximations of the

optimal objective value. The approximation procedures

available in the literature (Queyranne and Spieksma 1997)

have to be tweaked to handle the extra constraints in (12)

and we are actively pursuing this avenue.

Another aspect of these large-portfolio problems pro-

vides some respite from this curse of dimensionality. Port-

folios are often analysed by first identifying and grouping

together homogeneous obligors with very similar charac-

teristics; see Glasserman and Li (2005) and Bassamboo,

Juneja, and Zeevi (2005). The aggregation is performed

for instance by classifying all obligors that belong to the

same credit rating in an industry tracking index as homo-
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geneous. Suppose K such groupings are formed. As per

this assumption, we shall define:

Definition 4.1 Homogeneous obligors

1. Follow the same marginal distributions Fk for each

group k = 1, . . . ,K,

2. Default with the same probability pk and thus share

the same default threshold vk,

3. Induce an identical loss ek for the creditor if they

default,

4. Are correlated with value σ(k) with fellow homo-

geneous obligors in the group k, and

5. Are correlated with value σ(k, l) with each obligor

in group j, ∀ k, j = 1, . . . ,K.

This has many implications on the structure of the estima-

tion procedure. First, since the marginals and the default

thresholds are the same for homogeneous obligors, the S(u)
enumeration step essentially becomes a search over K values

of vk, reducing the complexity from being an exponent of

d to that of K (presumably << d).

Second, all homogeneous obligors have symmetric cor-

relation relations, and thus the correlation matrix has large

blocks with identical values. Since the exact ordering of the

homogeneous obligors within the group does not change the

formulation (21) we need consider only feasible solutions q

that are symmetric with respect to each set of homogeneous

obligors.

To see why, consider the 3−d case where variables X2

and X3 share a homogeneous correlation structure. Suppose

q′ is an optimal solution to the LP (21). Then an alternate

optimal solution q′′ can be obtained by simply re-ordering

each q′′( j1, j2, j3) = q′( j1, j3, j2). In other words, a sym-

metric solution q̄ = (q′ + q′′)/2 can also be identified for

each optimal q′.
Thus, one can set large blocks of the variables q to be

equal in value, which reduces the effective dimension of the

LP (21) from d to K. This homogenization-based simplified

procedure is the one tested in the results in Section 6.

5 OTHER CREDIT RISK MEASURES

The value-at-risk measure treated in Section 3 is insensitive

to the magnitude of loss incurred due to mass defaults.

Certain other credit-risk measures have been proposed in

the literature to provide an idea of this magnitude. Chief

amongst these is the expected shortfall metric (Bassamboo

et al. 2005) which weighs large losses by their magnitude.

It is defined as the expected excess loss conditioned on the

event that the loss exceeds a large threshold. Suppose the

loss L associated with a credit portfolio is modeled as in (2).

Then, the expected shortfall at threshold u is E[L−u|L > u].
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This can be re-written as

E[L−u|L > u] =
E[(L−u)I(L > u)]

P(L > u)
=

E[(L−u)+]

P(L > u)
,

where (x)+ = max{x,0}. The denominator is the familiar

value-at-risk measure we have already treated in Section 3.

The numerator represents the expected loss in excess

of the threshold u and is arguably an interesting statistic

on its own. It is also a linear function of the qs of our

formulation. Suppose the loss L takes the (fixed) value Lt

over each St in S(u). Then

E[(L−u)+] =
∑

t:St⊆S
Lt

∑

Jn
t (u)

q( j).

This form is very similar to the objective function of the

LP (21), and in fact has the coefficients 1 replaced with

appropriate Lt . One can thus use the same LP formula-

tion (21) to maximize (minimize) the E[(L−u)+] value to

find accurate estimates of the true maximum (minimum)

over the collection F .

Similar estimates can be found for the minimum value-

at-risk. These can then be combined to obtain bounds of

the form

Emin[(L−u)+]

Pmax(L > u)
≤ E[L−u|L > u] ≤ Emax[(L−u)+]

Pmin(L > u)
(23)

Theorem 3.1 shows that the estimates provided by the

maximization (minimization) formulation are always larger

(smaller) than the true maximal (minimal) value. Thus,

valid bounds are obtained from the approximations for any

n.

Note that the true Pmin can in theory be 0, but in most

cases of interest this can reasonably be expected not to be

the outcome. For instance when the risk of large losses

beyond a high threshold u is being evaluated, and individual

obligors are durable enough to default only for low threshold

values vi we can expect the interesting subset S(u) of the

support of the joint distribution to contain the non-zero-mass

support of entire sub-intervals of certain marginals. This

then implies that Pmin has a value greater than or equal to the

mass assigned by that marginal to the relevant sub-interval,

and thus is non-zero.

6 NUMERICAL EXPERIMENTS

These numerical experiments are performed to test the qual-

ity of the estimates provided for the maximal value-at-risk

defined in (1) by methods that assume a multivariate normal-

or t−copula structure for the latent variables Xi underlying

the loss function L as defined in (2). The portfolio sizes

d are varied from 100 to 500. We start with K = 1 ho-
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mogeneous group of obligors and study how the estimate

quality changes as K is increased to 10. The homogeneous

groups are chosen with appropriately differing parameters.

The results will be presented at the talk accompanying this

article.
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