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ABSTRACT

We consider the problem of monitoring variability of au-

tocorrelated processes. This paper combines variance es-

timation techniques from the simulation literature with a

statistical process control chart from statistical process con-

trol (SPC) literature. The proposed SPC method does not

require any assumptions on the distribution of the underly-

ing process and uses a variance estimate from each batch

as a basic observation. The control limits of the chart are

determined analytically. The proposed chart is tested us-

ing stationary processes with both normal and non-normal

marginals.

1 INTRODUCTION

Statistical process control (SPC) charts are widely used to

detect shifts in the parameters of monitoring processes. Re-

cently, the problem of monitoring an autocorrelated process

has been received a lot of attention from the SPC commu-

nity and majority of effort has been focused on developing

distribution-based methods. Distribution-based SPC charts

require the in-control underlying process to follow a specific

probability distribution model, or certain characteristics of

the process, such as the autocorrelation structure, to be

known. For distribution-based SPC charts that monitor the

mean of autocorrelated processes, see Kim et al. (2006a)

for a detailed review. Distribution-based SPC charts are

often criticized from the fact (a) that the underlying as-

sumptions may be violated, resulting that the charts may

not work as advertised and (b) that their control limits

are often determined by trial-and-error which is sometimes

inconvenient in practical applications due to time or avail-

ability of data. These limitations could be overcome by

distribution-free SPC charts. There are a few distribution-

free methods for monitoring mean, which include Johnson

and Bagshaw (1974), Runger and Willemain (1995), and

Kim et al. (2006a, b).
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While the problem of monitoring variability of an auto-

correlated process is as important as that of monitoring mean,

little work has been done in the former problem compared

to the latter problem. Reynolds and Lu (1997) and Lu and

Reynolds (1999) present SPC charts for monitoring variance

of autocorrelated processes under the assumption that the

underlying process follows an ARMA(1,1) process. Cook

and Chui (1998) introduce neural network techniques for

monitoring parameters of autocorrelated processes. Chiu,

Chen, and Lee (2001) and Cook, Zobel, and Nottingham

(2001) apply this method to monitor mean and variance of

an autocorrelated process, assuming that the underlying pro-

cess follows an AR(1) model. Their SPC methods with the

neural network techniques may be extended to distribution-

free methods. However, such work has not been proposed

yet and the methods require training on both in-control

and out-of-control data unlike usual SPC charts that require

training on the in-control process only. To our best knowl-

edge, there is no explicitly proposed distribution-free SPC

chart for the purpose of detecting shifts in variability of

autocorrelated processes in SPC literature.

In this paper, we develop distribution-free SPC charts

for monitoring variability of autocorrelated processes by

combining techniques from simulation and SPC literature. A

good measure for variability of autocorrelated processes is so

called the asymptotic variance parameter which is basically

the sum of covariances at all lags. There are a number of

distribution-free techniques for estimating the asymptotic

variance parameter in simulation literature; see Alexopoulos,

Goldsman, and Serfozo (2005). Among those variance

estimation techniques, we take a variance estimator that can

be computed from one batch rather than several batches, and

those estimates will be used as basic observations for SPC

charts. The expectation of the variance estimates from the

in-control process is approximately equal to the in-control

asymptotic variance parameter if a batch size is large enough.

Therefore, the problem of monitoring variability becomes

monitoring the mean of variance estimates, and we can apply
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existing distribution-free SPC charts originally developed

for monitoring mean.

In Section 2, we give notation and assumption for

the paper and review a variance estimation technique for

the asymptotic variance parameter. A new distribution-

free SPC method for monitoring variability is presented in

Section 3. Experimental studies based on AR(1) processes

and M/M/1 queueing models are given in Section 4, followed

by conclusions in Section 5.

2 BACKGROUND

In this section, we define notation and assumptions on output

data from the in-control monitoring process. We also give

a review of a distribution-free estimator for the asymptotic

variance parameter.

2.1 Notation and Assumptions

Let {Yi : i = 1,2, . . .} denote the discrete-time monitoring

process that has a steady-state distribution with marginal

mean E[Yi] = µ and marginal variance Var[Yi] = σ2. Also,

let Ȳ (n) denote the sample mean of the first n observations.

Then, the standardized CUSUM, C(t) is defined as

C(t) ≡
∑bntc

j=1Yj −ntµ

Ω
√

n
, 0 ≤ t ≤ 1, (1)

where b·c is the “floor” (greatest integer) function and Ω2

is the asymptotic variance constant, defined as

Ω2 ≡ lim
n→∞

nVar(Ȳ (n)) =
∞
∑

`=−∞

Cov
[

Yi,Yi+`

]

,

where we assume that 0 < Ω2 <∞. The in-control asymp-

totic variance parameter is denoted by Ω2
0.

LetW(·) denote a standard Brownian motion process on

[0,∞) so that W(t) is normally distributed with E[W(t)] = 0
and Cov[W(s),W(t)] = min{s, t} for s, t ∈ [0,∞). The ran-

dom function C(t) is an element of the Skorohod space

D[0,1], i.e., the space of functions on [0,1] that are right-

continuous and have left-hand limits (Chapter 3 of Billings-

ley 1968). We restrict our interest on processes that satisfy

the following assumption which is called a Functional Cen-

tral Limit Theorem (FCLT) (see Billingsley 1968, Chapter 4).

Assumption 1 (FCLT) There exist finite real con-

stants µ and Ω2 > 0 such that the probability distribution

of C(t) over D[0,1] converges to that of W(·) for t ∈ [0,1],
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as n →∞. Formally,

C(t)
D−→

n→∞
W(t), 0 ≤ t ≤ 1,

where
D−→

n→∞
denotes convergence in distribution as n→∞.

Further, we assume that for every t ∈ [0,1], the fam-

ily of random variables {C2(t) : n = 1,2, . . .} is uniformly

integrable (see Billingsley 1968, Chapter 5).

For autocorrelated processes, a good measure for vari-

ability is the asymptotic variance parameter Ω2 and this

paper focuses on monitoring changes in Ω2.

2.2 Variance Estimators

In this subsection, we review one estimator for the variance

parameter Ω2. The simplest and most popular estimator for

Ω2 is probably the nonoverlapping batch means estimator

that first forms batch means (i.e., sample averages of con-

tiguous, but autocorrelated, observations) and computes the

usual sample variance of the batch means, provided that

the batch size is large enough to ensure that batch means

are approximately independent and identically distributed

(i.i.d.). For the nonoverlapping batch means method, one

needs at least two batches to get one variance estimate and

this is not desirable for the purpose of monitoring. Runger

and Willemain (1995) propose a method of using batch

means as basic observations for monitoring mean of auto-

correlated processes. The method is distribution-free, but it

was pointed out that the method may delay legitimate out-

of-control alarms for highly correlated processes or large

shifts. This problem will be more serious if a basic obser-

vation of an SPC chart requires at least two batches. For

this reason, we do not consider the nonoverlapping batch

means method. Instead, we consider an estimator whose

estimate can be computed from one batch. Any estima-

tor based on standardized time series (see Schruben 1983

for the definition of standardized time series) can generate

an estimate from one batch. Alexopoulos, Goldsman, and

Serfozo (2005) provide a review of various standardized

time series variance estimators. In this paper, we consider

the CvM estimator only. Kim (2006) consider other vari-

ance estimators for monitoring variability of autocorrelated

processes.

The method we discuss below relies on Assumption 1

(together with mild moment and mixing conditions) and pro-

duces an asymptotically consistent estimator of the asymp-

totic variance parameter, Ω2.

We define the area under the square of the STS and its

limiting functional as

C(g;n) ≡ 1

n

n
∑

k=1

g(
k

n
)Ω2T 2

n (
k

n
)
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and

C(g) ≡
∫ 1

0

g(t)Ω2B2(t)dt,

respectively, where g(t) is a weighting function normal-

ized so that E[C(g)] = Ω2 and g′′(t) is continuous and

bounded on [0,1]. Under mild assumptions, the CMT

implies that C(g;n)
D−→

n→∞
C(g), and we call C(g;n) the

weighted Cramér–von Mises (CvM) estimator for Ω2.

Goldsman, Kang, and Seila (1999) show that under

Assumption 1 and some mild moment and mixing conditions,

the weighted CvM estimator can be first-order unbiased. For

example, the choice of g(t) ≡ −24+150t − 150t2 results

in E[C(g;n)] = Ω2 +o(1/n). The variance of the weighted

CvM estimator depends on the weighting function g(t).
With the choice of g(t) = −24+150t −150t2, we get

Var(C(g)) = 1.729Ω4. (2)

There is another weighting function for the CvM estimator

that results in a first-order unbiased estimator with a slightly

smaller variance. However, Goldsman, Kang, and Seila

(1999) show that the CvM estimator with g(t) = −24 +
150t−150t2 is more reliable, and we employ this weighting

function for the CvM estimator in this paper.

For the purpose of monitoring variability of autocor-

related processes, we get an estimate from each batch and

use those estimates as basic observations for an SPC chart.

Throughout the paper, Vi represents a CvM variance es-

timate from the ith batch with the weighting functions

g(t) = −24+150t −150t2.

3 MONITORING VARIABILITY

In this section, we discuss how to monitor changes in

variability of autocorrelated processes. As discussed in

the previous section, variance estimation techniques based

on standardized time series is distribution-free methods

for estimating the asymptotic variance parameter Ω2 based

on batching. If we take variance estimates for Ω2 from

batches as basic observations, the problem of monitoring the

variability ofY1,Y2, . . . , becomes that of monitoring the mean

of V1,V2, . . . . There are a number of distribution-free SPC

charts for monitoring mean. By combining a distribution-

free variance estimation technique with a distribution-free

SPC chart for monitoring mean, one can come up with a

distribution-free SPC chart for monitoring variability.

There are distribution-free SPC charts that do not assume

any distribution on basic observations, and they include

Johnson and Bagshaw (1974) and Kim et al. (2006a, b).

Among those procedures, the procedure due to Kim et al.

(2006b) shows the most efficient performance. Therefore

we consider their distribution-free Tabular CUSUM chart in
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this paper and propose the distribution-free Tabular CUSUM

for Variability (DFTCV) chart (see Kim 2006 for other

SPC charts). The procedure requires the variance of basic

observations which is the variance of V1,V2, . . . in our case.

We denote the variance of CvM estimates by Ψ2 and its

in-control value by Ψ2
0.

In reality the in-control Ω2
0 and Ψ2

0 should be estimated

from a training data set. Estimating Ψ2
0 would require

batching of already batched data if the estimates from batches

are autocorrelated, which may require a huge data set. On

the other hand, if a FCLT approximately holds and variance

estimates are independent, then we can estimate Ω2
0 from

a training data set and use (2) to get Ψ2
0. For this reason,

we choose a batch size m that makes Vi approximately

independent and ensures an approximate FCLT. Then the

DFTCV chart is presented below:

1. Set K = 0.1, Ψ0 = 0.1
√

1.729Ω2
0, and a target two-

sided ARL0 in terms of raw observations. Then,

calculate H, the solution to the equation:

Ψ2
0

2K2

{

exp

[

2K(H +1.166Ψ0)

Ψ2
0

]

−1

−2K(H +1.166Ψ0)

Ψ2
0

}

=
2ARL0

m
.

2. Raise an out-of-control alarm after the ith batch if

S+(i)≥H or S−(i)≥H where S+(0) = 0, S−(0) =
0; and for i = 1,2, . . ., S+(i) = max{0, S+(i−1)+
(Vi −Ω2

0)−K} and S−(i) = max{0, S−(i− 1)−
(Vi −Ω2

0)−K}.

One critical issue on implementing the DFTCV chart

is to determine a batch size. Basically a batch size m

should be large enough to ensure (i) that variance estimates

Vi are approximately independent and (ii) that a FCLT

approximately holds. For the first condition, we check

if batch means are approximately independent. For the

second condition, we check if a batch size is approximately

normally distributed. Lada and Wilson (2005) employ the

von Neumann test (von Neumann 1941) for the independence

test of batch means and the Shapiro-Wilk test (Shapiro and

Wilk 1965) for the normality test. We modify the algorithm

of Lada and Wilson (2005) to determine an appropriate

batch size m and the algorithm is presented in Kim (2006).

4 EXPERIMENTS

We test the performance of the proposed charts on station-

ary processes with both normal and non-normal marginals.

For normal marginals, we employ a stationary first-order

autoregressive (AR(1)) process. For non-normal marginals,

the queue waiting times observed in an M/M/1 queue are

considered.
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4.1 AR(1) Processes

An AR(1) process is defined as follows:

Yj = µ +ϕ(Yj−1−µ)+ ε j for j = 1,2, . . . , (3)

where: (i) {ε j : j = 1,2, . . .} i.i.d.∼ N(0,σ2
ε ); (ii) we take

−1 < ϕ < 1 to ensure that (3) defines a stationary AR(1)

process; and (iii) we take Y0 ∼ N(µ ,σ2) to ensure that the

process {Yj} starts in steady-state operation.

For the AR(1) process (3), the marginal variance is

σ2 =
σ2

ε

1−ϕ2
;

the lag-` covariance is

Cov(Yi,Yi+`) = σ2ϕ |`| =
σ2

ε ϕ |`|

1−ϕ2

for ` = 0,±1,±2, . . . , and the variance parameter is

Ω2 = σ2
(1+ϕ

1−ϕ

)

=
σ2

ε

(1−ϕ)2
.

The parameters of the in-control AR(1) process are

denoted by σ2
0 , σ2

0ε , Ω2
0, and ϕ0. Specifically, σ2

0 is set

to one for all in-control process; therefore, σ2
0ε = 1−ϕ2

0 .

Let Ω2 denote the asymptotic variance parameter of an in-

control or out-of-control process. Then the ratio of Ω2/Ω2
0

varies over 1, 1.5, 2, 2.5, 3, 4, and 10. The coefficient ϕ0

is set to 0.25, 0.3, 0.5, 0.7, 0.9, and 0.95.

There are two sources for a shift in Ω2: (i) changes are

caused by a shift in either σ2 or σ2
ε and (ii) changes are

caused by a shift in ϕ . When the ratio Ω2/Ω2
0 = c and the

change is caused by a shift in σ2 or σ2
ε , the shifted σ2 is set

to c, and therefore the shifted σ2
ε = c(1−ϕ2

0 ). Similarly,

when the ratio Ω2/Ω2
0 = c and the change is caused by a

shift in ϕ , the shifted ϕ is set to

(1+ c)ϕ0 +(c−1)

(1+ c)+(c−1)ϕ0
.

The target ARL0 is set to 10,000. Notice that 10,000 is

considerably large compared to 370 which has been a norm

for SPC charts for i.i.d. data. However, autocorrelation into

the data is mainly caused by the introduction of automated

testing devices for monitoring with high sampling frequency.

This frequent automated sampling is becoming more and

more common. Therefore, an ARL of 370 might correspond

to only 370 minutes (or even seconds) of process operation,

which is woefully inadequate in many applications. We want

a much longer time between false alarms, and in-control
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ARLs in excess of 10,000 are considered to be desirable in

a number of papers that deal with autocorrelated processes

(for example, see Yashchin 1993 and Runger and Willemain

1995).

Table 1 shows the experimental results when the shift

in variability is caused by a shift in σ2 or σ2
ε . The batch size

m is determined by an algorithm presented in Kim (2006).

We found that a batch size determined by the algorithm

works well for the DFTCV chart in a sense that it results

in actual ARL0 close to the target value 10,000.

Table 2 shows the experimental results when the shift

is caused by a shift in ϕ . Notice that for the DFTCV chart

ARL1 decreases as Ω2/Ω2
0 increases, and then increases

when Ω2/Ω2
0 = 10. When ϕ is shifted to a large value,

it affects the autocorrelation structure of the monitoring

process, and observations become more strongly correlated.

Therefore, the batch size m that used to work well for

the in-control process is not large enough any more for

the out-of-control process, allowing high bias to sneak into

variance estimates and resulting low-biased estimates. We

conjecture that this is why ARL1 for Ω2/Ω2
0 = 10 is larger

than that for a smaller shift.

4.2 M/M/1 Queue Waiting Times

For the stationary process with non-normal marginal,

we consider the queue waiting times observed in an

M/M/1 queue. In an M/M/1 queueing system, we let

Ai denote the interarrival time between the customers

numbered i − 1 and i (with A0 ≡ 0) so that {Ai : i =

1,2, . . .} i.i.d.∼ Exponential(λ ) and E[Ai] = 1/λ ; moreover,

we let Bi denote the service time of the ith customer so

that {Bi : i = 1,2, . . .} i.i.d.∼ Exponential(ν) and E[Bi] = 1/ν .

If Yi denotes the waiting time in the queue for the

ith customer in this single-server queueing system, then

Yi+1 = max{0,Yi +Bi −Ai+1} for i = 1,2, . . ..
The M/M/1 queue waiting times {Yi : i = 1,2, . . .}

constitute a test process with highly non-normal marginals

and an autocorrelation function that decays approximately

at a geometric rate. In terms of the arrival rate λ , the service

rate ν , and traffic intensity ρ = λ/ν , the process {Yi} has

marginal distribution function

FY (y) ≡ Pr
{

Yi ≤ y
}

=











0, y < 0

1−ρ, y = 0

1−ρe−(ν−λ)y, y > 0

(4)

so that the marginal mean and variance are given by

µ = E[Yi] =
ρ2

λ (1−ρ)
, σ2 = Var[Yi] =

ρ3(2−ρ)

λ 2(1−ρ)2
(5)
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respectively. The lag-` covariance of the process {Yi} is

Cov(Yi,Yi+`) =
1−ρ2

2πλ 2

∫ r

0

z|`|+3/2(r− z)1/2

(1− z)3
dz (6)

for ` = 0,±1,±2, . . ., where r = 4ρ/(1+ ρ)2 so that 0 <
r < 1; and the variance parameter is given by

Ω2 =
ρ3

(

ρ3−4ρ2 +5ρ +2
)

λ 2 (1−ρ)
4 . (7)

The service rate of the in-control process is set to

ν0 = 1. To test different levels of dependence, we take the

in-control arrival rate λ0 ∈ {0.3,0.6} so that for the traffic

intensity of the in-control system, we have ρ0 ∈ {0.3,0.6}.

We generate the monitored process {Yi : i = 1,2,} based on

the algorithm of Schmeiser and Song (1989) so that the

process is stationary with the steady-state properties (4)–(7).

Similar to AR(1) processes, the shift ratio Ω2/Ω2
0 varies

over 1, 1.5, 2, 2.5, 3, 4, and 10. For out-of-control processes,

we assume that there is no change in the arrival rate λ , but

the shift is caused by a change in ν . To generated shifted

data, for given λ0 and shifted Ω2, we search for the value

of ν by solving (7) for ν . Batch sizes are determined by

an algorithm in Kim (2006). The DFTCV chart with the

batch sizes results in actual ARL0 close to the target value

and were able to detect shifts as show in Table 3.

5 CONCLUSIONS

We propose a distribution-free SPC chart for monitor-

ing variability of autocorrelated processes by combining

a distribution-free variance estimation technique with a

distribution-free SPC chart for monitoring mean of au-

tocorrelated processes. The proposed chart uses variance

estimates from nonoverlapped batches as basic observations.

Although we propose only one SPC chart for monitoring

variability in this paper, a number of different SPC charts

can be proposed by considering other variance estimation

techniques (e.g., the weighted Area estimator or other im-

proved versions of standardized time series estimators) and

other SPC charts for monitoring mean (e.g., SPC charts due

to Johnson and Bagshaw 1974 and Kim et al. 2006a).

The performance of the DFTCV chart could be improved

if a variance estimator with better statistical properties—low

bias and low variance—is used to get a variance estimate

from each batch.

It will be interesting to explore the performance of the

proposed SPC chart with other variance estimators. Most

SPC charts in literature assume that there exist large number

of training data points and that estimated values are close

to the true values. This paper also assumes that parameters

such as Ω2 is known. However, a research that investigates
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the impact of using estimated values from a training data

set of a moderate size is currently undergoing.

Table 1: Two-Sided ARLs in Terms of Number of Raw Ob-

servations for an AR(1) Process when Changes Are Caused

By σ2 or σ2
ε (Shift Ratios Are in the Units of Ω2/Ω2

0)

ϕ Shift Ratio ARL

0.25 1 11899

(m = 16) 1.5 1037

2 450

2.5 293

3 224

4 152

10 63

0.3 1 10704

(m = 16) 1.5 1115

2 475

2.5 306

3 231

4 156

10 65

0.5 1 11087

(m = 31) 1.5 1732

2 778

2.5 506

3 375

4 258

10 110

0.7 1 11681

(m = 60) 1.5 2677

2 1210

2.5 818

3 613

4 427

10 192

0.9 1 11520

(m = 166) 1.5 5144

2 2497

2.5 1669

3 1285

4 932

10 437
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