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ABSTRACT

Consider a performance measure that is evaluated via Monte

Carlo simulation where input distributions to the underly-

ing model may involve two stage sampling. The settings of

interest include the case where in the first stage physical sam-

ples from the distribution are collected. In the second stage,

Monte Carlo sampling is done from the observed empiri-

cal distribution. We also consider the sampling-importance

resampling (SIR) algorithm. Here it is difficult to sam-

ple directly from the desired input distribution, and these

samples are generated in two stages. In the first stage, a

large number of samples are generated from a distribution

convenient from the sampling viewpoint. In the second

stage, a resampling is done from the samples generated

in the first stage so that asymptotically the new samples

have the desired distribution. We discuss how to allocate

computational and other effort optimally the two stages to

minimize the estimator’s resultant mean square error.

1 INTRODUCTION

In this paper we consider optimal allocation of computational

and other resources to minimize the mean square error of the

estimated performance measure when two stage sampling

is involved. Two specific set-ups are considered:

1. We first consider the settings where some of the

input distributions to the model are estimated from

data that may be physically procured, may be ex-

tracted from a database or may be an output from

another simulation model. For example, a com-

pany may run a huge simulation model of all its

investments to generate samples of overall single

period returns. The first stage then corresponds to

this data generation. The second stage corresponds

to sampling from the distribution fitted to this data.
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To keep the discussion simple, we assume that in

the second stage, sampling is done using the em-

pirical distribution of the data generated in the

first stage. We refer to this as the data-simulation

trade-off setting (DST).

2. We then consider the Sampling-Importance Re-

sampling (SIR) algorithm where again a two stage

sampling problem is encountered. The aim of SIR

is to generate random samples from a target input

distribution π . To achieve this, in the first stage it

generates a random sample from another distribu-

tion ϕ that is convenient from sampling viewpoint.

In the second stage it resamples from the samples

generated in the first stage. The probability as-

signed to sample Xi (generated in the first stage)

in the second stage is proportional to π(Xi)/ϕ(Xi).
It is well known that as the number of samples in

the first stage increase to infinity, the distribution

of the samples generated in the second stage con-

verges to π (see, e.g., Rubin 1988, Geweke 1989,

and Smith and Gelfand 1992). We refer to this as

the SIR trade-off (SIRT) setting.

In this paper, in the above two settings, we assume that

there are fixed per sample costs to generate data in each

of the two stages. We then find the asymptotically optimal

allocation of the overall budget (as it increases to infinity)

to the two stages to minimize the mean square error of

the resultant performance measure. In the SIRT we also

identify the the density ϕ that asymptotically minimizes

this mean square error.

To keep the analysis simple, we consider a simple

performance measure. The authors will conduct a more

elaborate analysis in general settings in a separate work.

In Section 2, we develop the mathematical framework

and conduct analysis for DST. In Section 3, we do this for

SIRT. We end with a brief conclusion and directions for

further research in Section 4.
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2 DATA SIMULATION TRADE-OFF

As mentioned in the previous section, in our analysis we

restrict ourselves to a simple framework. We consider

real valued random variables (rv) X , Y and Z defined on

a probability space (Ω,F ,P). These rv are assumed to

be independent. Their probability density functions are

given by πx,πy and πz, respectively. Consider a function

f : <3 →<. Our aim is to estimate µ = E[ f (X ,Y,Z)]. We

assume that f ∈ L2, i.e., E[ f (X ,Y,Z)2] < ∞. We assume

that πz is known. In this section, in the DST settings,

we assume that πx and πy are not known to us but we

can gather i.i.d. samples (X1,X2, . . .) from distribution πx

and i.i.d. samples (Y1,Y2, . . .) from distribution πy. This

represents the collection of data.

Consider the following strategy to estimate µ =
E[ f (X ,Y,Z)]. We first procure samples

(X1,X2, . . . ,Xnx)

and

(Y1,Y2, . . . ,Yny).

We then generate via simulation i.i.d. samples

(X̃1, X̃2, . . . , X̃n) using the empirical distribution associated

with (X1,X2, . . . ,Xnx) so that each P(X̃i = X j) = 1/nx for each

i≤ n and each j ≤ nx. Similarly, we generate (Ỹ1,Ỹ2, . . . ,Ỹn),
where we have suppressed the dependence of X̃i and Ỹj on

the generated data (X1,X2, . . . ,Xnx) and (Y1,Y2, . . . ,Yny) for

notational convenience. We also generate samples i.i.d.

(Z1,Z2, . . . ,Zn) using πz. The resultant estimator for µ
equals

α̂n =
1

n

n∑

i=1

f (X̃i,Ỹi,Zi).

Suppose that it costs cx to generate a single data point

Xi, cy to generate a single data point Yi, and c to generate a

sample of f (X̃i,Ỹi,Zi). Note that cost of generating a sample

of Xi or Yi may be known in monetary value or maybe in

terms of computer time. The cost of generating f (X̃i,Ỹi,Zi)
may be estimated in terms of computer time. We are

assuming that all these costs can be measured in same units

(monetary or computer time). Further suppose that total

budget available to us is C. Note that E(α̂n −µ)2 denotes

the mean square error of rv α̂n. Then our optimization

problem reduces to

minE(α̂n −µ)2

subject to

cxnx + cyny + cn = C,
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where nx,ny and n are non-negative. We analyze this problem

asymptotically as C →∞.

We set nx = βxC, ny = βyC and n = βC for positive

values of βx,βy and β . We then show that

lim
C→∞

C×E(α̂βC −µ)2 = g(βx,βy,β )

for a convex function g that we identify in our analysis.

Asymptotically, then our optimization problem reduces to

ming(βx,βy,β )

subject to

cxβx + cyβy + cβ = 1

where βx,βy and β are non-negative. We refer to this

optimization problem as O1. As we observe in the next

subsection, this is easily solved.

2.1 Evaluating g(βx,βy,β )

Some additional notation is presented below.

• F∞: sigma field σ((X1,Y1),(X2,Y2), . . .);
• σ2( f ): variance of f (X ,Y,Z);
• Random variables (X ′,Y ′): independent rv with

same distribution as (X ,Y ) and independent of

(X ,Y );
• h(X ,Y ): E[ f (X ,Y,Z)|σ(X ,Y )];
• σX ,Y ′ : covariance of h(X ,Y ) and h(X ,Y ′);
• σX ′,Y : covariance of h(X ,Y ) and h(X ′,Y ).

Note that σX ,Y ′ and σX ′,Y are non-negative. To see this

for σX ,Y ′ note that

σX ,Y ′ =

E [E[ f (X ,Y,Z)|F∞]E[ f (X ,Y ′,Z)|F∞]]− (E f )2.

The first term may be re-expressed as

E
[
E[ f (X ,Y,Z)|FX

∞
]2

]

where FX
∞

denotes the sigma-field generated by (X1,X2, . . .).
This obviously dominates (E f )2.

Proposition 1 For f ∈ L2,

g(βx,βy,β ) =
σ2( f )

β
+

σX ,Y ′

βy

+
σX ′,Y

βx

,
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so that g is a convex function. Furthermore, the solution

to the convex optimization problem O1 is:

βx =

√
σX ′,Y /cx

√
σX ′,Y cx +

√
σX ,Y ′cy +

√
σ2( f )c

,

βy =

√
σX ,Y ′/cy

√
σX ′,Y cx +

√
σX ,Y ′cy +

√
σ2( f )c

,

and

β =

√
σ2( f )/c

√
σX ′,Y cx +

√
σX ,Y ′cy +

√
σ2( f )c

.

The results of the proposition are quite intuitive. For

instance, all else being equal, β is large if the variance of

the function f is large and if the cost of generating a sample

c is small.

Note that the solution to O1 follows from the first order

conditions once the form of g is established. We now focus

our efforts on identifying g. Set

µ̂C = E[ f (X̃i,Ỹj,Z)|F∞].

It follows that

µ̂C =
1

βxβyC2

βxC∑

i=1

βyC∑

j=1

E[ f (Xi,Yj,Z)|F∞].

We may re-express the mean square error

E[(α̂βC −µ)2] = E[E[(α̂βC −µ)2|F∞]]

= E[E[(α̂βC − µ̂C + µ̂C −µ)2|F∞]]

= E[E[(α̂βC − µ̂C)2|F∞]]

+E[(µ̂C −µ)2] (1)

Next we analyze the two terms in (1) separately to

identify g.

Consider the term E[(α̂βC − µ̂C)2|F∞]. This is simply

conditional variance of α̂βC that conditioned on F∞ is

simply an average of βC iid terms. It can be seen to equal

1

βC


 1

βxβyC2

βxC∑

i=1

βyC∑

j=1

E[ f (Xi,Yj,Z)2|F∞]

−


 1

βxβyC2

βxC∑

i=1

βyC∑

j=1

E[ f (Xi,Yj,Z)|F∞]




2

 .

Let W denote the rv within the large round brackets in the

above equation and let σ2(W ) denote its variance. Further
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note that E[W ] = E[ f ]. Then the expected value of above

rv simplifies to

1

βC
(σ2( f ))−σ2(W )).

It is easy to see that σ2(W ) is O(1/C), hence

lim
C→∞

C×E[E[(α̂βC − µ̂C)2|F∞]] = σ2( f )/β .

Now consider the term E[(µ̂C − µ)2]. Recall that

h(X ,Y ) = E[ f (X ,Y,Z)|σ(X ,Y )]. Then,

E[(µ̂C −µ)2] = E


 1

βxβyC2

βxC∑

i=1

βyC∑

j=1

(h(Xi,Yj)−µ)2


 .

It is easy to see through expanding the square term

inside the expectation in the RHS above that E[(µ̂C −µ)2]
equals

σ2(h(X ,Y ))

βxβyC2
+

(βxC−1)σX ,Y ′

βxβyC2
+

(βyC−1)σX ′,Y

βxβyC2
.

In particular, it follows that

lim
C→∞

C×E[(µ̂C −µ)2] =
σX ,Y ′

βy

+
σX ′,Y

βx

and the form of the function g in the proposition follows.

3 SAMPLE IMPORTANCE RESAMPLING

ALGORITHM TRADE-OFF

Next we study the use of SIR algorithm in the same setting

as described in Section 2. We assume that all the three

probability density functions are known. In this section, in

the SIRT settings, we assume that it is difficult to generate

from the density πx and πy so SIR is used to generate

samples approximately from distributions, whereas we can

generate easily from πz.

Consider the following strategy to estimate µ =
E[ f (X ,Y,Z)]. In the first stage, we generate samples

(X ′

1
,X ′

2
, . . . ,X ′

nx
)

and

(Y ′

1
,Y ′

2
, . . . ,Y ′

ny
)

under the probability density function ϕx and ϕy. In the

second stage we generate i.i.d. samples (X̃1, X̃2, . . . , X̃n) using
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the first stage sample (X ′

1
,X ′

2
, . . . ,X ′

nx
) so that each

P(X̃i = X ′

j) =
πx(X

′

j)/ϕx(X
′

j)∑nx

j=1
(πx(X ′

j)/ϕx(X ′

j))

for each i ≤ n and each j ≤ nx. Similarly, we generate

(Ỹ1,Ỹ2, . . . ,Ỹn). Further for future use, we define kx =
πx/ϕx and ky = πy/ϕy. We also generate samples i.i.d.

(Z1,Z2, . . . ,Zn) using πz. The resultant estimator for µ
equals

α̂n =
1

n

n∑

i=1

f (X̃i,Ỹi,Zi).

As in Section 2, suppose that it costs cx to generate

a single data point X ′

i , cy to generate a single data point

Y ′

i , and c to generate a sample of f (X̃i,Ỹi,Zi). Again

suppose that total budget available to us is C. Note that

E(α̂n −µ)2 denotes the mean square error of rv α̂n. Then

our optimization problem reduces to

minE(α̂n −µ)2

subject to

cxnx + cyny + cn = C,

where nx,ny and n are non-negative. To analyze this problem

asymptotically as C → ∞, as in Section 2, set nx = βxC,

ny = βyC and n = βC for positive values of βx,βy and β .

We then show that

lim
C→∞

C×E(α̂βC −µ)2 = g̃(βx,βy,β )

for a convex function g̃ that we identify in our analysis.

Asymptotically, then our optimization problem reduces to

min g̃(βx,βy,β )

subject to

cxβx + cyβy + cβ = 1

where βx,βy and β are non-negative. We refer to this

optimization problem as O2.

3.1 Evaluating g̃(βx,βy,β )

We require the following additional notation

• F∞: sigma field σ((X ′

1
,Y ′

1
),(X ′

2
,Y ′

2
), . . .).

• h̃(X ′,Y ′): E[ f (X ′,Y ′,Z)|σ(X ′,Y ′)].
• φx(X

′) : E[(h(X ′,Y )|σ(X ′)] where Y is a rv with

probability density function πy and is independent

of X ′.
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• φy(Y
′) : E[(h(X ,Y ′)|σ(Y ′)] where X is a rv with

probability density function πx and is independent

of Y ′.

Recall that σ2( f ) represents the variance of f (X ,Y,Z),
where X , Y and Z have probability density function πx, πy

and πz, respectively.

We now show that under the assumption of uniform

integrability for certain sequences of rv,

g̃(βx,βy,β ) =
σ2( f )

β
+

Mx

βy

+
My

βx

, (2)

where

Mx = E[(φx(X
′

1
)−µ)2k2

x (X ′

1
)] (3)

My = E[(φy(Y
′

1
)−µ)2k2

y (Y ′

1
)], (4)

so that g̃ is a convex function. Furthermore, the solution to

the convex optimization problem O2 is:

βx =

√
Mx/cx√

Mxcx +
√

Mycy +
√

σ2( f )c
,

βy =

√
My/cy√

Mxcx +
√

Mycy +
√

σ2( f )c
,

and

β =

√
σ2( f )/c

√
Mxcx +

√
Mycy +

√
σ2( f )c

.

Similar to the solution of O1, the solution to O2 fol-

lows from the first order conditions once the form of g̃ is

established. We now focus our efforts on identifying g̃. Let

µ̂C = E[ f (X̃i,Ỹj,Z)|F∞].

It follows that

µ̂C =

∑βxC
i=1

∑βyC

j=1
E[ f (X ′

i ,Y
′

j ,Z)|F∞]kx(X
′

i )ky(Y
′

j )
∑βxC

i=1

∑βyC

j=1
kx(X ′

i )ky(Y ′

j )
.

We may re-express the mean square error

E[(α̂βC −µ)2] = E[E[(α̂βC −µ)2|F∞]]

= E[E[(α̂βC − µ̂C + µ̂C −µ)2|F∞]]

= E[E[(α̂βC − µ̂C)2|F∞]]

+E[(µ̂C −µ)2] (5)

Next we analyze the two terms in (5) separately to

identify g̃.
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Consider the term E[(α̂βC − µ̂C)2|F∞]. This is simply

conditional variance of α̂βC that conditioned on F∞ is

simply an average of βC iid terms. It can be seen to equal

1

βC




∑βxC
i=1

∑βyC

j=1
E[ f 2(X ′

i ,Y
′

j ,Z)|F∞]kx(X
′

i )ky(Y
′

j )
∑βxC

i=1

∑βyC

j=1
kx(X ′

i )ky(Y ′

j )

−




∑βxC
i=1

∑βyC

j=1
E[ f (X ′

i ,Y
′

j ,Z)|F∞]kx(X
′

i )ky(Y
′

j )
∑βxC

i=1

∑βyC

j=1
kx(X ′

i )ky(Y ′

j )




2

 .

Using SLLN we have

1

βxβyC2

βxC∑

i=1

βyC∑

j=1

E[ f 2(X ′

i ,Y
′

j ,Z)|F∞]kx(X
′

i )ky(Y
′

j )

→ E[ f 2(X ′

1
,Y ′

1
,Z1)kx(X

′

1
)ky(Y

′

1
)] a.s.

= E[ f 2(X ,Y,Z)], (6)

1

βxβyC2

βxC∑

i=1

βyC∑

j=1

E[ f (X ′

i ,Y
′

j ,Z)|F∞]kx(X
′

i )ky(Y
′

j )

→ E[ f (X ′

1
,Y ′

1
,Z1)kx(X

′

1
)ky(Y

′

1
)] a.s.,

= E[ f (X ,Y,Z)], (7)

1

βxβyC2

βxC∑

i=1

βyC∑

j=1

kx(X
′

i )ky(Y
′

j )

→ E[kx(X
′

1
)ky(Y

′

1
)] a.s.

= 1, (8)

as C →∞.

Hence under suitable uniform integrability conditions

we have

lim
C→∞

C×E[E[(α̂βC − µ̂C)2|F∞]] = σ2( f )/β .

Now consider the term E[(µ̂C −µ)2]. Recall that

h̃(X ′,Y ′) = E[ f (X ′,Y ′,Z)|σ(X ′,Y ′)].

Then,

µ̂C −µ =

∑βxC
i=1

∑βyC

j=1
(h(X ′

i ,Y
′

j )−µ)kx(X
′

i )ky(Y
′

j )
∑βxC

i=1

∑βyC

j=1
kx(X ′

i )ky(Y ′

j )
.

Let us denote the numerator of the above expression by

AC and denominator by BC. Then it is easy to through
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expanding that we have

E

[(
AC

βxβyC2

)2
]

=

E[(h(X ′

1
,Y ′

1
)−µ)2k2

x (X ′

1
)ky(Y

′

1
)]

βxβyC2

+
(βxC−1)Mx

βxβyC2
+

(βyC−1)My

βxβyC2
.

Let the RHS of the above equation be represented by MC.

Using Theorem 12.6 from van der Vaart (1998), we have

that

√
C

AC√
MCβxβyC2

⇒ Z, as C →∞,

where Z is standard normal rv. Here we use ‘⇒’ to represent

weak convergence. Also by SLLN we have that BC satisfies

(8). Thus, under suitable uniform integrability conditions

we have

lim
C→∞

CE[(µ̂C −µ)2] =
Mx

βy

+
My

βx

and the form of the function g̃ in (2) follows.

3.2 Optimal Choice of ϕx and ϕy

Next we wish to study the impact of the first stage distribution

ϕx and ϕy on the mean square error. To this end we tag the

function g̃ and constants Mx and My with ϕ to explicitly

show this dependence. Thus, g̃ϕ represents the asymptotic

mean square error. We can now state the following result.

Proposition 2 For the class of ϕx and ϕy for which

(2) holds, we have

g̃ϕ(β ,βx,βy) ≥ g̃ϕ∗(β ,βx,βy),

for all β ,βx,βy ≥ 0, where

ϕ∗

x (·) = Kx|φ(·)−µ |πx(·) (9)

ϕ∗

y (·) = Ky|φ(·)−µ |πy(·) (10)

and Kx and Ky are normalizing constants.

To prove the above proposition we note that to minimize

g̃ϕ over ϕx and ϕy is equivalent to minimizing Mx,ϕ over

ϕx and My,ϕ over ϕy. We first consider Mx. Using the

definition, we have

Mx,ϕ = E[(φ(X ′)−µ)2k2

x (X ′)].

Using Jensen’s inequality we have

Mx,ϕ ≥
(
E

[
|φ(X ′)−µ |kx(X

′)
])2

=
(
E

[
|φ(X)−µ |

])2

,
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where X is rv with probability density function πx. It can

be easily verified that Mx,ϕ∗ where ϕ∗

x is as defined in (9)

achieves this lower bound. We can prove the optimality of

ϕ∗

y in an analogous manner.

It is noteworthy that Hesterberg (1995) showed that a

similar density function optimal in one-dimensional setting

for conducting certain weighted importance sampling.

4 CONCLUSION AND FURTHER RESEARCH

DIRECTIONS

In this paper we outlined a methodology for optimal al-

location of resources when sampling for input distribution

involved two stages. We illustrated our results in a simple

setting. In our ongoing research we generalize this analysis

to more complex and realistic performance measures.

In the SIRT settings, we identified the optimal first

stage distribution. An interesting research direction may be

to develop approximations to this to improve performance

of the SIR algorithm. One potential application of SIR may

be to efficiently generate samples of some practically im-

portant random variates, e.g., those with Normal or Gamma

distribution at computationally cheaper rates compared to

existing algorithms.
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