
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A COMPARISON OF SAMPLE-PATH-BASED SIMULATION-OPTIMIZATION AND
STOCHASTIC DECOMPOSITION FOR MULTI-LOCATION TRANSSHIPMENT PROBLEMS

Lei Zhao

Department of Industrial Engineering
Tsinghua University

Beijing, 100084, CHINA

Suvrajeet Sen

MORE Institute
Department of Systems & Industrial Engineering

University of Arizona
Tucson, AZ 85721, U.S.A.
ABSTRACT

Because of its applicability, as well as its generality, research
in the area of simulation-optimization continues to attract
significant attention. These methods, most of which rely
on the statistically motivated search techniques, are at their
best when very little is known about the structure of the
function (e.g., function evaluations are treated as “black-
box” function-calls). In some applications such as the one
discussed in this paper, objective function values may be
obtained through linear/network flow optimization models.
In such cases, the objective function may be convex, and in
such circumstances, very large instances can be solved using
stochastic programming techniques. This paper presents a
computational case for using such techniques, whenever
applicable.

1 INTRODUCTION

The growth of computing technology has fueled continued
growth in simulation modeling, and as a result, computa-
tionally intense activities such as simulation-optimization
has grown significantly in the past decade (e.g., Alrefaei
and Andradottir 1997, Pichitlamken and Nelson 2002). Or-
dinarily, simulation-optimization methodology is developed
for applications in which the functions being optimized are
performance measures that result from the output of a sim-
ulation model. As a result, it is customary to impose very
few restrictions on the objective function being optimized.
However, this generality comes at a price: the computa-
tional demands on algorithms which optimize very general
performance measures are significant. Moreover, without
any assumptions on the structure of the function, it becomes
difficult to ascertain whether the output of a general-purpose
optimizer is indeed optimum (up to a pre-specified toler-
ance). For some applications (e.g., multi-location transship-
ment problems), the models possess important properties
(e.g., convexity). The question that we seek to answer is
2381-4244-0501-7/06/$20.00 ©2006 IEEE
whether there are advantages to combining ideas from linear
programming with those from simulation-optimization.

It so happens, that the area of stochastic program-
ming (SP) has benefitted greatly from ideas that originally
appeared in the simulation-optimization literature. For in-
stance, stochastic quasi-gradient methods (SQG) for SP
(Ermoliev 1983), importance sampling in SP (Dantzig and
Glynn 1990), common random numbers in stochastic de-
composition (SD) for SP (Higle and Sen 1991) and others
originated in the simulation literature. Indeed the SQG algo-
rithm, which extends the scope of applicability of stochastic
approximation (SA) (Robbins and Monro 1951) to con-
strained non-differentiable optimization, is clearly familiar
in the field of simulation-optimization. Since SQG is a
generalization of SA, its application to SP is natural. Our
seemingly obvious question (whether there is any benefit to
using specialized schemes for SP) appears to have gone unan-
swered, even though the literature reports on the solution
of SP problems using both specialized and non-specialized
methods. In other words, specialized SP algorithms (such as
SD) have not been compared with general-purpose methods
to ascertain whether the former provide any clear advantages.

One of the prerequisites for this study was the exis-
tence of a class of SP instances that were studied using
simulation-optimization techniques. We were able to locate
such instances in a recent paper on multi-location trans-
shipment models in Herer et al. (2006). For the sake of
completeness, this model is summarized in the following
section. The IPA algorithm used in the above paper, and
its equivalence to SQG are also summarized in that sec-
tion. Following this, we provide a brief description of the
SD algorithm. Finally, the comparative computations are
reported in Section 4, with our conclusions in Section 5.

2 MULTI-LOCATION TRANSSHIPMENT
MODELS

This section is devoted mainly to ideas presented in the
paper by Herer et al. (2006). The system described by

Zhao and Sen
the authors arises when retailers and suppliers cooperate to
minimize collective long-run average costs. In particular,
consider one supplier, and N non-identical retailers who
face uncertain customer demands. Each retailer reviews
its own inventory periodically, and replenishes its stock by
placing orders with the supplier. The following sequence
of events describes the manner in which events unfold in
any given period.

0. Assume that initial inventory level is known.
1. Replenishments arrive (based on orders placed in

the previous period).
2. Backlogged orders are met, and then inventory level

of each retailer is raised by the difference between
replenishment quantity and backlogged orders.

3. The demand (a random variable) is observed at each
retailer.

4. Once the demand is observed, the system redistributes
its inventory by solving a reallocation problem
in which inventory held at one retailer can be
transshipped to another, at a cost.

5. Based on the inventory reallocation of step 4, each
retailer meets as much demand as possible, and
then the inventory, and backlogging quantities for
each retailer are updated. In addition, orders are
placed with the supplier.

Under certain assumptions (stationarity and non-
shortage inducing policies), Herer et al. (2006) show that
for each retailer there exists an optimal order-up-to policy si,
i = 1, ...,N, where N denotes the number of retailers. This
result forms the basis of their “LP-based” formulation which
finds the optimal decisions for any period. We summarize
this formulation here for the sake of completeness. Given
a vector of order-up-to quantities S = (s1, . . . ,sN) and a
demand realization D = (d1, . . . ,dN), the LP they formulate
is based on the following notation.

Decision Variables

• ei = ending inventory held at retailer i.
• fi = stock at retailer i used to satisfy demand at

retailer i.
• qi = inventory at retailer i increased through re-

plenishment.
• ri = amount of shortage met after replenishment

at retailer i.
• ti j = stock at retailer i used to meet demand at

retailer j, using the transshipment option.

Because Herer et al. (2006) use a network to describe
the relationships between the variables, they use a notation
that is more convenient in the network setting. Since our
intent is to simply present their formulation, we adopt a
slightly abbreviated, although equivalent notation. Accord-
239
ingly, constraints (3)-(6) of Herer et al. (2006) translate to
the following:

fi +
∑
j 6=i

ti j + ei = si, ∀i (1a)

fi +
∑
j 6=i

t ji + ri = di, ∀i (1b)

∑
i

ri +
∑

i

qi =
∑

i

di (1c)

ei +qi = si, ∀i (1d)

ei, fi,qi,ri,si, ti j ≥ 0, ∀i, j.

The vector S will be treated as a first-stage (here-
and-now) decision, whereas, the remaining variables are
determined in the second-stage, once an outcome of the
vector (of random variables) D has been observed. The
data used to define the objective is represented as follows.

Objective Function Data

• hi = unit cost of holding inventory at retailer i.
• ci j = unit cost of transshipment from retailer i to

j.
• pi = penalty cost for shortage at retailer i.

Given S and D, the minimum cost transshipment is
obtained by optimizing the following objective, subject to
(1a) - (1d):

h(S,D) = min
∑

i

hiei +
∑
i6= j

ci jti j +
∑

i

piri.

Together, the objective function and the constraints will be
referred to as problem (1). In order to obtain a policy which
minimizes average long-run costs, the vector S should be
chosen so as to solve the following

min
S≥0

E[h(S, D̃)], (2)

where D̃ denotes the vector of random demand variables.
Herer et al. (2006) suggest that it may be difficult

to solve such an optimization problem using “analytical
methods,” and instead suggest that a sample-path optimiza-
tion method such as IPA may be used to compute the
optimal order-up-to levels S. We should note that while
IPA provides valid gradient estimators for smooth objec-
tive functions, problems of the form (1) are known to be

Zhao and Sen
non-smooth (see Sen 1993), even in cases where each de-
mand random variable has a continuous distribution. Nev-
ertheless, non-smoothness of the objective function does
not render their approach untenable because the stochastic
quasi-gradient (SQG) method accommodates a non-smooth
objective function (see Ermoliev 1983 for a survey), and
therefore provides the appropriate algorithmic framework.
It is important to note that for two-stage stochastic programs
such as (2), the IPA method presented in Herer et al. (2006)
reduces to the SQG method. Accordingly, we present the
SQG method below and then establish the equivalence be-
tween the SQG method and the IPA method as in Herer
et al. (2006).

2.1 The Stochastic Quasi-Gradient (SQG) Method

Consider the optimization problem stated in (2). Because (1)
is a linear program, the value function h(S,D) is a piecewise
linear convex function, and as a result, the objective function
in (2) is also convex.

At each iteration, the SQG method uses an estimate of a
subgradient of E[h(S, D̃)] by using Monte Carlo sampling.
For a given policy Sk, the idea is to first draw M i.i.d.
samples of the random vector D̃ (denoted D1, . . . ,DM , say),
and use these realizations to solve linear programs defined in
(1), with S = Sk. Upon evaluating h(Sk,Dm), m = 1, . . . ,M,
we obtain dual vectors corresponding to each LP. That is,
for each pair (Sk,Dm), let Bk,m

i and Ek,m
i denote the optimal

dual multipliers associated with constraints (1a) and (1d),
respectively. The vector obtained by concatenating the
multipliers for all retailers will be denoted Bk,m and Ek,m.
Then, an unbiased estimate of a subgradient of E[h(S, D̃)],
denoted ξ̂ k, is given by

ξ̂
k =

1
M

M∑
m=1

(Bk,m +Ek,m). (3)

The SQG algorithm then generates a sequence of points
according to the following iterative scheme:

Sk+1 = P+(Sk−αkξ̂
k), (4)

where P+(·) denotes the projection (or positive part) of the
argument, and αk are nonnegative scalars that satisfy

αk → 0,
∑

k

αk →∞, and
∑

k

α
2
k <∞. (5)
240
2.2 The Equivalence Between SQG and IPA for the
Transshipment Problem

Let Bi, Mi, R, and Ei denote the dual multipliers of (1a) -
(1d). The dual formulation of (1) is

maximize
∑

i

siBi +
∑

i

diMi +
∑

i

diR+
∑

i

siEi

subject to Bi +Ei ≤ hi, ∀i, (6a)
Bi +Mi ≤ 0, ∀i, (6b)
Bi +M j ≤ ci j, ∀i, j, i 6= j, (6c)
Mi +R ≤ pi, ∀i, (6d)
R+Ei ≤ 0, ∀i. (6e)

Let yi denote the slack variable of (6a). The KKT compli-
mentary slackness condition requires that

yiei = 0, ∀i. (7)

As in Herer et al. (2006), let TC denote the total cost
of (2) and dTC denote the “derivatives” of the total cost TC
with respect to S. Mathematically, the function TC may not
be differentiable, but since we are mainly interested in the
connection between SQG and IPA, we follow the arguments
provided by Herer et al. (2006). In the IPA method, the
derivative dTCi is calculated as the difference between the
holding cost at retailer i, hi, and the reduced cost of ei,
which is the slackness of its dual constraint (6a), yi. Thus
we have

dTCi = hi− yi = Bi +Ei, ∀i. (8)

Strictly speaking, the “derivative” above should be replaced
by a subgradient.

When the inventory at retailer i is positive (i.e., ei > 0),
(6a) is binding due to (7). That is, yi = 0. From (8), we
have dTCi = hi. When ei is zero, dTCi = Bi +Ei = hi−yi.

By comparing the derivative calculation in (8) and the
steps iii - vi (in Algorithm 1 of Herer et al. 2006) of the IPA
method with (3) and (4) of the SQG method described above,
we conclude that the IPA method in Herer et al. (2006) is
equivalent to the SQG method we described earlier.

It can be shown that this simple algorithm (SQG) pro-
duces a sequence of iterates of S that converge in probability
to an optimal solution of (2). This method traces its roots
to the method of Robbins and Monro (1951), although sev-
eral new advances such as adaptive step sizes, primal-dual
extensions, etc. (see Sen and Sherali 1985) have been pro-
posed. However, methods of this type suffer from a serious
handicap: it is usually difficult to ascertain the quality of a
solution during the course of the algorithm, and as a result,
stopping criteria are often based on ad hoc rules.

Zhao and Sen
3 STOCHASTIC DECOMPOSITION

From the statement in (1a) - (1d), it is clear that the model
presented in (2) is a two-stage stochastic linear program
(SLP) in which the first stage seeks an optimal order-up-to
quantity, and the second stage models the cost of distribution
and inventory. Indeed, it is easy to map the multi-location
transshipment problem into the following form (a two-stage
SLP with recourse) by mapping the variables S → x and
D → ω.

min
x∈<n

f (x) := c>x+E[h(x, ω̃)] (9a)

s.t. Ax ≤ b, (9b)

where, A is m1×n1, b is m1×1, and

h(x,ω) = min
y∈<n

g>y (10a)

s.t. Wy = r(ω)−T x, (10b)
y ≥ 0 (10c)

Although two-stage SLP problems ordinarily allow ran-
domness to influence several data elements, we have re-
stricted (10) to a version that only includes randomness in
the right-hand-side r. In order to help the reader map (2)
and (1a) - (1d) to the above problem, recall that S → x
implies A =−I, and b = 0. Similarly, the vector consisting
of variables (f , t,e,r,q) in (1a) - (1d) are denoted by the
vector y above, with the constraints of (1a) - (1d) being
collected in the matrix W . Similarly, the right-hand-side
r(ω) consists of elements of the random varibales di for
rows (1b) and (1c), and 0 for the other rows of r(ω). By the
same token, the matrix T is obtained by assigning values
such that the vector T x yields the right-hand-side of (1a)
and (1d), with 0 for (1b) and (1c).

The Stochastic Decomposition (SD) algorithm (Higle
and Sen 1991, Higle and Sen 1999) was designed to solve
optimization problems of the form specified in (9) - (10).
In essence, it is an extension of Benders’ decomposition
(Benders 1962), which has come to be known as the L-
shaped method in the SP literature (Van Slyke and Wets
1969). The primary construct in these methods amounts to
creating a piecewise linear approximation of the cost-to-go
function (which is also known as the recourse function in
the SP literature). The main computational difference be-
tween SD and the earlier methods (Benders’ decomposition,
L-shaped method) is the computational effort necessary to
create a new piece (or cut) of the approximation. In the ear-
lier (traditional) approximations, one needs to evaluate the
cost-to-go function exactly for any setting of the first-stage
decision xk (in iteration k). This evaluation requires the
solution of as many instances of (10) as there are outcomes
241
in the sample space of ω̃ . Not only is such an undertaking
very computationally intensive, it also limits the applica-
bility of such decomposition algorithms to problems with
discrete random variables. Moreover, the need to solve all
these LPs, restricts the ability of the traditional methods to
instances in which the random variables are modeled using
a few outcomes. SD overcomes these limitations by intro-
ducing approximations aimed at reducing the computations
required to generate a new piece (of the piecewise linear
approximation).

At each iteration (say k), SD introduces a new sampled
outcome (ωk) into the collection of previously sampled
outcomes {ω1, . . . ,ωk−1}. At iteration k, the SD algorithm
constructs a lower bounding linear approximation of the
sample mean function

Hk(x) =
1
k

k∑
t=1

h(x,ω t). (11)

If we were to derive a Benders’ cut for this sample-mean
function we would need to generate a subgradient (as in SQG)
for each outcome h(x,ω t), t = 1, . . . ,k, at the point xk, and
then use the sample-averaging operation to obtain a linear
approximation of (11). However, obtaining a subgradient for
each outcome h(x,ω t), t = 1, . . . ,k, (at the point xk) requires
the solution of k linear programs, and as the number of
iterations increases, such a method would again require
the solution of a large number of LPs (of form (10)) in
each iteration. The SD algorithm suggests that asymptotic
convergence can be achieved without solving all these LPs.
Instead, the SD suggests that it is sufficient to solve only
one second-stage LP (10) in any iteration, provided we use
previously obtained data (on the optimal dual solutions for
(10)) to define a lower bounding approximation of h(x,ω t),
for t < k. This process is described next.

For the most recently generated outcome ωk, we eval-
uate h(xk,ωk), which involves the solution of (10) with
(xk,ωk) as inputs. Suppose that a dual optimum to this
problem is denoted πk

k . Then, the data collection process
within the SD algorithm accumulates this optimal dual vec-
tor into a set of previously discovered optimal dual vectors
denoted Vk−1. The updated set of optimal dual vectors at
iteration k is denoted Vk (i.e., Vk = Vk−1∪πk

k). Thus each
element of the set Vk is an optimal dual vector discov-
ered during the evaluation of h(xt ,ω t), t = 1, . . . ,k in each
previous iteration.

Next, a lower bounding function for the kth sample mean
function (11) is obtained by assigning some dual feasible
solution for each previously observed outcome {ω t}, t < k.
To see this, note that LP duality ensures that for π ∈Vk,

π
>[r(ω t)−T x]≤ h(x,ω t), ∀x. (12)

Zhao and Sen
Thus, in iteration k, the dual vector in Vk that provides the
best lower bounding approximation at {h(xk,ω t)}, for t < k
is given by the dual vector for which

π
k
t ∈ argmax{π

>[r(ω t)−T x] | π ∈Vk}. (13)

When the above operation is undertaken with appropriate
data structures (see Higle and Sen 1996), it is computation-
ally faster than solving a linear program from scratch. In
any event, it follows that

Hk(x)≥
1
k

k∑
t=1

(πk
t)>[r(ω t)−T x]. (14)

Using the lower bound in (14), SD adopts a procedure
similar to Benders’ decomposition, in that the right-hand-
side of (14) is added as a new piece (or cut) of the piecewise
linear approximation of E[h(x, ω̃)]. However, we should
recognize that since the number of outcomes grows with the
number of iterations, the pieces (cuts) approximate sample
mean linearizations use different sample sizes. Thus in
iteration t one uses a piece that approximates Ht(x), not
Hk(x), for t < k. As a result, the older pieces need to be
re-adjusted so that they continue to provide lower bounds
for Hk(x). Without loss of generality, we can assume
that h(x,ω) ≥ 0 almost surely. With this assumption, it
is clear that Hk(x) ≥ t

k Ht(x). Hence, by multiplying each
previously generated piece (t = 1, . . . ,k−1) by the multiplier
t/k, all previously generated pieces provide a lower bound
for the sample mean approximation Hk(x). In any event,
the approximation for the first-stage objective function at
iteration k is then given by

fk(x) := c>x+ max
t=1,...,k

 t
k
× 1

t

t∑
j=1

(π t
j)
>[r(ω j)−T x]

 .

Since these approximations are carried out in a recursive
manner, it is best to consult Higle and Sen (1996) regarding
the data structures, and updates to be used for efficient
implementations.

The most basic version of SD uses the sequence {xk}
such that

xk+1 ∈ argmin{ fk(x) | x ∈ X}

where X = {x | Ax ≤ b} denotes the first-stage feasible
region. However, this sequence of candidates is not very
stable, and we recommend the use of a regularized approxi-
mation with a sequence of incumbent solutions as defined in
Higle and Sen (1994). Denoting an incumbent at iteration
k as x̄k, we recommend the following:

xk+1 ∈ argmin{ fk(x)+
1
2
‖x− x̄k‖2 | x ∈ X}.
242
One updates the incumbent by estimating whether the (sam-
ple mean) point estimate of the objective value at xk+1 is
better than the point estimate of the objective value of the
incumbent x̄k. If it is, then x̄k+1 = xk+1; else, x̄k+1 = x̄k.
This procedure is referred to as the Regularized Stochas-
tic Decomposition (RSD) method which we use for our
computational study.

Before closing this summary we note that as k changes,
so does Hk(x). However, all but one of the observations
used in defining Hk(x) are used in Hk−1(x). Hence, as
k becomes large, variance reduction is achieved by using
common random numbers.

3.1 The Bootstrapped Stopping Rule for SD

One of the main advantages of adopting SD (or more ac-
curately RSD) is that it allows for the possibility of using
stopping rules based on observations made during the exe-
cution of the algorithm. We discuss this process which was
originally outlined in Higle and Sen (1999).

The RSD stopping rule uses the empirical distribution
associated with the sampled observations, {ω t}k

t=1 in place
of the original distribution. In particular, we use bootstrap-
ping to re-sample primal and dual problems associated with
the regularized master problem.

Suppose that in iteration K, we denote the primal in-
cumbent solution by (x̄K). The solution of the primal ap-
proximation yields corresponding dual optimal solutions
(θ K , λ K), where θ K is the vector of multipliers associated
with the pieces (or cuts) of HK(x), and λ K denotes dual
multipliers associated with the first-stage constraints Ax≤ b.
It turns out that these dual multipliers are feasible to the
QP dual problem of the master program used in the RSD
method. Hence we test whether the primal-dual pair of
solutions (xK , θ K , λ k) yields a sufficiently small estimated
duality gap.

Our statistical tests rely upon the bootstrap method
(Efron 1979) which undertakes replications using the ob-
served empirical distribution. In order to do so we test
the quality of (x̄K , θ K , λ K) by re-sampling the pieces (or
cuts) and then evaluating a duality gap which results from
using the given solutions in the re-sampled primal and dual
problems. If a large proportion of the re-sampled pairs of
problems (primal-dual) indicate that the point (x̄K , θ K , λ K)
is acceptable, then we may conclude that the given solution
is sufficiently good. In the interest of brevity, we omit the
details, and refer the reader to Higle and Sen (1999).

4 COMPUTATIONAL RESULTS

The computational results reported here are based on the
data given in Herer et al. (2006). Both IPA/SQG and
RSD algorithms were programmed for a general stochastic
programming problem as stated in ((9)-(10)). While the

Zhao and Sen
implementation reported in Herer et al. (2006) uses the
special network structure of the transshipment problem (10),
our implementations for both methods did not use any
specialized algorithm for the solution of (10). One other
difference between our implementation and that presented
in Herer et al. (2006) is that we started out each method
with a starting order-up-to-quantity at the same value as
the expected demand at each retailer. However, the rest
of the implementation of the IPA/SQG method used the
same parameters as in Herer et al. (2006). Thus, the step
sizes, the number of batches used in each iteration, and the
number of iterations of IPA/SQG were the same as those
in Herer et al. (2006). Finally, we should note that our
LP solver used the ILOG CPLEX callable library, version
8.1, and all programs were compiled and run in a Unix
environment provided on Sun 280R machines.

Table 1 reports our efforts at replicating the computa-
tions of Herer et al. (2006). As in the above paper, each
iteration used a sample size M = 50,000, and the iterations
carried out K = 3000 steps of the IPA/SQG method, with
step sizes given by the sequence αk = 1000/k, k = 1, . . . ,K.
We carried out 5 runs of the IPA/SQG method, and the rec-
ommended solutions (average values, standard deviations,
and 95% half widths), together with CPU times (in seconds)
are reported in Table 1.

The CPU time reported in Table 1 is excessive due to
the choice of the sample size (50,000) used in Herer et al.
(2006). In Table 2, we report the recommended solutions
and CPU times (average of 20 runs) when the sample size
M per iteration is reduced to 1,000. Clearly, there is no
significant change in the quality of the solution, and the
CPU time is reduced considerably. Since these choices of
M are somewhat arbitrary, methods like IPA/SQG require
some prior experience with instances if we are to avoid
excessive computations.

Table 3 reports the solutions obtained by RSD when
using a stopping tolerance of 0.0001 (i.e., the duality gap
is 0.01% of the estimated objective value). As with the
summary provided in Table 2, 20 runs were performed
for the summary provided in Table 3. Since the method
adaptively chooses the number of iterations necessary to
attain the specified accuracy, Table 3 provides an additional
row specifying the sample size. This reflects the number
of iterations of RSD used to satisfy the stopping rules. As
reported in this table, on average, the number of observations
is around 1293 (compared with 50,000×3,000 or 1,000×
3,000 observations in the SQG runs). Note that the smaller
sample sizes may cause larger variability in the decision
x; however, the important observation to make is that the
standard deviation of the objective function at the solutions
identified by RSD is only 0.2, and when compared with a
mean objective value of 148.33, the coefficient of variation
in the objective value estimates is negligible. The estimated
objective values of all 20 RSD runs are shown in Figure 1.
24
Table 1: Solutions Using IPA/SQG (M = 50,000, K =
3,000)

Retailer Average Stdev 95% Half Width
1 106.65 0.04 0.04
2 215.98 0.05 0.05
3 160.05 0.04 0.03
4 185.95 0.06 0.05
5 193.47 0.03 0.02
6 180.06 0.02 0.02
7 185.91 0.05 0.04

CPU Time 41,994.1 260.2 228.1

Table 2: Solutions Using IPA/SQG (M = 1,000, K = 3,000)

Retailer Average Stdev 95% Half Width
1 106.30 0.10 0.04
2 216.39 0.19 0.08
3 159.70 0.09 0.04
4 186.44 0.20 0.09
5 193.09 0.08 0.04
6 179.69 0.12 0.05
7 186.50 0.08 0.03

CPU Time 839.6 3.5 1.5

Table 3: Solutions Using RSD (Stopping Tolerance =
0.01%)

Retailer Average Stdev 95% Half Width
1 106.46 0.73 0.32
2 216.06 3.32 1.45
3 159.50 1.88 0.82
4 186.05 2.15 0.94
5 194.08 2.47 1.08
6 179.14 1.57 0.69
7 186.02 2.31 1.01

CPU Time 117.0 74.4 32.6
Sample Size 1293 255 112
Obj. Value 148.3 0.2 0.1

The computational times (in seconds) of RSD runs are
reported in the row “CPU Time” in Table 3. Each individual
CPU time of RSD runs and SQG runs with sample size
M = 3,000 are plotted in Figure 2. While the quality of
solutions reported in Tables 2 and 3 is similar, the average
time to obtain these solutions using RSD is less than one
half the computational times as reported in Figure 2.
3

Zhao and Sen
Figure 1: Objective Function Values: RSD

Figure 2: CPU Time: RSD Vs. IPA/SQG

5 CONCLUSIONS

In this paper, we have studied the performance of two
alternative methods (IPA/SQG and RSD) for the solution of
multi-location transshipment problems. Our computational
study has shown that while the two methods provide solutions
of similar quality, the amount of computational time required
by RSD is significantly lower because it takes advantage
of the special structure of the two-stage stochastic linear
program. Computational times could be further reduced by
using specialized network-flow solvers for the multi-location
transshipment problem.

REFERENCES

Alrefaei, M., and S. Andradottir. 1997. Accelerating the
convergence of the stochastic ruler method for discrete
stochastic optimization. In Proceedings of the Winter
Simulation Conference, 353–357.

Benders, J. F. 1962. Partitioning procedures for solving
mixed variables programming problems. Numerische
Mathematik 4:238–252.
244
Dantzig, G. B., and P. W. Glynn. 1990. Parallel processors
for planning under uncertainty. Annals of Operations
Research 22 (1-4): 1–21.

Efron, B. 1979. Another look at the jackknife. Annals of
Statistics 7:1–26.

Ermoliev, Y. 1983. Stochastic quasigradient methods and
their application to system optimization. Stochastics 9
(1-2): 1–36.

Herer, Y. T., M. Tzur, and E. Yucesan. 2006. The multilo-
cation transshipment problem. IIE Transactions 38 (3):
185–200.

Higle, J. L., and S. Sen. 1991. Stochastic decomposition: an
algorithm for two-stage linear programs with recourse.
Mathematics of Operations Research 16:650–669.

Higle, J. L., and S. Sen. 1994. Finite master programs
in stochastic decomposition. Mathematical Program-
ming 67:143–168.

Higle, J. L., and S. Sen. 1996. Stochastic decomposition:
a statistical method for large scale stochastic linear
programming. Dordrecht, NL:Kluwer Academic Pub-
lisher.

Higle, J. L., and S. Sen. 1999. Statistical approximations
for stochastic linear programming problems. Annals of
Operations Research 85:173–192.

Pichitlamken, J., and B. L. Nelson. 2002. A combined pro-
cedure for optimization via simulations. In Proceedings
of the Winter Simulation Conference, 292–300.

Robbins, H., and S. Monro. 1951. A stochastic approxima-
tion method. The Annals of Mathematical Statistics 22
(3): 400–407.

Sen, S. 1993. Subgradient decomposition and differentia-
bility of the recourse function of a two stage stochastic
linear program. Operations Research Letters 13:143–
148.

Sen, S., and H. D. Sherali. 1985. On the convergence
of cutting plane algorithms for a class of nonconvex
mathematical programs. Mathematical Programming 31
(1): 42–56.

Van Slyke, R. M., and R. J.-B. Wets. 1969. L-shaped
linear programs with applications to optimal control
and stochastic programming. SIAM Journal on Applied
Mathematics 17:638–663.

AUTHOR BIOGRAPHIES

LEI ZHAO is an assistant professor of Industrial Engineer-
ing at Tsinghua University, China, where he joined in Jan-
uary 2006. He received his Ph.D. in Systems and Industrial
Engineering at the University of Arizona in December 2005.
His research focuses on decision making under uncertainty
in applications such as supply chain management/logistics
and on emergency response planning.

Zhao and Sen
SUVRAJEET SEN is Professor of Systems and Industrial
Engineering at the University of Arizona, where he has been
since 1982. Recently, he also served as a program director at
NSF where he was responsible for the Operations Research
and the Service Enterprise Engineering programs. Professor
Sen’s research is devoted to the theory and applications of
large scale optimization algorithms, especially those arising
in stochastic programming. He has authored or coauthored
over seventy five papers, many of which have appeared
in journals like Mathematical Programming, Mathematics
of Operations Research, Management Science, and Opera-
tions Research. Professor Sen has served on the editorial
board of several journals, including Operations Research
as Area Editor for Optimization, and as Associate Editor
in INFORMS Journal on Computing, Telecommunications
Systems, as well as Operations Research. Professor Sen is
the past-Chair of the INFORMS Telecommunications Sec-
tion and founded the INFORMS Optimization Section. He
is a Fellow of INFORMS.
245

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

