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ABSTRACT 

Managers of large industrial projects often measure 
performance by multiple attributes. In previous work, 
we developed a multiattribute ranking and selection 
procedure to allow tradeoffs between conflicting ob-
jectives.  More recent developments in ranking and 
selection incorporate the notion of “constraints”, or 
“targets”,  that must be satisfied.  In this paper we 
demonstrate how some forms of single attribute util-
ity functions can be used to create a target or con-
straint.  We re-analyze our original problem under the 
assumption that there are unacceptable levels for 
some attributes. 

1  INTRODUCTION 

The evaluation of projects typically involves the use of 
multiple performance measures, e.g. cost vs. quality vs. 
time. In recent work, Butler et al. (2001) extended tradi-
tional single-attribute ranking and selection procedures to 
multiple attributes by using multiattribute utility theory 
(MAU) to convert multiple performance measures to a sin-
gle scalar performance measure.  The technique was ap-
plied to a real project evaluating configurations for a land 
seismic survey in geophysical exploration for oil and gas 
and was viewed as a success by the client company.  
 Recently, there has been increasing interest in the in-
corporation of constraints in ranking and selection proce-
dures (e.g. Andradottir et al. 2005; Batur and Kim 2005).  
The purpose of this paper is to illustrate that the Butler et 
al. (2001) procedure can be extended to handle constraints 
in a natural way, including multiple constraints, when it is 
appropriate to do so.  While it may be difficult to assess a 
multiattribute utility function, it is done on a regular basis 
in both the private and public sector. In fact, enforcing the 
notion of constraints can simplify assessment compared to 
a traditional MAU analysis.    
 The rest of this paper is organized as follows.  In Sec-
tion 2, we briefly summarize multiattribute utility theory, 
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ranking and re-scaling.  In Section 3, we address various 
issues regarding the use of constraints in a multiattribute 
analysis and apply this to the example from Butler et al. 
(2001) in Section 4.  In Section 5, we conclude and offer 
some areas for additional research. 

2  MULTIATTRIBUTE UTILITY THEORY 

2.1  Multiattribute Utility Theory 

MAU theory (Keeney and Raiffa 1976) is one of the major 
analytical tools associated with the field of decision analy-
sis (see, for example, Clemen 1991).  The first step of the 
procedure is to identify the fundamental objectives that de-
termine the decision maker’s preferences and structure 
these objectives into a means-ends hierarchy (Keeney 
1992).  Then representative measures for each lowest level 
sub-objective are identified to evaluate the alternatives.     

The second step in an MAU analysis is to identify the 
alternatives and to estimate the performance of each alter-
native on each performance measure.  When these esti-
mates are uncertain, it is often appropriate to quantify them 
with ranges or with probability distributions determined 
using risk analysis methods (e.g., Clemen 1991; Keeney 
and von Winterfeldt 1991), i.e., Monte Carlo simulation. 

Next, a single attribute von Neumann and Morgenstern 
(1947) utility function is assessed for each performance 
measure that scales performance between 0 and 1, inclu-
sive.  Finally, a multiple attribute utility function deter-
mines how the performance on each measure affects over-
all performance vis-à-vis a set of assessed weights, or 
measures of relative importance.  The notion of relative – 
as opposed to absolute – importance is driven by the range 
of performance of each attribute.  One reason why the util-
ity functions should be assessed prior to the weights is to 
ensure that the decision maker is aware of these ranges. 
 There are many varieties of multiattribute utility func-
tions, but the most commonly used forms rely on the no-
tion of utility independence.  If we assume that an alterna-
tive’s performance is represented by two performance 
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measures X1 and X2 then we say that attribute X1 is utility 
independent of X2 if preference for lotteries on X1 given X2 
= x2  (note: we will use the standard convention in the 
probability and statistics literature of representing a reali-
zation of the random variable Xi by lower case notation, 
i.e., by xi) does not depend on the level of x2 (Keeney and 
Raiffa 1976).  The concept of utility independence allows 
us to consider the utility function for consequences of at-
tribute X1 independent of X2.  Mutual utility independence 
holds when X1 is utility independent of X2 and X2 is utility 
independent of X1. For the general case when there are n 
performance measures, i.e.  X  = (X1, X2, … Xn), mutual 
utility independence holds if for X1, X2, … Xn , every sub-
set of Xis is utility independent of its complement. 

If there are more than two attributes and Xi is utility 
independent of Xj for all j ≠ i, then it is appropriate to 
model the utility of a realization of X, u(x), using the mul-
tilinear model: 
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where ui(·) is a single attribute utility function over meas-
ure i that is scaled from 0 to 1, wi is the weight for measure 
i where 0 ≤ wi ≤ 1 for all i, and wijm are scaling constants 
that represent the impact of the interaction between attrib-
utes i, j and m on preferences (see, for example, Keeney 
and Raiffa 1976,  page 293).    
 If mutual utility independence holds, then the correct 
choice is the multiplicative MAU model, 
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11 x . If we expand this compact 

form of the multiplicative MAU we get:  
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where 0 ≤ wi ≤ 1 and –1 < w < ∞.  Note there is no sub-
script on the common w, so this multiplicative form is a 
special case of the multilinear model (1) where the strength 
of all interactions among criteria is the same.  Finally, if a 
more restrictive preference condition called additive inde-
pendence is satisfied then it is the marginal, not the joint, 
distribution of each performance measure that determines 
223
preference.  In this case we can represent the decision-
maker’s preferences with an additive MAU model: 
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where 0 ≤ wi ≤ 1 and ∑ =
=

n

i iw
1

1 . Inspection of (1), (2) 

and (3) reveals that the first term in both the multilinear 
and multiplicative models is the additive model.  When the 
preferential interactions have no impact on preferences, 
i.e., when the interaction terms are all zero, the additive 
model is a special case of the more general aggregation 
schemes. 

2.2 Re-scaling Multiattribute Utility Functions 

The “even swaps” re-scaling procedure described in 
Hammond et al. (1998) and formalized in Butler et al. 
(2001) is based on the intuitive notion of exchanging per-
formance in one attribute for another.  For example, we 
might ask a decision maker how many dollars they would 
pay to change the horsepower of a car from 140 to 200 
horsepower.  We could continue through all of the K cars 
under consideration asking how much the decision maker 
would pay to change the horsepower of each car from its 
current level to 200 horsepower. Note that cars that have 
more than 200 horsepower would be have to be “paid”, i.e. 
made cheaper, rather than pay to change to 200 horse-
power.  If we repeat this swapping for all of the measures 
used to evaluate the cars, we end up with a new set of hy-
pothetical cars that share common levels on all attributes 
but cost.  Further, these equivalent costs can be used to 
make the final decision as they reflect the performance of 
each car on all of the other attributes considered.  See 
Hammond et al. (1998) and Butler et al. (2001) for more 
detailed examples of the even swaps procedure.  
 It is important to note that when walking the decision-
maker through the swaps procedure that converts the origi-
nal alternatives into equivalent hypothetical cars there is no 
need to make any assumptions about the form of the MAU 
aggregation function.  In other words, the swaps procedure 
holds for all MAU, because the decision-maker uses his or 
her internal utility function to provide the numbers re-
quired.  We have outlined the swaps procedure to provide 
the intuition of the utility re-scaling, but the decision-
maker will never be required to make the swaps explicitly.    
 The first step in creating the hypothetical K ≥ 2 
equally preferred alternatives is to select a measure as the 
medium for exchange or standard measure (e.g., cost in the 
previous example). Without loss of generality, let the stan-
dard measure be performance measure 1. Next, select a 
common level of utility ci for the other criteria i, 2 ≤ i ≤ n 
(e.g., u(200 HP) = ci in the previous example).  In other 
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words specify xki′ such that ui(xki′) = ci for all  i > 1 and k, 1 
≤ k ≤ K. The final step is to find the level of measure 1, 
xk1′, such that the two alternatives are equally preferred.   
 As shown in Proposition 1 of Butler et al. (2001), the 
equation of u(xk1′) for the multilinear, multiplicative and 
additive MAU are all of the following general form: 
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where θ1 and θ 2 are constants that depend on the specific 
MAU form and the assessed utility functions and weights.  
As demonstrated in Butler et al. (2001), making decision 
based on xk1′ is strategically equivalent to making decisions 
based on ( )11 kxu ′ . 

3  CONSTRAINTS AND MULTIATTRIBUTE 
ANALYSIS 

Butler et al. (2001) was motivated by Gupta and Pancha-
pakesan (1979),  page 141: “… if we consider two bivariate 
normal populations with mean vectors μ1 = (μ11,μ12) and 
μ2 = (μ21,μ22) and a common covariance matrix Σ …. In 
this case we will naturally prefer the first population if μ1j 
≥ μ2j, j = 1,2.  However if μ11> μ21 and μ12 < μ22, the two 
are not comparable.  There is practically no result avail-
able in this direction.” One goal of Butler et al. (2001) was 
to provide a fully compensatory technique to address this 
issue. 
 However, there may be situations where the decision 
maker’s preferences are non-compensatory: poor perform-
ance on one criterion cannot be offset by good perform-
ance on another criterion.  For example, a decision maker 
may refuse to spend more than $20,000 on a car regardless 
of its performance of the other criteria.  Setting such a 
minimum performance level for a criterion can be thought 
of as setting a target level, establishing a cutoff, using a 
screening criteria or setting a constraint.    
 Before proceeding it is important to note one caveat.  
As Keeney (2002) suggests, great care should be taken 
when using constraints to imply value judgments.  Suppose 
that you told a car salesman that you would spend no more 
than $20,000 on car.  The salesman shows you several cars 
and you purchase one.  The next day you encounter a 
friend who also has a new car that is much nicer than 
yours. When you inquire how much it costs you are both-
ered to learn that it cost $20,100.  When you return to the 
car lot, the dealer informs you that he didn’t show you the 
car because it exceeded your maximum cost.  If your re-
sponse is “It was so close …” then $20,000 is not really a 
constraint!  It is the weights in a multiattribute analysis that 
should capture the relative importance of the criteria, not 
constraints on the acceptable attribute levels.  
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3.1 Using Constraints 

Andradóttir, Goldsman, and Kim (2005), hereafter AGK, 
develop a procedure for selecting the best system when 
performance is measured by two criteria: a primary meas-
ure and a secondary, constrained, performance measure.  
We will use X1 for the primary measure and X2 for the con-
strained measure.  The AGK setup is to find the largest of 
the K configurations: 
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where Q is a constraint. Or, using an indifference zone like 
approach the decision maker is asked to specify a range 
around the constraint QL  ≤ Q ≤ QU which specifies a desir-
able region (E[Xk2] ≤ QL), an acceptable region (QL ≤ 
E[Xk2] ≤ QU) and an unacceptable region (E[Xk2] > QU).  As 
AGK point out, obvious changes in sign can be made if Q 
is a minimum rather than a maximum and the same is true 
for our utility based approach. 
 Implicitly all single attribute utility functions contain a 
cutoff or minimum level of performance.  However, a well 
specified utility function is defined on a range that spans 
the entire range of possible (i.e. allowable) outcomes.    For 
example, Figure 1 shows an example utility function for 
costs specified on [$200,000, $60,000].  Normally, 
$200,000 represents the most costly alternative being 
evaluated but could be interpreted as the maximum cost the 
decision maker was willing to pay; all more costly alterna-
tives would have u(x) = 0.  
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Figure 1: Example Utility Function for Cost 

 
Figure 2 shows two single attribute utility functions 

that are consistent with the notion of a constraint or an ac-
ceptable range for the constrained attribute, X2.   The bi-
nary utility function represents an attribute that either does 
or does not satisfy a constraint. The range utility function 
is just a special case of a utility function that rewards at-
tribute performance closer to QL and could be of any shape. 
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 For a problem with two attributes, the multilinear and 
multiplicative forms are identical and so either is the most 
general form of MAU consistent with utility independence 

 
 u(x1,x2) = w1u1(x1) + w2u2(x2) + wu1(x1)u2(x2).  (6) 
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Figure 2: Single Attribute Utility Functions Consistent 
With Constraint Interpretation  
 
To determine the weights of (6) we first define xi

o and xi
* 

as the least and most preferred levels of attribute i, respec-
tively, where ui(xi

o)=0 and ui(xi
*) = 1.  We also assume that 

u is scaled such that u(x1
o, x2

o) = 0 and u(x1
*, x2

*) = 1. The 
weight for attribute 1 can be determined by assessing the 
probability p that makes the decision maker indifferent be-
tween receiving (x1

*, x2
o) and a lottery offering a p chance 

to receive (x1
*, x2

*) and a 1–p chance to receive (x1
o, x2

o).  
The expression of indifference implies that  

 
 u(x1

*, x2
o) = pu(x1

*, x2
*) + (1–p)u(x1

o, x2
o). (7) 

 
 Applying (6) to the left hand side of (7) leads to  

 
 w1u1(x1

*) + w2u2(x2
o) + wu1(x1

*)u2(x2
o) 

 =  pu(x1
*, x2

*) + (1–p)u(x1
o, x2

o) 
 

 w1(1) + w2(0) + w(1)(0) = p(1) + (1–p)(0) 
 

 w1  = p. 
 
Alternatively we can assess u(x1

*, x2
o) = w1 directly.  If a 

decision maker believes that performance on attribute 1 is 
irrelevant if attribute 2 has not achieved its target level, x2

o, 
then she would state that p = 0 which implies that u(x1

*, 
x2

o) = u(x1
o, x2

o) = w1 = 0.  In other words, strong perform-
ance on attribute 1 cannot compensate for (very) weak per-
formance on attribute 2.  There may be instances where 
this strong assumption is true, e.g., union rules, legal re-
strictions, but care should be taken in assuming that it 
holds in general.   
 If it is also true that u(x1

o, x2
*) = u(x1

o, x2
o) = w2 = 0 

then (6) reduces to  
 

 u(x1,x2) = u1(x1)u2(x2). (8) 
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Abbas and Howard (2005) refer to (8) as satisfying attrib-
ute dominance utility.  Not only can MAU handle “con-
straints”, it also provides insight in to the conditions re-
quired for such a preference structure via the assessment of 
attribute weights. 
 The logic for the two attribute case can be extended so 
that multiple constraints can be considered as in Batur and 
Kim (2005).  For three attributes the multilinear model of-
fers some interesting preference models for constraint in-
terpretation 
  
 u(x) =  u1(x1)u2(x2)u3(x3)   (9) 

 
 u(x) = w13u1(x1)u3(x3) + w23u2(x2)u3(x3) (10) 

 
 u(x) = w13u1(x1)u3(x3) + w23u2(x2)u3(x3)  
     + w123u1(x1)u2(x2)u3(x3).   (11) 
 
The first form (9) is analogous to a series model in elec-
tronics where all circuits must work, i.e., the targets must 
all be satisfied simultaneously, to provide any value to the 
decision maker.  The second form (10) resembles a parallel 
circuit in that value can be provided through either of two 
paths as long as the target attribute X3 is satisfied.  Finally 
(11) is another parallel model but with a “bonus” when all 
three attributes score well. 

4 AN EXAMPLE 

4.1 Setup 

We use the methodology developed in this paper to ana-
lyze the results generated by a simulator of the project de-
scribed in Mullarkey et al. (2006). The simulator models a 
large outdoor operation called a land seismic survey. Land 
seismic surveys generate geophysical information used in 
oil and gas exploration (Dobrin and Savit 1988). They are 
conducted over large geographical areas (tens to hundreds 
of square kilometers). These projects take anywhere from a 
few days to a few years to complete, utilize from 20 to 
1000 people, require capital equipment valued in the tens 
of millions of dollars, and generate survey revenues rang-
ing from hundreds of thousands to hundreds of millions of 
dollars. The simulator was designed to support bidding, 
planning, and conducting these large, complicated, and ex-
pensive projects in a profitable manner. 

The execution of a land seismic survey requires the 
coordination of five types of crews (see Figure 3). Briefly, 
the source crew sends signals (shock waves through the 
earth) from several geographic locations. The recording 
crew records reflections of these signals from the earth’s 
subsurface layers. The layout crew places receiving (or 
monitoring) equipment at several geographic locations so 
that the recording crew can receive the reflected signals. 
The transport crew brings the layout crew receiving 
5
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equipment. The packing crew prepares receiving equip-
ment for the transport crew that is no longer required on a 
particular part of a survey for receiving signals sent by the 
source crew. Figure 3 summarizes the sequence above in 
an operations cycle diagram. The diagram shows that each 
crew cycles through its own local operations steps (e.g., the 
transport crew picks-up and drops off equipment) depicted 
by small loops on each crew. Additionally, each crew 
forms a step in the larger operations cycle that represents 
the progression of the land seismic survey. For more de-
tails on land seismic survey operations, see Mullarkey et 
al. (2006). 

 

    Packing Crew

Transport Vehicle

     Layout Crew

      Recording Crew     Source Crew

 
Figure 3: Crews in a Land Seismic Survey 

 
During an actual land seismic survey, a project man-

ager will monitor multiple performance measures. These 
include project cost, project duration, and utilization for all 
types of crews. Project cost represents the bottom line and 
is considered the most important performance measure. 
Project duration, which is positively correlated with project 
cost since variable costs such as labor increase with the du-
ration of the job, is included because certain things such as 
reputation for finishing the job in a timely manner may be 
difficult to price.  

The crew utilization is monitored to ensure that crews 
are not over worked. Crews work under very adverse con-
ditions on many land seismic surveys. Overutilization of 
crews can lead to worker dissatisfaction, poor quality 
work, attrition and unsafe working conditions.  Again, 
things such as worker dissatisfaction and work quality may 
be difficult to cost.  Therefore, these measures are moni-
tored in addition to cost.   

To mimic reality, our simulator generates statistics on 
cost, duration, and all crew utilizations. We use the simula-
tor to compare different project configurations (e.g., differ-
ent survey designs or different levels of resources). Since 
the evaluation of different project configurations must be 
based on multiple, possibly correlated, measures we 
needed to develop a methodology to solve this problem. 
For more details on the simulator, see Mullarkey et al. 
(2006). 
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4.2 Multiattribute Utility Function 

Butler et al. (2001) analyzed the output of the simulator us-
ing an additive model, and assessed utility functions and 
weights from company representatives.  To demonstrate 
the use of targets, for this example we will assume that the 
crew unions re-negotiated their contracts and utilizations 
over 85% are now forbidden.  Cost is still relatively more 
important than the project’s duration, but these measures 
only factor in to preference if crew utilizations are all less 
than 85%.   
 As in Butler et al. (2001) Cost will be the measure of 
exchange and represented by x1; project duration will be 
represented by x2; and x3, x4, x5, and x6 will represent utili-
zation percentages for source, layout, transport, and pack-
ing crews, respectively. Since source and recording crews 
work in such a synchronized fashion, we treat them as one 
entity in the simulation model. We will use the same as-
sessed utility functions for Cost and Project Duration as 
Butler et al. (2001): 
 
  ( )50000

11
1e)0195.0(1.064)( /xxu −= , and 

 
 ( )80

22
2e)00106.0(1.021)( /xxu −=  

   
The crew utilization functions will be of the target form 
shown in the left panel of Figure 2 with Q = 0.85: 

 

   
⎪
⎩

⎪
⎨

⎧ ≤
=

otherwise ,0

85.0,1
)(

i

ii

x
xu  for i = 3, 4, 5, 6. 

 
It would be straightforward to specify an indifferent zone 
and create an acceptable range as in the right panel of Fig-
ure 2, e.g., set QL = 0.82 and QU = 0.88 as we discuss in the 
conclusion. 
 The assumptions of the additive model are not satis-
fied because the joint distribution of attribute utilities fac-
tor into the decision maker’s preferences.  To see this we 
can assess the weights for the crew utilization measures.  
As discussed previously, the weight on x3 can be assessed 
by asking the decision maker to specify u(x1

o, x2
o, x3

*, x4
o, 

x5
o, x6

o).  This quantity would have a utility of 0; all of the 
crews must be below 85% utilization, or the project con-
figuration has no value to the decision maker.  In fact, all 
combinations of utilization percentages other than u(⋅,⋅, x3

*, 
x4

*, x5
*, x6

*) have utility of 0, which drastically simplifies 
the assessment of the multilinear model to the specification 
of three quantities: u(x1

o, x2
o, x3

*, x4
*, x5

*, x6
*), u(x1

*, x2
o, x3

*, 
x4

*, x5
*, x6

*) and u(x1
o, x2

*, x3
*, x4

*, x5
*, x6

*); by assumption 
u(x1

*, x2
*, x3

*, x4
*, x5

*, x6
*) =1. 

 Assuming that meeting the crew utilization targets is 
necessary but not sufficient to provide value, then  u(x1

o, 
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x2

o, x3
*, x4

*, x5
*, x6

*) = 0.  It may be easier to think about the 
utilities of the other configurations relative to the best pos-
sible case.  For example, it may be that  

 
 u(x1

*, x2
o, x3

*, x4
*, x5

*, x6
*) = 

      2/3 u(x1
*, x2

*, x3
*, x4

*, x5
*, x6

*) and  
 

 u(x1
o, x2

*, x3
*, x4

*, x5
*, x6

*) =  
     1/3 u(x1

*, x2
*, x3

*, x4
*, x5

*, x6
*),  

 
which is consistent with the relative importance of Cost 
and Duration in Butler et al. (2001).  Using the relations 
defined in Keeney and Raiffa (1976), page 293, the final 
form of the multilinear model is as follows: 

 
 u(x) = 2/3u1(x1)u3(x3)u4(x4)u5(x5)u6(x6) +    
    1/3u2(x2)u3(x3)u4(x4)u5(x5)u6(x6) 
   
  = [2/3u1(x1) + 1/3u2(x2)] u3(x3)u4(x4)u5(x5)u6(x6). 

 
 It may be more intuitive to imagine using an additive 
utility function to evaluate the configurations that satisfy 
the union requirements: 

 

 u(x) = 
⎪
⎩

⎪
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                 otherwise                              ,0

63 0.85,   if ,(1/3(2/3 2211 ixxuxu i

 

   
The additive portion of the utility function can be re-scaled 
as in Butler et al. (2001).  If we set u2(x′2) = c2 then we 
seek x′1 such that 2/3u1(x′1) + 1/3c2 = 2/3u1(x1) + 1/3u2(x2).  
The rescaling is provided in (12) 
 
u(x) =  u1(x′1) 

 =
⎪
⎩

⎪
⎨

⎧ ≤≤≤− + )

                 otherwise                                 ,0

63 0.85,   if ),)((2/1( 22211 ixcxuxu i

 (12) 

4.3 Ranking and Selection Procedure 

Assume that there are K ≥ 2 alternatives and let Xk = (Xk1, 
Xk2,…, Xkn) denote a vector of random variables represent-
ing the performance measures for configuration k. Let 
E[u1(X′k1)]  denote the expected exchange utility for con-
figuration k. From (4) 

 

 ( ) ( ) 1
1 1

2

E E .k

u
u X

θ
θ

−⎡ ⎤
′ =⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
kX  

 
 Let    

 
 E[u1(X′[1]1)] ≤ E[u1(X′[2]1)]≤ … ≤ E[u1(X′[K]1)]         (13) 
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denote the ordered exchange values, i.e.,  
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Argmax E .k K

u
K

θ
θ=

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
K

kX  

 
The goal is to select the project configuration with the 
largest expected exchange utility E[u1(X′[K]1)]. If the R&S 
procedure accurately identifies the configuration with the-
largest expected utility, we will say that a “correct selec-
tion” (CS) is made.  

Because estimating the rank ordering in (13) reflects 
random fluctuation in configuration performance, it is im-
possible to guarantee a CS.  Therefore, we ask the deci-
sion-maker to specify some level δ∗ such that E[u1(X′[K]1)] 
– E[u1(X′[K-1]1)] ≥ δ∗ is practically significant. In general, 
the R&S procedure is designed to satisfy the following 
probability requirement:  

 
 P{CS} ≥ P∗ whenever E[u1(X′[K]1)] – E[u1(X′[K-1]1)] ≥ δ∗ 
 
where (1/K) < P∗ < 1 and 0 < δ∗ < 1. If E[u1(X′[K]1)] – 
E[u1(X′[K-1]1)] < δ∗, then the procedure will select a configu-
ration within δ∗ of the best with probability at least P∗.  See 
Butler et al. (2001) for procedures to aid in the selection of 
δ∗. 

Butler et al. (2001) used an additive model (3) to 
evaluate four configurations for a seismic survey; the 
weights assessed were 0.4 for Cost (x1), 0.2 for Duration 
(x2) and 0.1 for each crew utilization measure (x3 to x6). To 
determine the best configuration we will calculate and pre-
sent, the average re-scaled utility E[u1(X′i1)], the re-scaled 
standard deviation,  StDev(E[u1(X′i1)]), the average cost 

1iX  from the simulator, and the average equivalent cost, 

1iX ′ , for each of the i configurations.  The results are pre-
sented in Table 1 for comparison. Using the Rinott (1978) 
procedure the second stage results in Table 1 indicate that 
Configuration II is the superior approach.   

 
Table 1: Results from Butler et al. (2001) 

Configu-
ration 

Average 
Re-scaled 

Utility 

Re-scaled 
Standard 
Deviation 

Average 
Cost 

Average 
Equiva-
lent Cost 

(I) 0.5759 0.0113 $112,354 $160,947 

(II) 0.9595 0.0011 $68,551 $84,261 

(III) 0.5403 0.0102 $151,197 $164,490 

(IV) 0.8607 0.0036 $93,507 $117,275 

 
To demonstrate that the results of Butler et al. (2001) 

are not dependent on the conservative Rinott procedure, we 
first replicate the results from Table 1 in Table 2 using the 
Kim and Nelson (2001) procedure as described by Branke, 
et al. (2005).  Using batched means of size ten and δ* = 
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0.00434 as assessed in Butler et al. (2001), the Kim-Nelson 
procedure stops after an initial examination of eight 
batched means and confirms that Configuration (II) is su-
perior.  For comparison, the results using the Rinott proce-
dure in Table 1 were based on ten initial batches of size ten 
for all configurations in the first phase, and an additional 
ten and eighteen batches for Configurations I and III, re-
spectively, in the second phase. 

 
Table 2: Confirmation of Butler et al. (2001) Results using 
the Kim-Nelson (2001) Procedure 

Configura-
tion 

Average Re-
scaled Utility 

Re-scaled 
Standard De-

viation 

(I) 0.5483 0.0116 

(II) 0.9772 0.0009 

(III) 0.5137 0.0502 

(IV) 0.9297 0.0055 

 
Both the Rinott and Kim-Nelson procedures indicate 

that Configurations II and IV are the top two performers.  
However, while these configurations perform well in terms 
of cost and duration they also have the highest crew utiliza-
tions.  In fact, the average utilization of the layout crew ex-
ceeds the union negotiated maximum of 85% for these al-
ternatives.  Therefore, we should expect Configurations II 
and IV to decrease in terms of utility when we consider the 
constrained crew utilizations. 

Table 3 presents the results when the Kim-Nelson 
(2001) procedure is applied to the target utility function in 
(12).  Configuration IV never produced legal crew utiliza-
tions and is quickly eliminated after examining the eight 
batched means in round 1.  In each subsequent round a sin-
gle batched mean based on ten observations is added for 
each candidate configuration.  After three additional 
rounds Configuration (I) is selected as the superior ap-
proach. 

 
Table 3: Kim-Nelson Procedure for Target Rescaling 

  
Re-scaled Utility Configuration Mean 

(Standard  Deviation) 
Round Candidates I II III IV 

1 I,II,III,IV 0.5333 0.0584 0.5117 0.0000 
  (0.0108) (0.0694) (0.0106) (0.000) 

2 I,II,III 0.5323 0.0519 0.5132  
  (0.0105) (0.0678) (0.0109)  

3 I,II,III 0.5330 0.0467 0.5136  
  (0.0101) (0.066) (0.0104)  

4 I,II,III 0.5332 0.0424 0.5126  
  (0.0097) (0.0642) (0.0104)  
Final I 0.5332    
228
One interesting feature of the analysis is the relatively 
large variance associated with Configuration (II) that leads 
to its continued consideration even though it has a rela-
tively low average.  This results from the fact that Configu-
ration (II) meets the union crew utilization requirement in 
only 5% of the simulated cases, but when it does achieve 
this target it performs very well in terms of Cost and Dura-
tion resulting in high scores.  It may be easier to see the 
similarity of the alternatives by inspecting the average and 
standard deviation of the re-scaled costs associated with 
each alternative as presented in Table 4.   

 
Table 4: Average Equivalent Costs For Round 4 of Kim-
Nelson Procedure 

 

Configura-
tion 

Average 
Re-scaled 

Utility 

Average 
Equivalent 

Cost 

Std. Dev. 
Equivalent 

Cost 

(I) 0.5332 $162,811 $3,675 

(II) 0.0424 $193,787 $27,220 

(III) 0.5126 $165,074 $3,227 

(IV) 0.0000 $200,000 $0 

5 CONCLUSIONS 

This paper has demonstrated how the notion of constraints 
may be incorporated into a multiattribute utility analysis 
and applied to find the best simulated system, or subset of 
systems.  The Butler et al. (2001) procedure was also ap-
plied to the more efficient Kim-Nelson (2001) ranking and 
selection procedure.  The results from the example confirm 
the intuition associated with constraints and targets. 

It is important to emphasize again that true constraints 
are likely to be rare in practice.  Even our example with 
negotiated union crew utilizations might not be a true con-
straint.  It is quite possible that in reality, the company 
would be fined or penalized in some other fashion if the 
negotiated maximums were exceeded.  Alternatives that 
are close to the maximum should receive lower utility be-
cause they are more likely to penalized, but setting their 
utility to zero may be too extreme.  Applying an acceptable 
range to these constraints may be a better approximation, 
effectively defining a utility function over performance in 
the acceptable range. 

It might be more appropriate to use an additive model 
with binary utilities (e.g. the left panel of Figure 2).  While 
not quite as strict as the constraint interpretation this for-
mulation may be useful in some settings.  For example, 
note that for three attributes with binary utilities 0.6u1(x1) + 
0.3u2(x2) + 0.1u3(u3) implies non-compensatory prefer-
ences assuming the attributes are in decreasing order of 
preference.  If an alternative satisfies the target for x1, the 
only way it can be the worst performing alternative is if it 
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does not satisfy any other targets and some other alterna-
tive satisfies at least one additional target.  Similarly, if an 
alternative satisfies the target for x3 it can only be the most 
preferred alternative if no other alternative satisfies any 
target, or the alternative satisfies at least one additional, 
relatively more important target. This preference model is 
consistent with the notion of elimination by aspects (EBA) 
(Tversky 1972) where a decision maker evaluates each al-
ternative one attribute at a time, starting with the most im-
portant attribute, and proceeds until only one alternative 
has the highest score on a particular attribute or she runs 
out of attributes. 

Also, recent work has demonstrated the equivalence of 
utility functions and preferences based on achieving a tar-
get (e.g. Bordley and Licazi 2000; Bordley and Kirkwood 
2004; Abbas and Matheson 2005).  These papers show that 
we could either assess a utility function for xi, ui(xi), or 
could assess a probability distribution that the target level 
is achieved given attribute performance xi, p(xi).  When the 
target is known with certainty, p(xi) = 0 or p(xi) = 1.  In 
other words, the expected utility of an attribute with a 
known target Q as shown in the left panel of Figure 2 is the 
proportion of times that the target is satisfied.  In some 
cases it may be more natural for a decision maker to think 
about achieving a target rather than a utility function but 
there is a mapping from one interpretation to the other, and 
each yield identical decisions. Thus Butler et al. (2001) can 
be reinterpreted using this target-based interpretation. 
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