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ABSTRACT 

We present sequential ranking and selection statistical pro-
cedures that determine the best simulated model configura-
tion among competing alternatives.  The best in this con-
text denotes the largest expected value of a given 
performance metric.  In order to run the procedures effi-
ciently, we give algorithms using batched observations, 
which under certain conditions, exhibit the characteristics 
necessary for the appropriate application of ranking and 
selection procedures.  We present empirical results that in-
dicate that the sequential procedures are quite parsimoni-
ous, in terms of the number of required observations. 

1 INTRODUCTION 

The goal of any selection, screening, and multiple com-
parison problem is to determine the “best” of several com-
peting configurations.  In this context, a configuration im-
plies that we have two or more competing systems that are 
compared by the mean value of some metric describing 
performance, where simulation is required to assess the 
value of this metric.  Bechhofer et al. (1995) highlight sev-
eral problem formulations appropriate to various experi-
mental designs.  Here, our focus is on the indifference-
zone formulation where the objective is to select the con-
figuration with the highest/lowest (interpreted “best”) ex-
pected value.  In this realm, an expectation offers insight 
on long-term system performance. 

We describe various Ranking and Selection (RS) pro-
cedures, culminating in the fully sequential KN+ procedure 
(see Kim and Nelson 2001 and Goldsman et al. 2002).  To 
demonstrate the efficacy of such procedures., we present 
an empirical performance analysis using independent, 
identically distributed (iid) normal processes and autore-
gressive processes.  The RS procedures presented here 
outperform other procedures in terms of reducing the num-
ber of required observations necessary to discriminate be-
tween competing simulated system configurations.  We 
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also show how embedded statistical estimators enable easy 
application of the RS procedures. 

This paper is organized as follows.  Sections 2 and 3 
present a brief background discussion on RS procedures 
and embedded statistical analysis, respectively.  Section 4 
discusses RS procedure performance analysis.  Section 5 
summarizes this effort. 

2 RANKING AND SELECTION PROCEDURES 

RS procedures may be single or multistage.  In this con-
text, a stage denotes the execution of a simulated configu-
ration for a number of observations.  A single-stage 
method determines the number of required observations 
from parameters specified by the experimenter.  Adaptive 
control of an experiment is not possible with a single-stage 
RS procedure.  However, a multistage RS procedure up-
dates the required number of observations from the simu-
lated configuration output, thereby enabling adaptive con-
trol of the comparison problem. 

For the indifference-zone formulation, the practitioner 
provides the constants ),( ** Pδ .  The quantity *δ  is the 
indifference-zone parameter, where the indifference zone 
indicates some comparative region in which the practitio-
ner would not discriminate between competing configura-
tions; here the indifference zone is defined as the set of 
mean vectors *

1 [ ] [ 1]{( , ..., ) : }k k kμ μ μ μ δ−Ω ≡ − < , where 

[1] [ 2] [ ]kμ μ μ≤ ≤ ≤L  are the ordered means.  The quantity 
*P  denotes the desired probability of correctly selecting 

(CS) the best of the competing configurations, when the 
means of those configurations fall outside of the indiffer-
ence zone.  So in other words, we want to satisfy the prob-
ability requirement *)( PCSP ≥  whenever it is the case 

that *

[ ] [ 1]k kμ μ δ−− ≥ . 
To highlight a single-stage RS procedure, suppose we 

are interested in determining which of k competing normal 
populations has the largest mean.  Further suppose for now 
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that we make the additional strong assumption that the 
normal distributions all have the same known variance, 

2σ .  Then the classical method of Bechhofer (1954) is ap-
propriate.  In particular, this method determines the num-
ber of required observations, n, from each of the competing 
populations via the following formula: 
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where the constant )1(

,1
*P

kZ −
− ρ  is the )1( *P−  equicoordinate 

point of the 1−k  dimensional multivariate standard nor-
mal distribution with off-diagonal correlation ρ .  Values 

for )1(
,1

*P
kZ −

− ρ  may be obtained from table lookup from 

Bechhofer et al. (1995).  For example, if the variance, 2σ , 
is known to be 2.25 and the experimenter sets 
(δ∗,P∗)=(0.306,0.95) with 6=k  configurations, then 262 
observations are needed for statistical comparison.  Exam-
ples of two-stage and multistage methods follow. 

If the variance of a predetermined metric is unknown, 
then Rinott’s (1978) procedure provides a well-known 
two-stage technique for comparing configurations.  This 
method relies on the assumptions that obtained data are in-
dependent, identically distributed, and from a normal dis-
tribution.  Goldsman et al. (2002) present an extended ver-
sion of this two-stage method (R+) and the extended 
version of the multistage Kim and Nelson (KN+) (2001) 
method.  The following subsections give details. 

2.1 Extended Rinott’s Procedure (R+) 

Rinott’s procedure is conducted in two-stages.  In the first 
stage, we take an initial sample of observations with the 
intent of estimating the variance parameters 2

iv , 
ki ,,2,1 K= , of the systems (see Section 3); and these es-

timates determine the number of observations from each 
competing system that need to be taken in the second stage 
in order to satisfy the probability-of-correct-selection re-
quirement.  In this extended version of Rinott’s procedure, 
the observations will eventually be divided into batch 
means (i.e., the sample averages from, say, m consecutive 
simulation observations from a particular system), which 
are assumed to be approximately normally distributed.  See 
Section 3 for details on batching and variance estimation. 

 
Setup:  Select the confidence level *1 Pα− = , indiffer-
ence-zone parameter * 0δ > , first-stage sample size 

20 ≥n , and batch size 0nm < . 
180
Initialization:  Obtain Rinott’s constant (from, e.g., 
Bechhofer et al. 1995) ( )α−= 1,, kdhh , where d is the de-
grees of freedom for the necessary variance estimators (see 
Section 3), and k is the number of systems.   

 
Obtain 0n  observations ,,,2,1 , 0njX ij K=  from each sys-

tem ki ,,2,1 K= .  For ki ,,2,1 K= , compute 2
imV , the 

sample asymptotic variance of the data from system i using 
one of the variance estimators discussed in this paper (Sec-
tion 3).   
 
Calculate the total number of observations from system 

ki ,,2,1 K= , 
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Stopping Rule:  If ii Nn max0 ≥  then stop and select the 

system with the largest sample mean, ( )0iX n , as the best. 
Otherwise, take 0nNi −  additional observations 

iNinini XXX ,2,1, ,,,
00

K++  from each system i, where 

0nNi > .  Select the configuration with the largest overall 

sample mean, ( )i iX N , as the best. 

2.2 Extended Kim and Nelson’s Procedure (KN+) 

The Kim and Nelson procedure KN+ is conducted in mul-
tiple stages.  As in R+, the purpose of the initial stage is to 
obtain estimates for the variance parameters 2

iv , 
ki ,,2,1 K= , of the competing systems.  At the end of this 

and subsequent stages, any systems that are deemed as be-
ing inferior can be eliminated from future sampling and 
consideration.  These variance estimates also help to de-
termine bounds on the numbers of observations that can be 
taken from each system.  As before, for purposes of vari-
ance estimation, the observations will eventually be di-
vided into batches. 

For two systems i and l, the asymptotic variance of the 
difference, 2 2

i lv v+ , is estimated by forming the differ-
enced series ,2,1, K=−= jXXD ljijilj  and then applying 
a variance estimator (see Section 3). 

 
Setup:  Select the confidence level α−1 , indifference-
zone parameter * 0δ > , first-stage sample size 20 ≥n , 
and batch size 0nm < .  Calculate the constant as follows: 
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Initialization:  Let },,2,1{ kI K=  be the set of systems 

still in contention, and let dh η22 = , where d is the de-
grees of freedom for the necessary variance estimators (see 
Section 3).   
 
Obtain 0n  observations ,,,2,1, 0njX ij K=  from each sys-

tem ki ,,2,1 K= .  For all li ≠ , compute 2
ilmV , the sample 

asymptotic variance of the difference of systems i and l.  
Let 
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Here 1+iN  is the maximum number of observations that 
can be taken from system i.  If ( )1max0 +≥ ii Nn , then 
stop and select the system with the largest sample mean 

( )0nX i  as the best.  Otherwise, set the observation counter 

0nr =  and go to Screening. 

Screening:  Set II old = .  Let 
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Stopping Rule:  If the cardinality 1=I , then stop and se-
lect the system whose index is in I as the best.  Otherwise, 
take one additional observation 1, +riX  from each system 
i I∈  and set 1+= rr .  If 1max += ii Nr , then stop and 
select the system whose index is in I and has the largest 

( )iX r  as the best.  Otherwise, repeat the Screening proc-
ess.  Note that variance estimation only depends on data 
collected in the initialization stage of this procedure. 
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3 EMBEDDED STATISTICAL ANALYSIS 

RS procedures often require calculations on both individ-
ual and batched observation data.  Note that in the presence 
of autocorrelated data, all of the popular variance estima-
tors from the literature are typically biased.  The remainder 
of this section details methods for obtaining “good” esti-
mators for the variance parameter of a stationary stochastic 
process.   

Suppose that K,, 21 ii XX  is the simulation output 
stream from a single replication of the ith alternative, e.g., 

ijX  could denote the jth customer’s waiting time in a simu-
lation of the ith system.  Then after appropriate initializa-
tion (to eliminate simulation start-up bias), we might feel 
comfortable making the following assumptions: 

Stationarity: K,, 21 ii XX  form a stationary stochastic 
process. 

(Strong) Consistency: ( )i iX r μ→  as ∞→r  with 
probability one, where iμ  is the steady-state mean from 
system i. 

Functional Central Limit Theorem (FCLT):  There 
exist constants iμ and 02 >iv  such that 
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for 10 ≤≤ t , where ⇒  denotes weak convergence as 

∞→r  and W(t) is a standard Brownian motion (Weiner) 
process (cf. Glynn and Iglehart 1990). 

In the current paper, we make comparisons based on 
the steady-state means kμμμ ,,, 21 K , which is reasonable 
due to the consistency assumption.  The variance parame-
ter, ( )( )2 lim ii

r
v rVar X r

→∞
≡ , can be estimated by the well-

known methods of batch means (BM) or overlapping batch 
means (OBM), among others (see Law 2006).  We proceed 
with a description of these methods. 

3.1 Batch Means 

If n observations from system i, inii XXX ,,, 21 K , are di-
vided into b batches of length m, then the jth batch mean 
from system i is: 
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The observations ,( 1) 1 ,( 1) 2 ,, , ,i j m i j m i jmX X X− + − + K  comprise 

the jth batch, bj ,,2,1 K= , for system i.  For 1>b , the 

batch means estimator for the variance parameter 2
iv  from 

system i is: 
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where 2

dχ  is a chi-squared random variable with 1−= bd  

degrees of freedom and 
D

⎯→⎯  indicates convergence in 

distribution as m becomes large (see, e.g., Glynn and Whitt 
1990). 

3.2 Overlapping Batch Means 

The method of overlapping batch means re-uses observa-
tions in multiple batches, resulting in an estimator for the 
variance parameter that has lower variance than that of the 
regular batch means method.  To this end, consider all 
batch means of the form: 
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The observations 1,2,1, ,,, −+++ mjijiji XXX K  from system i 

comprise the jth overlapping batch, for ki ,,2,1 K=  and 
1,,2,1 +−= mnj K .  The OBM variance estimator is: 
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Note that 
d

v
mV di

O

22
2 χ

≈ , where ( )⎣ ⎦2)13 −= bd  degrees 

of freedom (see Meketon and Schmeiser 1984). 

4 COMPARING RANKING AND SELECTION 
PROCEDURES  

This section focuses on the testing and comparison of RS 
procedures.    

4.1 Assumptions and Goals 

The RS procedures in this paper obtain observations, 
,,2,1 , K=jX ij  for competing system configurations 

ki ,,2,1 K= .  We assume that, for a specific system i, the 
182
observations can be batched, so that we can obtain ap-
proximately independent and normally distributed batch 
means, at least for a large enough batch size.  We place no 
restrictions on the variance parameters of the systems.  

4.2 Assessing Procedure Performance 

The relative difference between competing system configu-
rations directly impacts RS procedure performance.  When 
evaluating the performance of a particular procedure, it is a 
good idea to see how well the procedure does under vari-
ous special configurations of the means.  Of interest are the 
so-called slippage configuration (SC), 
 
 *

[1] [ 1] [ ]k kμ μ μ δ−= = −  
 
(often also referred to as the least favorable (LF) configu-
ration), the equal means (EM) configuration,  
 

[1] [ ]kμ μ= , 
 
and the equally spaced (ES) configuration,  
 

*

[ ] [1] ( 1)i iμ μ δ= + −  
 
(when comparing the performance of procedures, we can 
assume, with little loss of generality, that the smallest 
mean [1] 0μ = ).  The SC is of interest because, in terms of 
the ability to decide between systems, it can be thought of 
as the “most difficult” configuration of means that satisfy 
the conditions of the probability requirement.  The EM 
configuration is difficult in the sense that it might require a 
sequential procedure a great deal of time to make a deci-
sion as to which system is the best, even though there is no 
“wrong answer”.  And the ES configuration is interesting 
in that it is a “favorable” configuration that ought to allow 
for easy determination of the best system. 
 The user-specified choice of the indifference-zone pa-
rameter *δ  also impacts RS procedure performance.  Re-
call that *δ  is a comparative region where the experi-
menter would not discriminate between competing system 
configurations.  If *δ  is “too small”, then the number of 
required observations can be prohibitively high; if *δ  is 
“too large”, then it is difficult to make a “useful” differen-
tiation between systems.  The desired probability of correct 
selection, *P , also affects procedure performance in an 
obvious way — the higher the desired P(CS), the more ob-
servations will likely be required. 
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4.3 Examples: Comparing R+ and KN+ Procedure 

Performance 

We illustrate the performance of the R+ and KN+ proce-
dures with two simple examples.   

 
4.3.1  Independent normal observations 

 
In our first experiment, we varied the initial number of ob-
servations, 0n .  Parameterization for this experiment in-
cludes 6=k  underlying independent normal processes in 
the slippage configuration with 011 == −kμμ , 

0.306kμ = , all with variance 1, and each producing inde-
pendent and identically distributed observations.  We took 
batch size 1=m , indifference-zone parameter * 0.306δ = , 
and a desired probability of correct selection of 95.0* =P .  
Here, the “best” system configuration is 6 0.306μ = .  Per-
formance metrics are estimators of (1) the probability of 
correct selection, )(ˆ CSP , and (2) the average number of 

required raw (unbatched) observations, T̂ , obtained from 
1000 independent experiment replications.  Since the KN+ 
method is multistage, the upper bound on the number of 
required unbatched observations (i.e., the largest possible 
number of observations), determined at the end of the first 
stage, is also reported.   

As shown in Table 1, the KN+ method requires fewer 

total raw observations, T̂ , than the R+ method except 
when 0n  is large (where both methods require the same 

number).  The achieved )(ˆ CSP  is statistically equivalent 

to or exceeds the desired probability, *P , in all cases.  
Also, a large number of initial observations creates compu-
tational inefficiency, i.e., a large total observation require-
ment, in both methods.  While the upper bound for re-
quired observations for the KN+ method is always larger 
than that for the R+ method, the screening/elimination 
process within the KN+ method allows for increased com-
putational efficiency.  

4.3.2 Using Batched Data 

What if the underlying data are not iid normal, i.e., non-
normal and/or serially correlated?  Then batching methods 
such as BM or OBM (among others) might be appropriate 
to the situation at hand.  In this example, we applied batch-
ing to a first-order autoregressive [AR(1)] process — a 
process that produces autocorrelated observations, with the 
correlations decaying exponentially with the time lag. 
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Table 1: R+ and KN+ Comparison Varying Initial Number 
of Observations   

* 0.306δ = , 95.0* =P , SC, iid normal case, 1=m  

0n  Method )(ˆ CSP  T̂ / Upper Bound 
R+ 0.982 420 8 

KN+ 0.990 277/928 
R+ 0.952 292 20 

KN+ 0.968 162/533 
R+ 0.967 274 40 

KN+ 0.992 149/468 
R+ 0.976 258 60 

KN+ 0.957 137/420 
R+ 0.948 262 80 

KN+ 0.967 141/428 
R+ 0.951 262 100 

KN+ 0.968 143/419 
R+ 0.955 261 150 

KN+ 0.969 168/405 
R+ 0.963 262 250 

KN+ 0.969 252/395 
R+ 1.000 400 400 

KN+ 1.000 400 
 
If we denote the mean for system i by iμ , an AR(1) proc-
ess generates each observation K,2,1 , =jX ij  for compet-

ing system configurations, ki ,,2,1 K= , from the relation-
ship: 

 
 , , 1 ,( )i j i i j i i jX X Zμ φ μ−= + − + , 

 
where, to preserve stationarity, the error terms, jiZ , , are 

distributed iid )1,0( 2φ−N , the ,1iX ’s, 1, 2, ,i k= K , are 

initialized as ( ,1)iN μ , and we must have 11 <<− φ .  In 
that case, the autocovariance function is 

, ,( , ) k
k i j i j kR Cov X X φ+≡ = , for 0,1, 2,k = K . It can eas-

ily be shown that the variance parameter for this system 
turns out to be  

 

 2 1

1iv
φ
φ

+
=

−
, 

 
which of course would be unknown in a real-world, practi-
cal application. 
 The BM method obtains batched observations of size 
m.  The number of initial batches may be obtained from the 
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relationship ⎡ ⎤mnb 00 =  where 0n  is the number of ini-
tial unbatched or raw observations.   

Table 2 presents the experimental results for the R+ 
and KN+ methods applied to an AR(1) process while ob-
taining observations with the BM method.  Experiment 
parameterization involved setting 22.0=φ , 42000 =n , 

95.0* =P , 6=k competing system configurations, and 
* 20.0193 4200ivδ = =  (a reasonable test value for pur-

poses of this example), while varying both the batch size, 
m, and the initial number of batches 0b .  The required raw 
observation upper bound for the KN+ method is also re-
ported.  Intuitively, as 0b  decreases, the number of re-

quired unbatched or raw observations, T̂ , increases.  This 
follows since the variance estimator is based on a 2χ  dis-
tribution with 10 −b  degrees of freedom, and thus the 
variance of that distribution is high for a low 0b .  This is 
consistent with results found in the iid case.  Of special in-
terest is the relatively poor performance, in terms of 
achieving the desired probability of correct selection, of 
the R+ method when the batch size is small.  This can be 
attributed to fact that the autocorrelated process has caused 
the distribution of the BM estimator to be something other 
than the limiting 2χ  distribution.  Note that, in this ex-
periment, the KN+ method is not as susceptible to poor 

)(ˆ CSP  performance as the R+ method.  In addition, KN+ 
requires far fewer raw observations due to its screening 
process. 

Similarly, Table 3 presents the experimental results for 
the R+ and KN+ methods applied to an AR(1) process 
while obtaining batched observations using the OBM 
method.  Parameterization for this experiment includes 

22.0=φ , 84000 =n , 95.0* =P , 6=k competing system 

configurations, and * 20.0136 8400ivδ = = .  The table 
shows the effects of varying batch size, m; note that in the 
context of OBM, the ratio quantity 0 0 /b n m= , is still 
meaningful, but can no longer be interpreted as “the num-
ber of batches”. 

This experiment highlights the necessity of asymptotic 
variance convergence when using the R+ and KN+ RS pro-
cedures.  Such convergence for the OBM variance estima-
tor in the case of an AR(1) process is obtained once we 
have both sufficiently large m and 0b .  In fact, the per-
formance of the RS methods is poor when these quantities 
are not sufficiently large.  Observe that the estimated 

)(ˆ CSP  is nominally achieved with a large 0n m  ratio, 
implying the necessity for an increase in the number of ini-
tial unbatched observations. 
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Table 2: R+ and KN+ Comparison Using Batch Means 
while Varying Batch Size 

* 0.0193δ = , 95.0* =P , 42000 =n , SC, AR(1), 
22.0=φ  

 R+ KN+ 

( m , 0b ) )(ˆ CSP
 T̂  )(ˆ CSP  T̂ / Upper 

Bound 
(10,420) 0.887 43244 0.968 20912 / 64676 
(25,168) 0.940 44861 0.964 22834 / 69939 
(50,84) 0.936 45917 0.972 23005 / 73263 
(100,42) 0.952 46825 0.976 25219 / 82739 
(150,28) 0.976 51321 0.955 30191 / 94992 
(200,21) 0.956 51826 0.974 29919 / 99284 
(300,14) 0.941 53732 0.962 33371/110908 

 
Table 3: R+ and KN+ Comparison Using Overlapping 
Batch Means while Varying Batch Size, 84000 =n  

* 0.0136δ = , 95.0* =P , 84000 =n , SC, AR(1), 
22.0=φ  

 R+ KN+ 

( m , 0b ) )(ˆ CSP  T̂  )(ˆ CSP  T̂ /Upper 
Bound 

(10, 840) 0.951 86819 0.953 41872/127280
(25, 336) 0.935 89075 0.952 43514/132585
(50, 168) 0.944 89861 0.933 42938/135185
(100, 84) 0.933 88517 0.956 43259/135788
(150, 56) 0.944 87038 0.942 42403/134688
(200, 42) 0.914 85283 0.939 41699/135308
(300, 28) 0.916 85254 0.913 42456/137350
(400, 21) 0.938 86436 0.925 41390/138420
(600, 14) 0.928 82064 0.924 40433/136469

5 SUMMARY 

Ranking and selection procedures enable differentiation 
between competing simulated system configurations.  They 
are simple to use, especially considering the fact that 
batching methods allow transformation of correlated data 
into normal observations under certain conditions.  For  
more mathematical details as well as numerous extensions 
and augmentations of the elementary procedures discussed 
herein, see for example, Kim and Nelson (2006). 
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