
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

ON CHOOSING PARAMETERS IN

RETROSPECTIVE-APPROXIMATION ALGORITHMS

FOR SIMULATION-OPTIMIZATION

Raghu Pasupathy

Industrial and Systems Engineering

Virginia Tech

Blacksburg, VA 24061, U.S.A.
ABSTRACT

The Simulation-Optimization (SO) problem is a constrained

optimization problem where the objective function is ob-

served with error, usually through an oracle such as a

simulation. Retrospective Approximation (RA) is a gen-

eral technique that can be used to solve SO problems. In

RA, the solution to the SO problem is approached using

solutions to a sequence of approximate problems, each of

which is generated using a specified sample size and solved

to a specified error tolerance. In this paper, our focus is

parameter choice in RA algorithms, where the term pa-

rameter is broadly interpreted. Specifically, we present (i)

conditions that guarantee convergence of estimated solu-

tions to the true solution; (ii) convergence properties of

the sample-size and error-tolerance sequences that ensure

that the sequence of estimated solutions converge to the

true solution in an optimal fashion; and (iii) a numerical

procedure that efficiently solves the generated approximate

problems for one-dimensional SO.

1 INTRODUCTION AND PROBLEM

STATEMENT

The Deterministic-Optimization (DO) problem is that of

finding a minimizer x∗ of a real-valued function G : D ⊂
<q→<. This problem has been extensively studied in the

last thirty years, and efficient algorithms for solving DO

problems exist at least in contexts where the function G

satisfies certain structural assumptions (Bazaara et al. 2006,

Bertsekas 1999).

The SO problem is a generalization of the DO problem

where the objective is the same, i.e., a minimizer x∗ of

G is sought, but the function G is known only through a

consistent estimator. The consistent estimator of G is usually

constructed by averaging responses from an oracle such as

a Monte Carlo simulation. Formally, the SO problem is

stated as follows.
2081-4244-0501-7/06/$20.00 ©2006 IEEE
Given: An oracle capable of generating, for any x ∈
D⊂ IRq, an estimator Y m(x) of the function G(x) : D→ IR

such that Y m(x)→G uniformly with probability one (w.p.1)

as m→∞.

Find: A local minimizer x∗ ∈ D of G, i.e., find x∗

having a neighborhood V (x∗) such that every x ∈ V (x∗)
satisfies G(x)≥ G(x∗), assuming that one such x∗ exists.

As stated, the SO problem makes no assumptions about

the nature of Y m(x) except that limm→∞Y m(x) = G(x) uni-

formly w.p.1. Also, the feasible set D is assumed to be

known in the sense that the functions involved in the spec-

ification of D are observed without error. Various slightly

differing flavors of the SO problem have appeared in the lit-

erature. See, for example, Nemirovski and Shapiro (2004),

Ruszczynski and Shapiro (2003), and Fu (1994).

RA is a general technique that can be used to solve prob-

lems such as SO, and is based on the following simple idea.

Since the actual problem contains functions that cannot be

observed exactly, approach the solution to the actual prob-

lem using solutions to a sequence of approximate problems,

each of which is generated using a specified finite sample

size and solved to a specified error tolerance. So, during

the kth iteration, a sample-path problem is generated using

a sample size mk, and solved to within error tolerance εk.

Across iterations, the sample size mk is gradually increased

to∞ and the error tolerance εk is gradually decreased to 0.

In order to implement RA algorithms on a problem,

various parameters in the RA framework need to be specified

by the user. Here, the term parameters is broadly used,

and includes the sequences {mk} and {εk}, and a numerical

procedure that can be used to solve the generated sample-

path problem to within the specified error tolerance. Our

main focus in this paper is providing guidance on choosing

parameters in RA algorithms for solving SO problems. We

try to answer three questions that arise in this context.

(i) Under what conditions do RA algorithms for SO

problems converge?
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(ii) How should the parameter sequences {mk} and

{εk} be chosen in RA algorithms?

(iii) What numerical procedures can be advantageously

employed for solving the sample-path problem?

The answer to the first question, discussed in Section 3,

is an almost trivial consequence of various existing results

that have been derived recently in the context of sample

average approximation. We address the second question in

Section 4, and the third question in Section 5, although

only partially. For brevity, most results are stated without

proofs.

2 LITERATURE REVIEW

In this section, we present an overview of the important

works related to solving SO problems. We limit our dis-

cussion to works that are gradient-based, i.e., methods that

rely on estimated measures of the gradient of the objective

function, and seeking local extrema. See Fu (1994) and

Safizadeh (1990) for a commentary on SO problems in

general.

2.1 Stochastic Approximation (SA)

Much of the existing literature on gradient-based methods

are variants of Classical Stochastic Approximation (CSA),

the original root-finding algorithm proposed by Robbins and

Monro (1951). CSA, as proposed by Robbins and Monro,

has the simple iterative structure

Xk+1 = Xk−akY k(Xk), (1)

where k is the iteration number, X0 is an initial guess of

the root x∗ of the root-finding equation g(x) = 0, Y k is an

unbiased estimator of the root-finding function g(x), and

{ak}∞k=0
is a predetermined sequence of positive constants

satisfying
∑

∞

k=0
ak =∞ and

∑

∞

k=0
a2

k <∞. CSA’s iterates

converge to x∗ satisfying g(x∗) = 0 in mean square under

fairly general conditions. There has since been much work

done in accelerating the convergence of CSA. We do not

go into details here since this is in the context of root

finding. See for instance Kesten (1958), Venter (1967),

Wasan (1969), Andradóttir (1990) and Andradóttir (1991).

CSA is relevant to SO problems if the root-finding func-

tion g is interpreted as the gradient of an objective function

G whose minimizer we seek in SO problems. This is the

basis of the Kiefer-Wolfowitz procedure (Kiefer and Wol-

fowitz 1952), which is apparently the first known algorithm

for solving one-dimensional SO problems. In the Kiefer-

Wolfowitz procedure, the gradient of the observable function

G is approximated using the method of finite differences,

and an iteration similar to that of CSA produces a sequence

of iterates that converge to the minimizer of G in probabil-
209
ity. Blum (1954) extends the Kiefer-Wolfowitz procedure

to multiple dimensions and proves almost sure convergence.

Since Blum’s work in 1954, there have been several vari-

ants of the Kiefer-Wolfowitz procedure. See Fabian (1968),

Kushner and Clark (1978), and more recently Simultane-

ous Perturbation Stochastic Approximation (SPSA) in Spall

(1998) and Spall (2000). Most of these works have focused

on accelerating convergence of the Kiefer-Wolfowitz pro-

cedure through improved gradient estimation methods. He,

Fu, and Marcus (2003) extend the convergence proofs pre-

sented by Spall to the case when G is convex and not

necessarily differentiable.

2.2 Sample Average Approximation (SAA)/

Retrospective Approximation (RA)

SAA, also known by various other names including sample-

path optimization, stochastic counterpart method and retro-

spective approximation, is another general technique used

for solving SO problems. It appears that the first reference

to this technique is by Healy and Schruben (1991). Several

other authors have used the technique in various contexts.

See for instance Rubinstein and Shapiro (1993), Plambeck

et al. (1996), and Atlason, Epelman, and Henderson (2002).

The idea of SAA is easily stated. Instead of solving the actual

SO problem, solve an approximate problem S obtained by

substituting the unknown underlying objective function G by

the sample-path approximation ym(x;ω). The sample-path

approximation ym(x;ω) is the realization of the consistent

estimator Y m(x) of G(x), generated using the vector of ran-

dom numbers ω = {ω1,ω2, . . . ,ωm} and sample size m. So,

the sample-path problem S has the following simple form:

Minimize ym(x;ω) (S)
subject to x ∈D⊂ IRq.

So in SAA, instead of the original SO problem, a single

approximate deterministic problem S generated with a “suf-

ficiently large” sample size is solved to optimality using

an appropriately chosen non-linear programming algorithm.

Under certain conditions, most notably on ym(x;ω), the so-

lution to S converges to a minimizer x∗ of G as the sample

size m→∞. See Shapiro and de Mello (2000), Shapiro

(2000), Ruszczynski and Shapiro (2003), and de Mello

(2003) for a thorough discussion of SAA including results

on the rates of convergence.

RA, proposed by Chen and Schmeiser (2001) in the

context of stochastic root finding, is a variant of SAA

where, instead of generating and solving a single sample-

path problem S, a sequence of sample-path problems {Sk}
are generated with increasing sample sizes {mk}→∞, and

solved to decreasing tolerances {εk}→ 0. The philosophy

behind the RA structure is as follows: during the early

iterations, i.e., for small k, use small sample sizes mk
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and large error tolerances εk in solving the sample-path

problem Sk; in later iterations, as the estimated solution

Xk tends closer to a minimizer x∗, use larger sample sizes

and correspondingly smaller error tolerances. The early

iterations are efficient because the small sample sizes ensure

that not much computing effort is expended in generating

the sample-path problem, and the later iterations are efficient

because the estimated solution Xk is probably close to a

minimizer x∗ and not much effort is expended in solving the

sample-path problem Sk. This structure of RA is central to

the simultaneous goals of proving convergence and achieving

good practical performance. Specifically, the RA framework

is as follows.

Parameters: (i) Numerical procedure for solving the

sample-path problem Sk to within a specified error tolerance

εk for each k; (ii) An initial sample size m1 and a rule

for successively increasing mk for k ≥ 2; (iii) A rule for

computing an error-tolerance sequence {εk} that goes to

zero w.p.1.

Logic:

0. Initialize the retrospective iteration number k = 1.

Set m1 and ε1.

1. Generate the vector of random numbers ωk.

2. Use the numerical method to solve the deterministic

sample-path problem Sk to within error tolerance

εk and obtain a retrospective solution Xk.

3. Compute estimated solution Xk as a weighted com-

bination of the retrospective solutions {X j}k
j=1

.

4. If the stopping criterion is not satisfied, compute

mk+1 and εk+1. Set k← k +1 and go to 1.

It is worth noting again that RA is only a broad frame-

work and specific algorithms result only upon choosing

parameters (i), (ii), and (iii) in the framework.

3 CONDITIONS FOR GUARANTEED

CONVERGENCE

In this section, we present two simple results that establish

sufficient conditions to ensure that the sequence {Xk} of

retrospective solutions in RA algorithms converges to the

true solution x∗ w.p.1. We start with Theorem 1 which

is a well-known result that appears in various forms in a

number of papers including Shapiro (2000) and Dupačová

and Wets (1988). Theorem 1 asserts that the set of local

minimizers converges (in distance) to the unique minimizer

of the limiting function G if the feasible set D is compact, the

function G is continuous, and the sequence of sample-path

functions ymk
(x;ωk) converges to G uniformly w.p.1.

Theorem 1 Assume that

(i) the set D⊂ IRq is compact;

(ii) the function G : D→ IR is continuous with a unique

minimizer x∗ ∈D;
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(iii) the function ymk
(x;ωk) is such that the sequence

{ymk
(x;ωk)} converges to G uniformly w.p.1, i.e.,

sup{|ymk
(x;ωk)−G(x)|} → 0 as k→∞ w.p.1.

If Lk ⊂D is the set of local minimizers of ymk
(x;ωk), and

if Lk is non-empty for large enough k, then the distance

d(Lk,{x∗})→ 0 as k→∞ w.p.1.

In the above result, the assumption that the set of local

minimizers Lk is non-empty holds if, for instance, ymk
(x;ωk)

is continuous. Without assumptions such as the continuity of

ymk
(x;ωk), nothing can be said about the limiting behavior

of Lk even if ymk
(x;ωk) converges uniformly to G, and

G has a unique minimizer. As an example, let G(x) = x2

for x ∈ [−1,1], and let ymk
(x;ωk) = x2 for x ∈ [−1,0),

and ymk
(x;ωk) = x2 +1/k for x ∈ [0,1]. For this example,

ymk
(x;ωk) converges to G uniformly, and Lk is empty for

all k, even though G has a unique minimizer at x∗ = 0.

Recall that in RA algorithms the kth sample-path prob-

lem is solved to within the chosen tolerance εk, i.e., the

kth retrospective solution Xk is εk within some local mini-

mizer X∗

k of the sample-path function ymk
(x;ωk) w.p.1. A

trivial consequence of this fact and Theorem 1 is that the

sequence {Xk} of retrospective solutions converges to the

true solution x∗ w.p.1. Theorem 2 states this formally.

Theorem 2 Assume that the conditions in Theorem

1 hold. Furthermore, assume that

(i) the positive-valued sequence {εk}→ 0 w.p.1;

(ii) for each k, Xk satisfies ‖Xk−X∗

k ‖≤ εk w.p.1, where

X∗

k is some local minimizer of ymk
(x;ωk).

Then {Xk}→ x∗ w.p.1.

Proof: Since Xk satisfies ‖Xk −X∗

k ‖ ≤ εk w.p.1, the

random variable ∆k = X∗

k −Xk is supported on a hypersphere

of radius εk centered at the origin w.p.1. So, {∆k}→ 0 w.p.1.

However, Xk = X∗

k +∆k, and from Theorem 1, {X∗

k }→ x∗

w.p.1. Conclude that {Xk}→ x∗ w.p.1. 2

4 CHOOSING THE ERROR-TOLERANCE

SEQUENCE

Recall that in RA algorithms, {mk} is the chosen sequence

of sample sizes used to generate the sample-path problems

across iterations, εk is the chosen tolerance to which the

kth sample-path problem is solved, {Xk} is the sequence

of retrospective solutions obtained across iterations, {X∗

k }
is a corresponding sequence of local minimizers satisfying

‖Xk−X∗

k ‖ ≤ εk, and x∗ is the true solution. It is worth

noting here that there may be many possible sequences

{X∗

k } of local minimizers satisfying ‖Xk −X∗

k ‖ ≤ εk. In

order to avoid this complication, we assume, for now, that

ymk
(x;ωk) has a unique minimum.

Our objective, in this section, is providing insight into

choosing a sequence of error tolerances {εk} that ensures
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rapid convergence of Xk to x∗. As a measure of efficiency,

we use the mean squared error (MSE) of Xk computed as

MSE(Xk,x
∗) = E[(Xk− x∗)

T
(Xk− x∗)],

where all vectors involved are column vectors. Also, for

ease of exposition, we decompose the MSE of X∗

k as

MSE(X∗

k ,x∗) = E[(X∗

k − x∗)
T

(X∗

k − x∗)] = vk +b2
k ,

where vk = E[
(

X∗

k −E[X∗

k ]
)T (

X∗

k −E[X∗

k ]
)

] and b2
k =

(

E[X∗

k ]− x∗
)T (

E[X∗

k ]− x∗
)

. Notice that vk is the trace (sum

of diagonal elements) of the covariance matrix of X∗

k .

In Theorem 3, we establish the minimum rate at which

the sequence of tolerances {εk} should converge to zero to

ensure the optimal convergence of MSE(Xk,x
∗). Specifi-

cally, Theorem 3 states that it is best to choose the sequence

of error tolerances {εk} so that it converges to zero at least

as fast as the sequence {Max(vk,b
2
k )}.

Theorem 3 Assume that

(i) the set D⊂ IRq is compact;

(ii) the function G : D→ IR is continuous and convex

with a unique minimizer x∗ ∈D;

(iii) the functional sequence {ymk
(x;ωk)} converges to

G uniformly w.p.1, and each function ymk
(x;ωk)

has a unique minimum;

(iv) the positive-valued sequence of tolerances {εk}→
0 w.p.1;

Then

(a) limsupk→∞
ε
2
k /Max(vk,b

2
k ) =∞ w.p.1 implies

limsupk→∞
MSE(Xk,x

∗)/Max(vk,b
2
k ) =∞;

(b) limsupk→∞
ε
2
k /Max(vk,b

2
k ) <∞ w.p.1 implies

limsupk→∞
MSE(Xk,x

∗)/Max(vk,b
2
k ) <∞.

Theorem 3 establishes the minimum rate at which the

sequence of tolerances {εk} should converge to zero, i.e.,

it suggests that the sequence {εk} should converge to zero

at least as fast as the sequence {Max(vk,b
2
k )}.

The assumptions appearing in Theorem 3, especially

that ymk
(x;ωk) has a unique minimum, can be relaxed. This

would involve the careful specification of the sequence {X∗

k }.
We do not go into the generalization details here since the

result, as stated, captures the essential idea.

We now present Theorem 4 which is useful in deciding

the maximum rate of convergence of the sequence of toler-

ances {εk}. Specifically, Theorem 4 asserts that as long as the

sequence of error tolerances {ε2
k } converges to zero at least as

fast as the sequence {Max(vk,b
2
k )}, irrespective of how much

faster it converges, the convergence rate of {MSE(Xk,x
∗)}

remains the same. In other words, all error-tolerance se-
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quences satisfying limsupk→∞
ε
2
k /Max(vk,b

2
k ) <∞ w.p.1

are equivalent from the standpoint of asymptotic efficiency.

Theorem 4 Let the sequence {εk} satisfy 0 <

limsupk→∞
ε
2
k /

(

Max(vk,b
2
k )

)1+ν

<∞ w.p.1 for some ν ≥
0. Then

limsup
k→∞

MSE(Xk,x
∗)

Max(vk,b
2
k )

= limsup
k→∞

vk +b2
k

Max(vk,b
2
k )

.

Theorem 4 suggests that there is no gain in the con-

vergence rate of the sequence of mean squared errors

{MSE(Xk,x
∗)} with an increase in the convergence rate of

the sequence of error tolerances {εk}, as long as {εk} con-

verges to zero at least as fast as the sequence {Max(vk,b
2
k )}.

Recall that the kth error tolerance εk is an indicator of

how much effort is expended in solving the kth sample-path

problem. Since solving to lower tolerances usually involves

increased computing effort, it seems intuitively clear that

choosing εk so that it converges to zero at the same rate as

{Max(vk,b
2
k )} will be “most efficient.” Theorem 5 validates

this intuition.

In Theorem 5, the measure “work × squared er-

ror,” computed as E
[

Nk(Xk− x∗)T (Xk− x∗)
]

, is used in

assessing algorithm performance. In the expression

E
[

Nk(Xk− x∗)T (Xk− x∗)
]

, the random variable Nk repre-

sents the number of simulation calls expended during the

kth iteration, in solving the sample-path problem to toler-

ance εk. So, smaller values of E
[

Nk(Xk− x∗)T (Xk− x∗)
]

indicate better algorithm performance.

Theorem 5 Assume that

(i) 0 < limsupk→∞
ε
2
k /

(

Max(vk,b
2
k )

)1+ν

<∞ w.p.1

for some ν ≥ 0;

(ii) limsupk→∞
{ε2

k E[Nk]}<∞ w.p.1; and

(iii) Nk is independent of Xk.

Then

(a) ν > 0 implies

limsup
k→∞

E
[

Nk(Xk− x∗)T (Xk− x∗)
]

=∞;

(b) ν = 0 implies

limsup
k→∞

E
[

Nk(Xk− x∗)T (Xk− x∗)
]

<∞.

The assumption (ii) in Theorem 5 is motivated by the frequent

scenario where the squared error in the reported solution of

a minimization problem is of the order of the reciprocal of

the computing effort expended. Clearly, a result similar to

Theorem 5 will hold even when the computing effort involved

is greater. Also, while assumption (ii) can probably be

relaxed without weakening Theorem 5, it is still less stringent
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than assuming, for instance, that limsupk→∞
{ε2

k Nk} is

uniformly bounded w.p.1.

Theorems 3, 4 and 5 together imply that, under certain

conditions, choosing the sequence of error tolerances {εk}
so that it converges to zero at same rate as the sequence

{Max(vk,b
2
k )} is optimal. Can we find one such sequence of

error tolerances? This question is especially interesting since

vk and b2
k are usually unknown. Theorem 6 answers this

question using the well-known result that, under certain

conditions,
√

mk(X
∗

k − x∗) has a non-degenerate limiting

distribution. Results of this sort appear in, for instance,

Shapiro (2000) and Dupačová and Wets (1988).

Theorem 6 Assume that the conditions in The-

orem 3 hold, and that ymk
(x;ωk) is the average of

mk independent and identically distributed (i.i.d) ran-

dom variables. If the sequence of error tolerances {εk}
satisfies 0 < limsupk→∞

εk
√

mk < ∞ w.p.1, then 0 <
limsupk→∞

ε
2
k /Max(vk,b

2
k ) <∞. w.p.1.

For any chosen sequence of sample sizes {mk}, Theo-

rem 6 provides guidance on the choice of the sequence of

error tolerances {εk}. For example, choosing εk = c3/
√

mk,

for any constant c3 > 0, is a simple way of ensuring that

0 < limsupk→∞
ε
2
k /Max(vk,b

2
k ) <∞ w.p.1. A more so-

phisticated choice is inspired by assuming that the retro-

spective solutions {Xk} are independently distributed random

variables, and that Xk has variance σ
2/mk, where σ

2 > 0
is some underlying covariance matrix to be estimated from

observed data.

5 AN RA ALGORITHM FOR THE ONE-

DIMENSIONAL CASE

In the preceding sections, we provided guidance on the

choice of the sequence of error tolerances {εk} in RA

algorithms. We did not focus on the choice of the sequence

of sample sizes {mk} because {εk} is adjusted based on

{mk}. So, asymptotically, the only major effect that the

sequence {mk} will probably have is in deciding the number

of stopping points, i.e., on how often the algorithm reports

the current solution to the user. For example, using m1 = 1
and then increasing sample size by 10% in each iteration

has worked in practice.

In this section, we focus on yet another parameter in

RA algorithms, namely the numerical procedure that is used

to satisfy the iteration-level termination criterion. Recall

that, for purposes of this paper, the termination criterion for

the kth iteration is identifying a retrospective solution Xk

so that ‖Xk−X∗

k ‖ ≤ εk, where X∗

k is some local minimizer

of the sample-path function ymk
(x;ωk). In the following

paragraphs, we describe an algorithm that achieves this

efficiently for the one-dimensional SO case.
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5.1 Overview

The broad idea of the proposed numerical procedure is as

follows. During the kth iteration, we generate a sample-path

function ymk
(x;ωk) with sample size mk, and then seek three

points Xa,Xb,Xc such that the following conditions hold:

C.1 Xa < Xb < Xc;

C.2 Xc−Xa ≤ εk;

C.3 ymk
(Xa;ωk)≥ ymk

(Xb;ωk); and

C.4 ymk
(Xc;ωk)≥ ymk

(Xb;ωk).

It can be shown that if points Xa,Xb,Xc satisfy C.1, C.2,

C.3, and C.4, then there exists a local minimizer in the

interval [Xa,Xc]. So, any point Xk ∈ [Xa,Xb] satisfies the

termination criterion. It is worth noting that, counter to

what intuition may suggest, the conditions C.1, C.2, C.3,

and C.4 do not guarantee the existence of a local minimizer

of the sample-path function ymk
(x;ωk) in the absence of

continuity.

A physical interpretation of C.1, C.2, C.3, and C.4 is

that they jointly stipulate the identification of three points

Xa,Xb,Xc within εk from each other such that a quadratic

constrained to pass through the points (Xa,ymk
(Xa;ωk)),

(Xb,ymk
(Xb;ωk)), and (Xc,ymk

(Xc;ωk)) attains its minimum.

This interpretation is also useful in multidimensional ex-

tension.

We illustrate successful termination of the kth iteration

in Figure 1 where the dotted curve represents the graph of

the unknown underlying function G, and the solid curve

is the graph of the sample-path function ymk
(x;ωk). The

points Xa,Xb,Xc in Figure 1 satisfy conditions C.1, C.2,

C.3, and C.4. The kth retrospective solution Xk is then

appropriately chosen from the interval [Xa,Xc].
We next describe a method to identify points Xa,Xb,Xc

satisfying conditions C.1, C.2, C.3, and C.4.

−5 5
0

5

10

15

20

25

y
mk

(x, ω
k
)

G(x)

Xa Xb Xc≤ εk

Figure 1: Illustration of the Successful Termination of the

kth Iteration
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5.2 Numerical Procedure Logic

The strategy is to choose a direction (+x or negative −x)

and simulate at points separated by increasing step sizes

until we encounter three points that satisfy conditions C.1,

C.3 and C.4. Figure 2 illustrates this idea. If the three

identified points also satisfy condition C.2, the iteration

terminates successfully. Otherwise, a technique such as

bisection search is used to identify three other points that

satisfy condition C.2 in addition to C.1, C.3, and C.4.

The motivation behind this strategy is the idea that if the

sample-path function approximates the underlying function

G even “reasonably” well, which it will at least eventually

as the sample size mk increases, the procedure will succeed

in identifying the required points when G has a unique

minimum. The following paragraphs provide more detail

on this procedure.

−5 5
0

5

10

15

20

25

Z0Z1Z2Z3Z4

y
mk

(x, ω
k
)

εkc2εkc2
2
εkc3

2
εk

Figure 2: Illustration of Algorithm Logic During the kth

Iteration

Recall that Xk−1 is the estimated solution at the end

of k− 1 iterations. It forms the initial solution for the

kth iteration. During the kth iteration, we first simulate

at design points Xk−1 and Xk−1 +dεk to obtain responses

ymk
(Xk−1;ωk) and ymk

(Xk−1 +dεk;ωk) respectively. Here,

d is chosen to be 1 or −1, and εk > 0 is the chosen step

size.

For ease of exposition, relabel as Z0, that amongst

Xk−1,Xk−1 +dεk which has the larger observed response.

Likewise, relabel as Z1, that amongst Xk−1,Xk−1 +
dεk which has the smaller observed response. So, if

ymk
(Xk−1;ωk)≥ ymk

(Xk−1 +dεk;ωk) then

Z0 = Xk−1,Z1 = Xk−1 +dεk; and

Z0 = Xk−1 +dεk,Z1 = Xk−1 otherwise.

With this relabeling, we see that we have simulated at the

design points Z0 and Z1, and that ymk
(Z0;ωk)≥ ymk

(Z1;ωk).
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Let t = sign(Z1−Z0) and define Z2 = Z1 + tc2εk,Z3 =
Z2 + tc2

2εk, . . . , where the step-size multiplier c2 is some

constant greater than 1. Recalling that we have al-

ready simulated at Z0 and Z1, simulate at the design

points Z2,Z3, . . . , until three points Zn−2,Zn−1,Zn are en-

countered such that ymk
(Zn−2;ωk) ≥ ymk

(Zn−1;ωk), and

ymk
(Zn;ωk)≥ ymk

(Zn−1;ωk). We illustrate this in Figure 2.

The points Zn−2,Zn−1,Zn satisfy all stipulations for suc-

cessful termination except, perhaps, C.2. So, we repeatedly

bisect [Zn−2,Zn] to find three points Xa,Xb,Xc that satisfy

C.1, C.2, C.3 and C.4.

We now present the pseudo-code for the non-terminating

version of the proposed numerical procedure.

5.3 Procedure Listing

Given: Default values for the initial guess X0, step-size

multiplier c2 > 1, and a method to compute the sequences

{εk} and {mk}.
Find: A local minimizer x∗ ∈D of G.

0. Initialize k = 0.

1. Set k = k +1.

2. Simulate at Xk−1 and Xk−1 + εk to get

ymk
(Xk−1;ωk) and ymk

(Xk−1 + εk;ωk).

3. If ymk
(Xk−1;ωk) ≥ ymk

(Xk−1 + εk;ωk) then set

Zn−1 = Xk−1,Zn = Xk−1 + εk;

otherwise set Zn−1 = Xk−1 + εk,Zn = Xk−1.

4. Set t = sign(Zn−Zn−1),Zn−2 = Zn−1.

5. Find points that satisfy conditions C.1, C.3, and

C.4: repeat Steps 5(a)–(d) until

Zn−2 < Zn−1 < Zn, ymk
(Zn−2;ωk)≥ ymk

(Zn−1;ωk)
and ymk

(Zn;ωk)≥ ymk
(Zn−1;ωk).

(a) Set Zn+1 = Zn + tc2|Zn−Zn−1|.
(b) Set Zn−2 = Zn−1,Zn−1 = Zn,Zn = Zn+1.

(c) Simulate at Zn to get ymk
(Zn;ωk).

6. Initialize Xa = Zn−2,Xb = Zn−1,Xc = Zn.

7. Find points Xa,Xb,Xc that satisfy conditions C.1,

C.2, C.3, and C.4: repeat Steps 7(a)–(f) until |Xc−
Xa| ≤ εk.

(a) Set Z = (Xb +Xc)/2.

(b) Simulate at Z to obtain ymk
(Z;ωk).

(c) If ymk
(Z;ωk) ≤ ymk

(Xb;ωk), then set Xa =
Xb,Xb = Z. Otherwise set Xc = Z.

(d) Set Z = (Xa +Xb)/2.

(e) Simulate at Z to obtain ymk
(Z;ωk).

(f) If ymk
(Z;ωk) ≤ ymk

(Xb;ωk), then set Xc =
Xb,Xb = Z. Otherwise set Xa = Z.

8. Compute Xk as the minimizer of the quadratic

passing through the three points (Xa,ymk
(Xa;ωk)),
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(Xb,ymk
(Xb;ωk)), and (Xc,ymk

(Xc;ωk)).
If ymk

(Xa;ωk) = ymk
(Xb;ωk) = ymk

(Xc;ωk), then

set Xk = Xa.

9. Set Xk =
∑k

j=1
m jX j/

∑k
j=1

m j and go to Step 1.

6 CONCLUDING REMARKS AND FUTURE

RESEARCH

This paper addresses the question of choosing parameters

in RA algorithms, where the term parameters is broadly

used. Specifically, the paper identifies the rate at which the

sequence of error tolerances {εk} should be decreased in

RA algorithms in order to achieve optimal convergence rate

of the retrospective solutions {Xk} to the true solution x∗.

The results, in loose terms, suggest that it is best to choose

the error tolerances so that they go to zero at the same rate

at which solutions to the sample-path problems converge

to the true solution. Since the latter rate is usually decided

by the rate at which the sample sizes used to generate the

sample-path problems go to ∞, the results point to the

relative rates at which {εk} and {mk} should be going to

their respective limits to ensure optimal convergence.

The iteration-level termination criterion used in this

paper is ‖Xk−X∗

k ‖ ≤ εk. So, the kth iteration is terminated

when a solution Xk, within a distance εk from some minimizer

of the objective function generated during the kth iteration,

is identified. Although the results presented in this paper

assume that the above termination criterion is in effect,

parallel results can be derived in a similar fashion for most

other termination criteria that one sees in the literature.

Several interesting directions can be pursued in future

research. We list three that we consider important.

(i) In RA algorithms, frequently, it is impossible to ver-

ify if a retrospective solution Xk satisfies a specified

termination criterion. In deterministic nonlinear

programming, this problem is addressed heuris-

tically or using statistical inference. The latter

approach may be useful even in the RA context

but an important question is the choice of the Type

I error αk if a hypothesis testing procedure is used.

The value of αk will decide the trade-off between

the amount of computing to be done during the

kth iteration and the required level of certainty on

the satisfaction of the termination criterion.

(ii) The relation between {mk} and {εk} is derived

assuming i.i.d sampling in generating the sample-

path function ymk
(x;ωk). It is likely that similar

results hold even more generally, and characterizing

these more general conditions is interesting.

(iii) The feasible set D is assumed to be fixed and

known in this paper. This is frequently not the

case. See, for example, Atlason, Epelman, and

Henderson (2002) and Nemirovski and Shapiro
214
(2004). Investigating the choice of parameters in

contexts where the feasible space itself needs to

be estimated is an interesting problem.
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