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ABSTRACT

We propose a new procedure for building confidence interval

estimators of steady-state parameters in discrete event sim-

ulations. The procedure uses parallel processors to generate

independent replications and constructs the confidence inter-

val estimator by solving a generalized least square problem.

The most appealing theoretical feature of the proposed pro-

cedure is that the precision of the resulted estimator can be

improved by simply increasing the number of processors (or

independent replications) while the simulated time length

is fixed on an appropriate level on each processor. Experi-

ments conducted on M/M/1 queue waiting time processes

in heavy traffic confirm this theoretical property.

1 INTRODUCTION

Let Y = (Y (t) : t ≥ 0) be a real-valued stochastic process

representing the output of a discrete event simulation. Sup-

pose that Y satisfies a law of large number (LLN) of the

form

α(t) ≡ 1

t

∫ t

0

Y (s)ds ⇒ α (1)

as t →∞, for some constant α , where ⇒ denotes conver-

gence in distribution. The steady-state simulation problem

is concerned with the efficient estimation of the steady-state

mean of α , and the construction of associated confidence

intervals (CIs).

As suggested by (1), the time-average α(t) is an obvious

point estimator of α . Suppose that p processors are available

for simulation, and each processor simulates the process Y

independently up to (deterministic) time t. Let αi(t) denote

the time-average α(t) generated by processor i. Set

α(t, p) =
1

p

p
∑

i=1

αi(t), (2)
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and

S2(t, p) =
1

p−1

p
∑

i=1

(αi(t)−α(t, p))2. (3)

Then one might expect

α(t, p)± t1−γ/2,p−1S(t, p) (4)

is an asymptotically valid 100(1− γ)% CI for α , and the

absolute precision of the estimator (usually defined by the

half-length of the CI) is proportional to the order of
√

p.

We call estimator (4) the standard estimator. The standard

estimator will converge to a wrong value if simulated time t

and the number of processors p are not chosen appropriately

(Glynn and Heidelberger 1991b, Glynn and Heidelberger

1992a, and Glynn and Heidelberger 1992b.) Such statistical

problems basically arise because any bias effects on a single

replication are magnified on multiple replications. This type

of problems also arise in transient simulation context; see

(Heidelberger 1988) and (Glynn and Heidelberger 1991a),

for example.

The process Y is typically initialized via a distribution

for Y (0) that is not characteristic of the steady-state behavior.

As a consequence, α(t) is biased as an estimator of α . In

other words, Eα(t) 6= α . For the same reason, Eα(t, p) 6= α .

The bias in α(t) as an estimator of α is known as the

“initial bias”. The initial bias problem, in the single pro-

cessor context, can be mitigated in two different ways. One

approach is to delete that initial segment of the simulation

that is “contaminated” by initial bias. Such an initial bias

deletion approach has been studied by many authors; see,

for example, Cash et al. (1992), Glynn (1995), Goldsman,

Schruben, and Swain (1994), Schruben (1982), Schruben

et al. (1983), White (1997), and White et al. (2000). An

alternative is to consider an estimator, based on simulating Y

over [0, t], that attempts to compensate for the bias present

in α(t). We refer to such estimators as “bias reducing”

estimators. The bias reducing estimators usually need to



Hsieh
make use of independent identically distributed quantities.

Exploiting the regenerative structure of the process Y is a

commonly used approach; see Hsieh et al. (2004) for a

survey.

In the parallel processors (multiple replications) context,

Glynn and Heidelberger (1992a) and Glynn and Heidelberger

(1992b) have studied the initial bias deletion approach. Both

theoretical and empirical results in their study show that

the standard estimator (4) and its variant with initial bias

deletion are not statistic efficient and ratio estimators are

more appropriate.

The proposed estimator in this paper is a bias reducing

estimator, thus requires no initial bias deletion. In addi-

tion, multiple replications provide independent identically

distributed quantities. Therefore, the proposed estimator

does not need to explore the regenerative structure of the

process Y . The most appealing theoretical property of the

proposed estimator is that the precision of the estimator can

be improved by simply increasing p while the simulated

time t is fixed at an adequate level.

This paper is organized as follows. In Section 2, we

describe the proposed estimator and discuss its theoretical

properties. In Section 3, we discuss some of our computa-

tional experience with the procedures introduced in Section

2. Finally, Section 4 offers some concluding remarks.

2 THE PROPOSED ESTIMATOR

Suppose that Y is the simulation output that is derived from

the simulation of a stochastic system that can be modeled

in terms of a Markov process X . In particular, suppose

that Y (t) = f (X(t)), where X = (X(t) : t ≥ 0) is a Markov

process living on a state space S, and f : S →< is a real-

valued performance measure. Assuming that X exhibits

positive recurrent behavior, it can be shown in substantial

generality that

Eα(t) = α +
b1

t
+o(e−β t) (5)

as t →∞, for some constants b and β (where β > 0), where

o(a(t)) denotes a function f (t) such that f (t)/a(t) → 0 as

t →∞. See, for example, Glynn (1984) for such a result in

the setting of finite-state continuous-time Markov chains.

In this paper, we impose a more mild requirement on

the bias function. To be precise, let b(t) = Eα(t)−α . The

requirement of b(·) is that

b(t) → 0, as t →∞. (6)

Set h = 1/t. The above equation is equivalent to

b(h) → 0, as h → 0.
193
Thus, a simple application of Taylor expansion gives

b(t) =
b1

t
+o(1/t), or (7)

b(t) =
b1

t
+

b2

t2
+o(1/t2), (8)

where b1 and b2 are the coefficients of the first order and

second order terms in the Taylor Expansion.

Equations (7) and (8) suggest that b(t) can be ap-

proximated by b1/t or b1/t + b2/t2. Since we do not

expect that the simulated time t on each processor is long,

Approximation (8) seems a better choice for approximat-

ing b(t). Therefore, in the subsequent analysis, we will

use b1/t + b2/t2 to approximate b(t). Note that this ap-

proximation does not require the simulated time t be very

large. As long as the absolute difference between b(t) and

b1/t +b2/t2 is much smaller than the required precision of

the CI, this approximation has little impact on the quality

of the CI.

Assume the simulated time on each of the p processors

is T and the time-average α(t) up to time t (t ≤ T ) on

processor i (1 ≤ i ≤ p) is denoted by αi(t). Let σ2(t) be

the variance of α(t) and set

α(t, p) =
1

p

p
∑

i=1

αi(t), (9)

for 0 < t ≤ T .

Since αi(t)’s are independent, it is easy to see that

α(t, p) satisfies a central limit theorem (CLT)

√
p(α(t, p)−α −b(t))

σ(t)
⇒ N(0,1), (10)

as p → ∞, where N(0,1) denotes the standard normal

random variable.

Suppose that 0 < t1 < t2 < · · · < tn = T and |b(t)−
(b1/t +b2/t2)| is negligible for t ≥ t1. Let

α̃(p) = (α(t1, p),α(t2, p), . . . ,α(tn, p))T ,

A =











1 1/t1 1/t2
1

1 1/t2 1/t2
2

...
...

...

1 1/tn 1/t2n











and

b = (α,b1,b2)
T .

Then, it is straightforward to show that

Eα̃(p) = Ab.
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Let S be the covariance matrix of the random column

vector (α(t1),α(t2), . . . ,α(tn))
T , then the covariance matrix

of α̃(p) is S/p. Note that α̃(p) is an approximate multi-

variate normal random variable by the CLT (10). Thus, we

have the following linear model

α̃(p) = Ab+ ε, (11)

where ε is normally distributed error vector with mean 0

and covariance matrix S/p. The linear model (12) is the

vehicle for building the confidence interval for α . Before

we proceed to the procedure of constructing he confidence

interval for α , we need the following proposition.

Proposition 1 Given a full rank univariate linear

model

θ = Ab+ ε (12)

for the n×1 random vector a, where A is an n× k matrix

of rank k ≤ n, b is an k× 1 (unknown) parameter vector,

and ε is the n× 1 normally distributed error vector with

mean 0. If the covariance matrix of ε is Σ and consider θ
a single observation from the linear model (12), then:

1. The maximum likelihood estimator of b is

b̂ = (AT Σ−1A)−1AT Σ−1θ . (13)

Estimator b̂ is also known as generalized least

square estimator.

2. Estimator b̂ is an unbiased estimator for b, i.e.,

Eb̂ = b.

3. The covariance matrix of the generalized least

square estimator b̂ is

Σ
b̂b̂

= (AT Σ−1A)−1.

4. For 1 ≤ i ≤ n,

b̂(i)−b(i)
√

Σ
b̂b̂

(i, i)
∼ tn−k,

where tn denotes t-distributed random variable with

n degrees of freedom.

We are now ready to describe the proposed procedure:

1. Input p, T , 0 < t1 < t2 < · · · < tn = T , and the

required confidence level 1− γ .

2. Generate independent replicate of Y up to time T on

each processor and collect αi(t1),αi(t2), . . . ,αi(tn)
on each processor i, 1 ≤ i ≤ p.

3. Compute the sample covariance matrix Ŝ of

(α(t1),α(t2), . . . ,α(tn))
T by the data collected in

step 2.
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4. Compute b̂ and Σ
b̂b̂

according to Proposition 1.

5. Output the confidence interval of α by

b̂(1)± t1−γ/2,n−3

√

Σ
b̂b̂

(1,1). (14)

The most appealing theoretical feature of the procedure

above is that the precision of the resulted estimator can be

improved by simply increasing p while the simulated time

T is fixed. This theoretical feature can be summarized in

the following theorem.

Theorem 1 Suppose that 0 < t1 < t2 < · · ·< tn = T

and |b(t)− (b1/t +b2/t2)| is negligible for t ≥ t1. Assume

Σ
b̂b̂

(p) denotes the covariance matrix of b̂ when the number

of processors is p and m a positive integer. Then

Σ
b̂b̂

(mp) =
1

m
Σ

b̂b̂
(p).

Let hl(p) denote the half length of CI when the number of

processors is p. By (14), above equation implies

hl(mp) =
1√
m

hl(p).

Proof Since

Σ
b̂b̂

(mp) = (AT (S/mp)−1A)−1 =
1

m
(AT (S/p)−1A)−1,

we have

Σ
b̂b̂

(mp) =
1

m
Σ

b̂b̂
(p).

2

3 EMPIRICAL RESULTS

We chose the waiting time process in the M/M/1 queue

with server utilization ρ = 0.9 and an empty-and-idle initial

condition as the test problem. This is a particularly difficult

test problem. Steiger et al. (2005) state several reasons:

1. the initialization bias is large and decays relatively

slowly;

2. in steady-state operation the autocorrelation func-

tion of the waiting time process decays very slowly

with increasing lags; and

3. in steady-state operation the marginal distribution

of waiting times has an exponential tail and is

therefore markedly nonnormal.

Thus we expect the proposed estimator will perform well

on most of real world applications if it does well on this

test problem.
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The crucial factors of the proposed estimator include

the number of processors p, the simulated time T on each

processor and the time points t1, . . . , tn to formulate the linear

model. We selected 18 test cases by varying the value

of each factor. In particular, they include the following

combinations:

1. p = 512,2048, and 8192.

2. T = 1000 and 2000.

3. Three different selections of the time points

t1, . . . , tn. The time points were selected by first

fixing n and t1 and then the time points are equally

spaced within the interval (t1,T ). We first selected

n = 6,12, or 18; and then chose t1 such that t1
falls in the interval [200,300].

Table 1 and Table 2 show the detail information of these

test cases.

We performed 1000 independent replications of nominal

90% and 95% confidence intervals for each test case. From

these independent replications of confidence intervals, we

compute:

1. the empirical coverage probability; since the nom-

inal confidence level are 90% and 95%, the cor-

responding standard errors of the empirical cov-

erage probabilities are
√

0.9∗0.1/1000 ≈ 0.95%

and
√

0.95∗0.05/1000 = 0.69% respectively;

2. the average (avg.) of the half-length of these con-

fidence intervals;

3. the standard deviation (s.d.) of the half-length of

these confidence intervals.

The empirical results are shown in Table 1 and 2.

Below we discuss the observed properties of the proposed

estimator.

• The confidence interval coverage is reasonably ac-

curate for most of the test cases. To be precise, let

p be the true coverage probability of the proposed

confidence interval estimator and we consider test-

ing the following hypotheses:

H0 : p = nominal value,

H1 : p 6= nominal value.

Then under 1% significance level, only 3 out 36

tests (see Table 1 and 2) can reject H0. This suggests

the proposed estimator is not very sensitive to the

choice of T and (t1, . . . , tn).
• The number of time points n has effect on the avg.

and the s.d. of the half-length of these confidence

intervals. Both avg. and s.d. of the half-length

of CIs decrease when n increases. We expect that
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both of them will converge to limits when n goes

to ∞. However, from an applied standpoint, we

should not choose large n, because the cost of

computing the solution of the corresponding linear

model will be too high.

• The effect of p on the width of the CIs fol-

lows Theorem 1 exactly. For example, in Table

1, let us consider the avg. CI half lengths for

(t1, . . . , tn) = (250,400, . . . ,T ) and nominal 90%

confidence interval. The avg. half-lengths of CIs

are 0.718 (for p = 512), 0.357 (for p = 2048), and

0.185 (for p = 8196). Both 0.718/0.357 ≈ 2.01
and 0.357/0.185≈ 1.93 are close to the theoretical

value 2. This property is very desirable, because

it suggests a p-fold speedup is achievable.

4 CONCLUSIONS

We propose a new procedure for building confidence inter-

val estimators of steady-state parameters in discrete event

simulations. The procedure uses parallel processors to gen-

erate independent replications and constructs the confidence

interval estimator by solving a generalized least square prob-

lem. The most appealing theoretical feature of the proposed

procedure is that the precision of the resulted estimator can

be improved by simply increasing the number of processors

while the simulated time length is fixed at an proper level on

each processor. The experiments we conducted on M/M/1

queue waiting time processes in heavy traffic also support

this theoretical property.

In addition to this main advantage, the proposed esti-

mator also has some other advantages:

1. The procedure is simple to implement. Compared

to the standard estimator (4), extra computational

works includes only the computation of the sample

covariance matrix Ŝ and solving a (small-size) gen-

eralized least square problem. The procedure can

also be easily adopted by a distributed computing

environment.

2. The total computational effort is comparable to the

latest single processor estimators. For example,

ASAP3 (Steiger et al. 2005) requires an average

sample size of 969,011 to achieve a average CI

half-length of 0.32 for the test problem; whereas,

the proposed procedure requires a sample size of

1,024,000 (p = 512, T = 2000, and n = 18) to

achieve a average CI half-length of 0.36 for the

test problem.
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Table 1: Empirical Performance of the Proposed Pro-

cedure for the M/M/1 Queue Waiting Time Process

with ρ = 0.9 and Simulated Time T = 1000 Based on

1000 Independent Replications of Nominal 90% and

95% Confidence Intervals

Nominal Nominal

p = 512; n = 6,12, or 18 90% CIs 95% CIs

(t1, . . . , tn) = (250,400, . . . ,T )
coverage 89.1% 94.3%

avg. CI half-length 0.718 0.972

s.d. CI half-length 0.317 0.428

(t1, . . . , tn) = (230,300, . . . ,T )
coverage 90.2% 95.0%

avg. CI half-length 0.528 0.652

s.d. CI half-length 0.134 0.165

(t1, . . . , tn) = (235,280, . . . ,T )
coverage 85.7% 92.0%

avg. CI half-length 0.507 0.616

s.d. CI half-length 0.103 0.125

p = 2048; n = 6,12, or 18

(t1, . . . , tn) = (250,400, . . . ,T )
coverage 89.4% 93.5%

avg. CI half-length 0.357 0.483

s.d. CI half-length 0.155 0.209

(t1, . . . , tn) = (230,300, . . . ,T )
coverage 91.2% 96.4%

avg. CI half-length 0.269 0.331

s.d. CI half-length 0.066 0.082

(t1, . . . , tn) = (235,280, . . . ,T )
coverage 88.1% 93.6%

avg. CI half-length 0.256 0.311

s.d. CI half-length 0.049 0.059

p = 8192; n = 6,12, or 18

(t1, . . . , tn) = (250,400, . . . ,T )
coverage 90.6% 95.6%

avg. CI half-length 0.185 0.250

s.d. CI half-length 0.078 0.106

(t1, . . . , tn) = (230,300, . . . ,T )
coverage 89.9% 94.4%

avg. CI half-length 0.140 0.173

s.d. CI half-length 0.034 0.042

(t1, . . . , tn) = (235,280, . . . ,T )
coverage 89.3% 94.5%

avg. CI half-length 0.132 0.161

s.d. CI half-length 0.025 0.030
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