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ABSTRACT

This paper reviews statistical methods for analyzing output

data from computer simulations. Specifically, it focuses

on the estimation of steady-state system parameters. The

estimation techniques include the replication/deletion ap-

proach, the regenerative method, the batch means method,

and methods based on standardized time series.

1 INTRODUCTION

A primary goal of most simulation studies is the approxi-

mation of prescribed system parameters with the objective

of identifying parameter values that optimize some system

performance measures. Since the input processes driving

a simulation are often random, the output data are also

random and runs of the simulation program only result in

estimates of system performance measures.

A simulation study consists of several steps such as

data collection, coding and verification, model validation,

experimental design, output data analysis, and implementa-

tion. This paper reviews statistical methods for computing

confidence intervals for system performance measures from

output data. Statistical methods for determining the best

system from a set of alternatives are the subject of the tu-

torial by Benson et al. (2006) in this volume. This tutorial

does not aim at replacing “standard” texts, such as Fishman

(2001) or Law (2006). A comprehensive coverage of the

topics reviewed herein is presented in Chapters 8, 15, and

16 of the recent handbook edited by Henderson and Nelson

(2006) and in the entry by Alexopoulos et al. (2006d).

There are two types of simulations with regard to output

analysis:

Finite-horizon simulations. In this case the simulation

starts in a specific state and is run until some terminating

event occurs. The output process is not expected to achieve

any steady-state behavior and any parameter estimated from

the output data will be transient in the sense that its value
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will depend upon the initial conditions. An example is the

simulation of a vehicle storage and distribution facility for

a week.

Steady-state simulations. The purpose of a steady-

state simulation is the study of the long-run behavior of the

system of interest. A performance measure of a system is

called a steady-state parameter if it is a characteristic of the

equilibrium distribution of an output stochastic process. An

example is the simulation of a continuously operating com-

munication system where the objective is the computation

of the mean delay of a data packet.

Section 2 discusses methods for analyzing output from

finite-horizon simulations. Section 3 presents techniques

for point and interval estimation of steady-state parameters.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system until n output data

X1,X2, . . . ,Xn are collected with the objective of estimat-

ing µ ≡ E(X̄n), where X̄n ≡ 1
n

∑n
i=1 Xi is the sample

mean of the data. For example, Xi may be the transit

time of unit i through a network of queues or the total

time station i is busy during the ith hour. Clearly, X̄n

is an unbiased estimator for µ. Unfortunately, the Xi are

generally dependent random variables making the estima-

tion of the variance Var(X̄n) a nontrivial problem. Let

S2
n(X) ≡ 1

n−1

∑n
i=1(Xi − X̄n)2 be the sample variance

of the data. The presence of autocorrelation makes the fa-

miliar estimator S2
n(X)/n a biased estimator of Var(X̄n).

In particular, if the Xi are positively correlated, one has

E(S2
n(X)/n) < Var(X̄n) (see Section 3).

To overcome this problem, one can run k independent

replications of the system simulation. Assume that run

i produces the output data Xi1,Xi2, . . . ,Xin. Then the

replicate averages Yi = 1
n

∑n
j=1 Xij are independent and

identically distributed (IID) random variables, their sample

mean Ȳk = 1
k

∑k
i=1 Yi is also an unbiased estimator of

µ, and their sample variance V̂R = S2
k(Y ) is an unbiased
8
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estimator of Var(X̄n). If in addition k is sufficiently large,

an approximate 1 − α confidence interval (CI) for µ is

Ȳk ± tk−1,1−α/2

√

V̂R/k , (1)

where td,δ represents the δ-quantile of Student’s t distribution

with d degrees of freedom.

Alexopoulos and Seila (1998, Section 7.2.2) review

sequential procedures for determining the number of repli-

cations required to estimate µ with a fixed absolute or relative

precision. The procedure for constructing a 1−α CI for µ
with a small absolute error |Ȳk −µ| ≤ β is based on Chow

and Robbins (1965). It starts with k ≥ 5 runs and stops when

the halfwidth tk−1,1−α/2

√

V̂R/k ≤ β. Law (2006, pp. 501–

502) describes an empirical method for obtaining an estimate

whose relative error satisfies Pr(|Ȳk−µ|/|µ| ≤ γ) ≥ 1−α,

with α ≤ 0.15. The method starts with k ≥ 10 runs and

stops when the relative halfwidth tk−1,1−α/2|Ȳk|−1

√

V̂R/k

drops below γ/(1 + γ).
The method of replications can also be used for estimat-

ing performance measures other than means. Let Y be the

total cost incurred in an inventory system during a certain

time window, and let yp ≡ inf{y : Pr(Y ≤ y) ≥ p} denote

the p-quantile of Y . To estimate yp, we can make k inde-

pendent replications, denote by Yi the cost observed during

replication i, and let Y(1) < Y(2) < · · · < Y(k) be the order

statistics corresponding to the Yi. Then a point estimate

for yp is ξ̂p = Y(kp) if kp is an integer or ŷp = Y(bkp+1c)
otherwise (b·c is the floor function). A CI for yp is described

in Alexopoulos and Seila (1998, Section 7.3.2).

3 STEADY-STATE ANALYSIS

We focus on methods for computing point and interval

estimators for the mean of a discrete-time stationary process.

Analogous methods for analyzing continuous-time output

data are described in a variety of texts (Fishman 2001; Law

2006). The process X = {Xi} is called stationary if the joint

distribution of Xi+j1 ,Xi+j2 , . . . ,Xi+jk
is independent of

i for all indices j1, j2, . . . , jk and all k ≥ 1. If E(Xi) = µ,

Var(Xi) ≡ σ2
X < ∞ for all i, and the Cov(Xi,Xi+j)

is independent of i, then X is called weakly stationary.

We denote the autocovariance function of X by Rj ≡
Cov(X1,X1+j) (j = 0,±1,±2, . . .). Notice that R0 =
σ2

X . Alexopoulos et al. (2006d) give a detailed overview

of the properties of stationary processes that are central

to simulation output analysis and proceed with a detailed

description of the majority of the methods in this section.

Let X̄n and S2
n(X) be the sample mean and sample

variance of n observations, say X1, . . . ,Xn. Clearly X̄n

is not only unbiased for µ, but also strongly consistent by

the ergodic theorem (see Durrett 2005).
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Under the assumption that X̄n is approximately nor-

mally distributed (which is reasonable for sufficiently large

n), the usual construction of a CI for µ requires the deriva-

tion of an estimator for Var(X̄n). A little algebra yields

(Anderson 1984),

E

[
S2

n(X)

n

]

=
n
an

− 1

n − 1
Var(X̄n), (2)

where an = 1 + (2/σ2
X)

∑n−1
j=1 (1− j/n)Rj . Then for pro-

cesses that are positively correlated (Ri > 0), Equation (2)

implies that E[S2
n(X)/n] < Var(X̄n). Hence the “clas-

sical” 1 − α CI for IID data X̄n ± tn−1,1−α/2
Sn(X)√

n
can

have coverage probability that can be considerably below

the nominal value 1 − α.

A common assumption facilitating the derivation of a

CI for µ is as follows:

Functional Central Limit Theorem (FCLT) Assumption.

Suppose that the series

σ2 ≡ σ2
X + 2

∞∑

j=1

Rj (3)

is absolutely convergent and σ2 > 0. Let

Xn(t) ≡ bntc(X̄bntc − µ)

σ
√

n
, t ≥ 0.

Then Xn(·) =⇒ W , where {W(t) : t ≥ 0} is a standard

Brownian motion process. We call σ2 the (asymptotic)

variance parameter of X .

This assumption holds under several conditions (see

Durrett 2005). Examples are a condition involving con-

ditional second moments of X and the stronger ϕ-mixing

condition: X is ϕ-mixing if there are ϕk ↓ 0 such that, for

each k ≥ 0, A ∈ Fj
−∞, and B ∈ F∞

j+k,

|Pr(A ∩ B) − Pr(A) Pr(B)| ≤ ϕk Pr(A).

Here F j
i (i ≤ j) denotes the σ-field generated by

Xi,Xi+1, . . . ,Xj .

Remark 1 Contrary to popular belief, many

stochastic processes encountered in simulation output analy-

sis are not ϕ-mixing. Examples are autoregressive processes,

regenerative processes (see Section 3.3) with regenerations

not occurring uniformly fast over the state space, and virtu-

ally all open queueing networks (Glynn and Iglehart 1985).

The variance of the sample mean in terms of the au-

tocovariance function is

Var(X̄n) =
1

n

[

σ2
X + 2

n−1∑

j=1

(1 − j/n)Rj

]

. (4)
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Assumption 0 < σ2 < ∞ along with Equation (4) im-

ply limn→∞ nVar(X̄n) = σ2 and limn→∞ Var(X̄n) = 0;

hence X̄n is also consistent (in mean square error). Our

focus will be on methods for obtaining CIs for µ, which

involve estimating σ2.

Finally, the “little-oh” notation f(m) = o(g(m)) means

that f(m)/g(m) → 0 as m → ∞; and the “big-oh” notation

f(m) = O(g(m)) means that there is a positive integer m0

such that |f(m)/g(m)| ≤ C for some constant C and all

m ≥ m0.

3.1 Dealing with the Initial Conditions

Several problems arise when the process X does not start in

steady-state. For example, X̄n is not an unbiased estimator

of the mean µ. The removal of the effect of the initial

conditions is a challenging problem.

The most commonly used method for eliminating the

bias of X̄n identifies an index l and truncates the observations

X1, . . . ,Xl. Several procedures have been proposed for the

detection of a cutoff index l (see Fishman 2001; Law 2006;

Ockerman 1995; Wilson and Pritsker 1978a,b).

The graphical procedure of Welch (1983) uses k in-

dependent replications, with the ith replication producing

observations Xi1,Xi2, . . . ,Xin, and computes the “across-

runs” averages X̄j = 1
k

∑k
i=1 Xij , j = 1, . . . , n. Then for

a given time window w, the procedure plots the moving

averages

X̄j(w) =

{
1

2w+1

∑w
m=−w X̄j+m w + 1 ≤ j ≤ n − w

1
2j−1

∑j−1
m=−j+1 X̄j+m 1 ≤ j ≤ w

against j. If the plot is reasonably smooth, then l is chosen

to be the value of j beyond which the sequence of moving

averages converges. Otherwise, a different time window is

chosen and a new plot is drawn. The choice of w may be

a difficult problem for congested systems with output time

series having autocorrelation functions with long tails (see

Alexopoulos and Seila 1998, Example 7).

3.2 The Replication/Deletion Approach

This intuitive approach runs k independent replications,

each of length l + n observations, and discards the first l
observations from each run. One then uses the IID sample

means Yi(l, n) = 1
n

∑l+n
j=l+1 Xij from the k runs to com-

pute the point estimate Ȳk(l, n) = 1
k

∑k
i=1 Yi(l, n) and the

following approximate 1 − α CI for µ:

Ȳk(l, n) ± tk−1,1−α/2

√

V̂R(l, n)/k, (5)

where V̂R(l, n) is the sample variance of the Yi(l, n).
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The method is simple and general, but involves the

choice of three parameters, l, n and k. Here are a few

points the user should be aware of: (a) As l increases for

fixed n, the “systematic” error in each Yi(l, n) due to the

initial conditions decreases. (b) As n increases for fixed l,
the systematic and sampling errors in Yi(l, n) decrease. (c)

The systematic error in the sample means Yi(l, n) cannot

be reduced by increasing the number of replications k. (d)

For fixed n and under some mild moment conditions that

are satisfied by a variety of simulation output processes,

the CI (5) is asymptotically valid only if l/ ln k → ∞ as

k → ∞ (Fishman 2001). This means that as one makes

more runs in an attempt to compute a narrower CI, the

truncation index l must increase faster than ln k for the CI

to achieve the nominal coverage. This requirement is hard

to implement in practice. (e) This method is also potentially

wasteful of data as the truncated portion is removed from

each replication. Additional shortcomings of this method

are presented in Alexopoulos and Goldsman (2004).

The regenerative method (Section 3.3) and the batch

means method (Section 3.4) seek to overcome the afore-

mentioned issues. For a thorough comparison between the

methods of independent replications and batch means, see

Alexopoulos and Goldsman (2004).

3.3 The Regenerative Method

This method assumes the identification of time indices at

which the process X probabilistically starts over and uses

these regeneration epochs for obtaining IID random variables

which can be used for computing point and interval estimates

for the mean µ. The method was proposed by Crane and

Iglehart (1975) and Fishman (1973, 1974). More precisely,

assume that there are (random) time indices 1 ≤ T1 <
T2 < · · · such that the portion {XTi+j , j ≥ 0} has the

same distribution for each i and is independent of the

portion prior to time Ti. The portion of the process between

two successive regeneration epochs is called a cycle. Let

Yi =
∑Ti+1−1

j=Ti
Xj and Zi = Ti+1 −Ti for i = 1, 2, . . . and

assume that E(Zi) < ∞. Then the steady-state mean µ is

given by µ = E(Y1)/E(Z1).
Now suppose that one simulates the process X over

n cycles and collects the observations Y1, . . . , Yn and

Z1, . . . , Zn. Then µ̂ = Ȳn/Z̄n is a strongly consistent

estimator of µ. Furthermore, CIs for µ can be constructed

by using the IID random variables Yi − µZi, i = 1, . . . , n
and the central limit theorem (see Iglehart 1975).

The regenerative method is difficult to apply in prac-

tice because the majority of simulations have either no

regenerative points or very long cycle lengths. Two classes

of systems this method has successfully been applied to

are inventory systems and highly reliable communications

systems with repairs.
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3.4 The Batch Means Method

The method of nonoverlapping batch means (NBM) is a

popular approach for computing point and CI estimators for

the mean µ of a stationary process. Original accounts on the

method were given by Conway (1963), Fishman (1978), and

Law and Carson (1979); see Alexopoulos and Goldsman

(2004) and Fishman (2001) for detailed coverage.

Suppose that the sample X1, . . . ,Xn is divided into

k contiguous batches, each consisting of m observa-

tions (for simplicity, we assume n = km). For

i = 1, . . . , k, the ith batch consists of the observations

X(i−1)m+1,X(i−1)m+2, . . . ,Xim and the ith batch mean

Yi,m = 1
m

∑m
j=1 X(i−1)m+j is the sample average from

batch i. The NBM-based estimator of the mean is the grand

sample mean

X̄n =
1

k

k∑

i=1

Yi,m =
1

n

n∑

i=1

Xi. (6)

Clearly, the stationarity of X implies E(X̄n) = µ and the

stationarity of the batch means sequence {Yi,m : i ≥ 1}.

The motivation behind the NBM method is simple.

First, under the FCLT, one can show that as m → ∞,

the batch means become uncorrelated (Law and Carson

1979) and normally distributed. Since the grand mean X̄n

is the sample average of the batch means, one has the

approximation

nVar(X̄n)
.
= nVar(Y1,m)/k = mVar(Y1,m).

Hence the NBM estimator for σ2 is

V̂B(k,m) ≡ m

k − 1

k∑

i=1

(Yi,m − X̄n)2, (7)

which is m times the sample variance of the batch means.

An approximate 1 − α CI for µ is

X̄n ± tk−1,1−α/2

√

V̂B(k,m)

n
. (8)

Of course, the fundamental issue is the choice of the

batch size and the number of batches. Several early studies

(e.g., Fishman 1978; Schmeiser 1982) addressed this issue,

but without the rigor of recent studies.

To motivate the description of the modern procedures,

we focus on the mean squared error (MSE) of V̂B(k,m) and

the coverage of the CI (8). Here we let σ2
n ≡ nVar(X̄n),
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and define the “center of gravity” constant

γ ≡ −
∞∑

j=−∞
jRj = −2

∞∑

j=1

jRj . (9)

One can show that

E[V̂B(k,m)] =
1

k − 1
(kσ2

m − σ2
n).

If in addition E(X4
1 ) < ∞, and the process X is ϕ-mixing

with ϕj = O(j−4−ε) for some ε > 0, then γ exists and

σ2
n = σ2 + γ/n + o(1/n). (10)

Combining the last two equations we obtain

E[V̂B(k,m)] = σ2 + (k + 1)γ/n + o(1/n). (11)

Hence, V̂B(k,m), usually has negative first-order bias for

positively autocorrelated processes.

Also, the additional assumptions E(X12
1 ) < ∞ and

ϕj = O(j−9) allow one to write (Chien et al. 1997)

Var[V̂B(k,m)] =
2σ4(k + 1)

(k − 1)2
+ O(1/(km1/4))

+O(1/k2). (12)

Then the MSE of the variance estimator V̂B(k,m) has the

form

MSE[V̂B(k,m)] = O(1/(km1/4)) + O(1/k2) → 0, (13)

as m, k → ∞. Property (13) implies weak consistency

for the estimator V̂B(k,m), but does not guarantee the

asymptotic validity of the CI in Equation (8). Before we

discuss batching rules that yield the last property, we briefly

examine how the variance estimator V̂B(k,m) approaches

σ2. As in Fishman (2001, p. 251), Equation (11) allows us

to write

V̂B(k,m) − σ2 = σ2
n − σ2

︸ ︷︷ ︸

error due to
finite n

− σ2
n

1 − σ2
m/σ2

n

1 − m/n
︸ ︷︷ ︸

error due to
ignoring correlations
between batch means

+ εn
︸︷︷︸

error due to
random sampling

, (14)

where the error εn has mean zero and variance given by

Equation (12). We call the first two terms on the right-

hand side of Equation (14) a systematic error; by Equation
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(10) this error behaves as O(1/m). On the other hand,

Equation (12) implies that the standard deviation of εn

behaves as O(1/k1/2). These growth rates reveal the tradeoff

between the two types of error induced by k and m. Since

σ2
n approaches σ2 from below for a variety of systems

with positive autocorrelation functions, the systematic error

induces a negative bias in V̂B(k,m) that dissipates as the

batch size increases. Then the error due to random sampling

fluctuates around zero and decreases at rate O(1/k1/2).
The recent literature contains a variety of rules for

selecting batch sizes {m`} and batch counts {k`} as the

sample size increases. The most intuitive rule fixes the

number of batches and doubles the batch size at each itera-

tion. This assignment is computationally attractive because

at every iteration, pairs of existing batch means are averaged

to compute the new batch means.

Fixed Number of Batches (FNB) Rule. Start with

k batches of size m1. At stage ` ≥ 2, use batch size

m` = 2m`−1 and sample size n` = km`.

Under the FCLT assumption, one can show that for

fixed k and m → ∞, V̂B(k,m)
d−→ σ2χ2

k−1/(k − 1),
where χ2

d denotes a chi-square random variable with

d degrees of freedom; and the CI in Equation (8) is

asymptotically valid (Glynn and Whitt 1991). If we as-

sume uniform integrability for V̂ 2
B(k,m) (see Billings-

ley 1968), we have limm→∞ E[V̂B(k,m)] = σ2 and

limm→∞ Var[V̂B(k,m)] = 2σ4/(k − 1); hence the FNB

rule does not yield a consistent variance estimator. This is

in agreement with Equation (14) as the error O(k−1/2) due

to random sampling does not diminish. Therefore the CI in

Equation (8) tends to be wider than CIs based on consistent

variance estimators.

3.5 Consistent Batch Means Estimation Methods

Alternative rules that yield strongly consistent estimators

for V̂B(k,m) are based on the following assumption:

Assumption of Strong Approximation (ASA). There

exists a constant λ ∈ (0, 1/2] and a finite random variable

C such that, as n → ∞,

|
√

n(X̄n − µ)/σ −W(n)/
√

n| ≤ Cn−λ, w.p.1,

where W is a standard Brownian motion process defined

on the same space as the standardized process {X̄n}.

A λ close to 1/2 indicates a marginal normal distri-

bution and low correlation among the Xi. Conversely, a

λ close to zero indicates the absence of at least one of

these properties (Philipp and Stout 1975). The following

theorem proposes batching assumptions which along with

ASA yield a strongly consistent estimator for σ2. (Notice

that the batching sequences are indexed by the sample size.)

Theorem 1 (Damerdji 1994a) Suppose that the ASA

holds and that {mn} and {kn} are deterministic sequences
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of batch sizes and batch counts, respectively, such that

mn → ∞, kn → ∞, n1−2λ ln(n)/mn → 0 (as n → ∞),

and
∑∞

n=1 k−q
n < ∞ for some finite integer q ≥ 1. Then,

as n → ∞, V̂B(kn,mn) → σ2, w.p.1 and

Z(kn,mn) ≡
√

n(Xn − µ)
√

V̂B(kn,mn)

d−→ N(0, 1), (15)

where N(0, 1) is a standard normal random variable.

Suppose that mn
.
= nθ, for some θ ∈ (0, 1). One can

verify that the conditions of Theorem 1 are satisfied if θ ∈
(1− 2λ, 1). In particular, the square root (SQRT) rule that

uses mn
.
= kn

.
=

√
n (θ = 1/2) yields a strongly consistent

variance estimator when 1/4 < λ < 1/2. In addition to

the derivation of a strongly consistent estimator for σ2, the

SQRT rule induces an optimal property: Assuming that

E(X20
1 ) < ∞ and that X is ϕ-mixing with ϕj = O(j−13),

Chien (1989) showed that the CDF of the standardized

statistic Z(k,m) converges to the standard normal CDF

at the fastest possible rate. Unfortunately, the CIs for µ
that result from an implementation of the SQRT rule often

exhibit low coverage for small sample sizes (see Example

11 in Alexopoulos and Seila 1998).

Although both the FNB and SQRT rules yield asymp-

totically valid CIs for µ, each has desirable properties and

limitations. To close the gap, Fishman and Yarberry (1997)

proposed the LABATCH.2 suite of algorithms. Among the

two recommended algorithms, LBATCH and ABATCH, we

present the latter because it is more conservative with re-

gard to the coverage of the resulting CI (8). This method

uses von Neumann’s test (von Neumann 1941) to assess the

hypothesis H0: “the batch means are independent.” The

associated test statistic is

Γ(k,m) ≡
√

k2 − 1

k − 2

[

1 −
∑k−1

i=1 (Yi,m − Yi+1,m)2

2
∑k

i=1(Yi,m − X̄n)2

]

.

Assume that the hypothesis H0 is true. If the batch

means are normally distributed, the distribution of Γ(k,m)
is very close to N(0, 1) for k as small as 8. On the

other hand, if the batch means are nonnormal, the first four

cumulants of Γ(k,m) converge to the respective cumulants

of the N(0, 1) distribution as k → ∞. Hence, under H0,

Γ(k,m) ≈ N(0, 1) for large m (the batch means become

approximately normal) or large k. To guard against positive

correlation, one can use a one-sided test and reject H0 at

level β when Γ(k,m) > z1−β , where zδ is the δ-quantile

of the standard normal distribution.

The ABATCH algorithm evolves as follows. For a

complete description, see Fishman (2001).

Algorithm ABATCH
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• Select initial batch size m1, initial batch count k1,

confidence level 1−α, and type I error β for von

Neumann’s test.

• On iteration ` ≥ 1:

Compute von Neumann’s statistic Γ(k`,m`). If

Γ(k`,m`) > z1−β , reject H0 and use the FNB

rule on iteration ` + 1. Otherwise, use the SQRT

rule on iteration ` + 1.

Since the ABATCH algorithm uses random m`’s and

k`’s, Theorem 6.6 of Fishman (2001) lists conditions that

imply strong consistency for V̂B(k`,m`) and asymptotic

validity for the CI X̄n ± z1−α/2

√

V̂B(k`,m`)/n`. The

FNB and SQRT rules can be implemented easily within

the ABATCH algorithm by setting β = 0 or β = 1, re-

spectively. Two features of the LABATCH.2 suite that are

often overlooked are algorithm efficiency and low space

requirements: each algorithm requires O(n) total time and

O(log2 n) space. Although like complexities are known for

static fixed-batch-size algorithms (e.g., all the methods in

the remainder of this paper have a linear time complexity

per iteration), the dynamic setting of ABATCH offers an

important additional advantage not present in the static ap-

proach: as the analysis evolves with increasing sample path

length, it allows a user to assess how well the estimated

variance of the sample mean stabilizes, in linear total time.

This assessment is essential to gauge the quality of the

variance parameter estimates and the CI for the mean. C,

FORTRAN and SIMSCRIPT II.5 codes of LABATCH.2 can

be downloaded via anonymous ftp from the site <http:

//www.or.unc.edu/˜gfish/labatch.2.html>.

Steiger et al. (2004) proposed a sequential NBM ap-

proach, ASAP3, that delivers a CI for µ that satisfies

user-specified requirements on absolute or relative preci-

sion as well as coverage probability. This approach takes

advantage of the fact that the batch means often become

approximately multivariate normal random variables before

achieving independence. ASAP3 operates as follows: the

batch size is progressively increased until the batch means

pass the Shapiro-Wilk test for multivariate normality; and

then ASAP3 fits a first-order autoregressive (AR(1)) time

series model to the batch means. If necessary, the batch

size is further increased until the autoregressive parameter

in the AR(1) model does not significantly exceed 0.8. Next

ASAP3 computes the terms of an inverted Cornish-Fisher

expansion for the classical batch means t-ratio based on the

AR(1) parameter estimates; and finally ASAP3 delivers a

correlation-adjusted CI based on this expansion. Although

ASAP3 does not possess the computational efficiency of the

LABATCH.2 algorithms, it performs very well with regard

to conformance to the precision and coverage probability

requirements as well as with regard to the mean and variance

of the half-length of the delivered CI. Related papers, exper-

imental results, and the ASAP3 software are accessible from
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the site <http://www.ie.ncsu.edu/jwilson>. A

detailed experimental study of sequential NBM procedures

is presented in Lada et al. (2006).

A reasonable compromise between the methods of in-

dependent replications (IR) in Section 2 and NBM has been

proposed recently by Argon and Andradóttir (2006). The

replicated batch means (RBM) method uses a few indepen-

dent replications of equal length, each containing the same

number of batches, and estimates the variance parameter

σ2 my m times the sample variance of all batch means.

When the output process is stationary, the RBM method

appears to exhibit performance characteristics that fall be-

tween the constituent IR and NBM methods. The recent

paper by Alexopoulos et al. (2006a) studies the performance

of the RBM variance estimator in the presence of an additive

transient bias.

Overlapping Batch Means

An interesting variation of the traditional batch means

method is the method of overlapping batch means (OBM)

proposed by Meketon and Schmeiser (1984). For given

batch size m, this method uses all n − b + 1 overlapping

batches to estimate µ and Var(X̄n). The first batch consists

of observations X1, . . . ,Xm, the second batch consists of

X2, . . . ,Xm+1, etc. The OBM estimator of µ is

ȲO =
1

n − m + 1

n−m+1∑

i=1

Y ′
i,m,

where Y ′
i,m = 1

m

∑i+m−1
j=i Xj (i = 1, . . . , n − m + 1) are

the respective batch means. The OBM-based estimator of

σ2 is

V̂O(k,m) =
nm

(n − m + 1)(n − k)

n−m+1∑

i=1

(Y ′
i,m − X̄n)2,

with k ≡ n/m. The OBM variance estimator is almost

identical to Bartlett’s spectral estimator (see Anderson 1984).

Under conditions similar to those required to derive

Equations (11) and (12) one has (Song and Schmeiser 1995)

E[V̂O(k,m)] = σ2 + γ/m + o(1/m) (16)

and, as m → ∞,

Var[V̂O(k,m)] → 2(2k2 − 3k − 3)σ4

3(k − 1)2
.
=

4σ4

3k
. (17)

Equations (11) and (16) show that the estimators V̂B(k,m)
and V̂O(k,m) have the same asymptotic means (as k,m →
∞). However a comparison between Equations (12) and

<http:
http://www.or.unc.edu/~gfish/labatch.2.html
//www.or.unc.edu/~gfish/labatch.2.html>
http://www.or.unc.edu/~gfish/labatch.2.html
<http://www.ie.ncsu.edu/jwilson>
ftp://ftp.ncsu.edu/pub/eos/pub/jwilson/installasap3.exe
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(17) reveals that

Var[V̂O(k,m)]

Var[V̂B(k,m)]
→ 2

3
, as k,m → ∞.

Thus, the OBM method gives better (asymptotic) perfor-

mance than NBM with regard to MSE. Also, the behavior

of Var[V̂O(k,m)] appears to be less sensitive to the choice

of the batch size than does the behavior of Var[V̂B(k,m)]
(see Song and Schmeiser 1995, Table 1).

An approximate 1 − α CI for µ is

X̄n ± td,1−α/2

√

V̂O(k,m)/n,

with the degrees of freedom d chosen so that V̂O(k,m)
is asymptotically σ2χ2

d/d. Meketon and Schmeiser (1984)

use the value d = 1.5(k − 1) whereas, based on Monte

Carlo studies, Schmeiser (1986) recommends the larger

value d = 1.5(k − 1)[1 + (k − 1)−0.5−0.6k].
The OBM method can also yield a consistent vari-

ance estimator. If X satisfies ASA, and the determinis-

tic sequences satisfy the assumptions of Theorem 1 and

limn→∞(k2
n/n) = 0, then Var[V̂O(kn,mn)] → σ2, w.p.1

(Damerdji 1994a).

Using Equations (16) and (17), one can show that

for a sample size n, the batch size that minimizes the

MSE[V̂O(k,m)] is given by

m∗ =

(
3γ2n

2σ4

)1/3

. (18)

Song (1996) developed methods for estimating the ratio

γ2/σ4 for a variety of processes, including moving average

processes and autoregressive processes. Then one can obtain

an estimator for m∗ by plugging the ratio estimator into

Equation (18).

Welch (1987) noted that both traditional batch means

and overlapping batch means are special cases of spectral

estimation at frequency 0 and, more importantly, suggested

that overlapping batch means yield near-optimal variance

reduction when one forms sub-batches within each batch

and applies the method to the sub-batches. For example,

a batch of size 64 is split into 4 sub-batches and the first

(overlapping) batch consists of observations X1, . . . ,X64,

the second consists of observations X17, . . . ,X80, etc.

3.6 The Standardized Time Series Method

Now we turn to estimators based on standardized time

series (STS). We start with estimators based on the entire

sample, and then present estimators based on standardized

time series applied to batches.
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The STS for the sample X1, . . . ,Xn is formed as

follows (see Schruben 1983): One defines D0,n ≡ 0 and

Di,n ≡ Ȳi − Ȳn, for i = 1, . . . , n; scales the sequence

{Di,n} by i/(σ
√

n); and then scales the time index i of the

resulting sequence to the unit interval by setting t = i/n.

The resulting STS is

Tn(t) ≡ bntc(X̄n − X̄bntc)

σ
√

n
, 0 ≤ t ≤ 1.

If X satisfies a FCLT, it can be shown that, as n → ∞,

(
√

n(X̄n − µ), σTn) =⇒ (σW(1), σB), (19)

where B is a standard Brownian bridge process on [0, 1]
defined by B(t) = W(t) − tW(1). For a set of sufficient

conditions, see Glynn and Iglehart (1990). In addition,

the STS Tn(·) is asymptotically independent of X̄n. Recall

that all finite-dimensional joint distributions of B are normal

with E(B(t)) = 0 and Cov(B(s),B(t)) = min(s, t) − st,
0 ≤ s, t ≤ 1.

The Weighted Area Estimator

We start with the weighted area estimator (Goldsman,

Meketon, and Schruben 1990; Goldsman and Schruben

1990; Schruben 1983). Suppose that the function f
is twice continuously differentiable on the interval [0, 1]

and normalized so that Var(
∫ 1

0
f(t)B(t) dt) = 1. Then

∫ 1

0
f(t)B(t) ∼ σN(0, 1). The square of the weighted area

under the STS is defined by

A(f ;n) ≡
[

1

n

n∑

i=1

f(i/n)σTn(i/n)

]2

.

Under mild conditions, the continuous mapping theorem

(see Billingsley 1968, Theorem 5.1) implies

A(f ;n)
d−→ A(f) ≡

[∫ 1

0

f(t)σB(t) dt

]2

∼ σ2χ2
1,

as n → ∞. For this reason, we call A(f ;n) the weighted

area estimator for σ2.

The following theorem gives expressions for the mean

and variance of the weighted area estimator.

Theorem 2 (Foley and Goldsman 1999; Goldsman

et al. 1990) Suppose that X is ϕ-mixing and satisfies a

FCLT, the constant γ in (9) exists, and A2(f ;n) is uniformly

integrable. Then, as n → ∞,

E[A(f ;n)] = σ2 +
[(F (1) − F̄ (1))2 + F̄ 2(1)]γ

2n
+ o(1/n)
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and

Var[A(f ;n)] → Var[A(f)] = Var(σ2χ2
1) = 2σ4,

where F (s) ≡
∫ s

0
f(t) dt, 0 ≤ s ≤ 1, and F̄ (u) ≡

∫ u

0
F (s) ds, 0 ≤ u ≤ 1.

Notice that the limiting variance does not depend on

the weight function f .

Example 1 Schruben (1983) studied the area es-

timator with constant weight function f0(t) ≡
√

12, for

t ∈ [0, 1]; in this case, Theorem 2 implies that E[A(f0;n)] =
σ2 + 3γ/n + o(1/n).

If one chooses weights having F (1) = F̄ (1) = 0, the

resulting estimator is first-order unbiased for σ2, i.e., its

bias is o(1/n). An example of a weight function yielding a

first-order unbiased estimator for σ2 is f2(t) ≡
√

840(3t2−
3t + 1/2) (see Goldsman, Meketon, and Schruben 1990;

Goldsman and Schruben 1990).

Other examples of weight functions yielding first-order

unbiased estimators for σ2 are given by the family fcos,j(t) =√
8πj cos(2πjt), j = 1, 2, . . .. Foley and Goldsman (1999)

showed that this “orthonormal” sequence of weights pro-

duces area estimators A(fcos,1, n), A(fcos,2, n), . . . that are

not only first-order unbiased, but asymptotically indepen-

dent; that is, A(fcos,1), A(fcos,2), . . . are IID σ2χ2
1.

Batched Area Estimators

Up to now, the STS-based variance estimators have been

constructed directly from a single long run of n observations.

We now examine what happens if we (a) divide the run

into contiguous, nonoverlapping batches; (b) form an STS

estimator from each batch; and (c) take the average of the

estimators.

The STS from batch i (i = 1, . . . , k) is

Ti,m(t) ≡ bmtc(Yi,m − Yi,bmtc)

σ
√

m
, 0 ≤ t ≤ 1,

where Yi,j = 1
j

∑j
`=1 X(i−1)m+`. Under the same mild

conditions as before, one has

(
√

m(Y1,m − µ),
√

m(Y2,m − µ), . . . ,√
m(Yk,m − µ);σT1,m, σT2,m, . . . , σTk,m)

=⇒ (σZ1, σZ2, . . . , σZk;σB0, σB1, . . . , σBk−1),

where the Zi are IID standard normal random variables,

and Bs denotes a standard Brownian bridge on [s, s + 1],
for s ∈ [0, k − 1]. That is,

Bs(t) = W(s+t)−W(s)−t[W(s+1)−W(s)], 0 ≤ t ≤ 1.

One can easily show that the Brownian bridges

B1,B2, . . . ,Bk are independent.
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The area estimator from batch i is

Ai(f ;m) ≡
[

1

m

m∑

`=1

f(`/m)σTi,m(`/m)

]2

, i = 1, . . . , k,

and the batched area estimator for σ2 is

V̂A(f ; k,m) ≡ 1

k

k∑

i=1

Ai(f ;m). (20)

Since the Ti,m, i = 1, . . . , k, converge to independent

Brownian bridges as m becomes large (with fixed k), we shall

assume that the the Ai(f ;m) are asymptotically independent

as m → ∞. Then by the discussion above, we have

V̂A(f ; k,m)
d−→ σ2χ2

k/k, and an approximate 1−α CI for

µ is X̄n ± tk−1,1−α/2

√

V̂A(k,m)/n.
Theorem 2 implies

E[V̂A(f ; k,m)] = E[A1(f ;m)]

= σ2 +
[(F (1) − F̄ (1))2 + F̄ 2(1)]γ

2m
+o(1/m). (21)

Further, if we assume uniform integrability of V̂ 2
A(f ; k,m)),

we can also make an analogous statement concerning the

variance of the batched area estimator: As m → ∞,

Var[V̂A(f ; k,m)] = k−1Var[A1(f ;m)]

→ k−1Var[A(f)] = 2σ4/k. (22)

Equations (21) and (22) indicate that the batched area esti-

mator has a bit more bias than the area estimator obtained

from the entire sample, but smaller asymptotic variance (by

a factor of k). Sargent et al. (1992) present an extensive

experimental study for various CIs mentioned in this section.

It is worth mentioning that, under the assumptions of

Theorem 1, Damerdji (1994ab) showed that the batched

area estimator V̂A(f ; k,m) is strongly consistent.

Another class of estimators is based on the weighted area

under the square of the STS (Goldsman et al. 1999). Also,

additional benefits result from combining NBM-based and

area estimators (Schruben 1983) or by forming estimators

based on STS from overlapping batches (Alexopoulos et al.

2006bc).

Remark 2 Methods based on NBM and STS can

also be used for computing point and CI estimators for con-

tinuous nonlinear functions of steady-state means (Muñoz

and Glynn 1997; Chang 2004).
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3.7 Quantile Estimation

A variety of methods have been proposed for estimating

quantiles of steady-state data (see Iglehart 1976; Moore

1980; Seila 1982ab; Heidelberger and Lewis 1984). The

methods differ in the way the variance of the sample quantile

is estimated. It should be mentioned that quantile estimation

is typically a harder problem than the estimation of steady-

state means.

3.8 Density Estimation

In addition to point and interval estimates, users are often

interested in estimating the density functions (or CDFs)

of random variables generated by a computer simulation.

Several simulation packages can generate histograms, but

such plots are often “poor” estimates of the unknown den-

sity function because their shape depends heavily on the

chosen origin and the bin width. Although the statistical

literature contains many state-of-the-art density estimation

techniques, such as those based on kernel functions, the

simulation literature (in particular texts) barely mentions

such techniques, and only within the context of indepen-

dent input data. The book chapter by Alexopoulos (2006)

attempts to close the gap between the statistical and sim-

ulation literatures by reviewing univariate kernel density

estimators based on independent samples and sample paths

of stationary dependent processes.

3.9 Multivariate Estimation

Frequently, the output from a single simulation run is used

for estimating several system parameters. The estimators

of these parameters are typically correlated. As an exam-

ple, consider the average customer delays at two stations

on a path of a queueing network. In general, Bonferroni’s

inequality can be used for computing a conservative confi-

dence coefficient for a set of CIs. Indeed, suppose that Di

is a 1 − α CI for the parameter µi, i = 1, . . . ,m. Then

Pr[∩m
i=1{µi ∈ Di}] ≥ 1 − ∑m

i=1 αi.
This result can have serious implications as for m = 10

and αi = 0.10 the r.h.s. of the above inequality is equal to

0. If the overall confidence level must be at least 1−α, then

the αi can be chosen so that
∑m

i=1 αi = α. Multivariate

estimation methods are described in Charnes (1989, 1990,

1991) and Chen and Seila (1987).
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