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ABSTRACT

Composition of models is considered essential in developing

heterogeneous complex systems and in particular simulation

models capable of expressing a system’s structure and be-

havior. This paper describes model composability concepts

and approaches in terms of modeling formalisms. These

composability approaches along with some of the key capa-

bilities and challenges they pose are presented in the context

of semiconductor supply chain manufacturing systems.

1 INTRODUCTION

Many contemporary and future systems are integrated from

a range of simple to complex sub-systems. Examples are

information, manufacturing, and transportation enterprises.

The purposes for these systems vary significantly as each

system is to satisfy a set of users and system requirements. To

understand a system’s capabilities and limitations, dynamical

models are developed. They help to specify structural and

behavioral specifications that can be simulated and, thus,

can be used to evaluate analysis, design, development, and

testing decisions.

Enterprise (or distributed) systems are complex and to

understand their intricate dynamics it is often beneficial

or necessary to use different kinds of models to represent

each sub-system. Heterogeneous model types can offer

greater flexibility as opposed to homogenous model types.

However, combining different model types poses a variety

of challenges depending on the system being modeled (Page

and Opper 1999, Davis et al. 2000, Kasputis and Ng 2000,

Sarjoughian and Cellier 2001, Davis and Anderson 2004,

Fujimoto et al. 2002). Views regarding the kinds of problems

encountered in simulation composability and future advances

and investments in the context of the Department of Defense

needs are described in (Davis and Anderson 2004).

Partitioning a system into layers, each of which consists

of a set of components, is a crucial step in high-level

model specification. Decomposition and composition of
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models are challenging when models are heterogeneous in

terms of their formal specifications – e.g., discrete-event and

optimization models have different structural and behavioral

specifications.

Given the diversity of parts and resulting complexity of

the systems, criticality of operation, and enormous financial

consequences, simulation is being used more and more as

the primary science and technology to aid analysis, design,

implementation, and testing. Indeed, simulation can be used

across each phase of system development as proposed in

Simulation-Based Acquisition (SBA 1998). For example, a

suite of system-level simulation models may be developed

to help analyze requirements and evaluate potential archi-

tectural solutions far in advance of defining detailed design

specifications. Yet, another suite of models may be used

to help develop detailed design specifications which can be

implemented.

Systems theory, object-orientation, and logical pro-

cesses worldviews are well known approaches for describing

dynamic systems (Cellier 1991, Banks et al. 2004, Fishwick

1995, Fujimoto 2000, Zeigler et al. 2000). Different model-

ing paradigms are suitable for different kinds of needs – for

some examples of modeling approaches see (Sarjoughian

and Cellier 2001, Mosterman and Vangheluwe 2002, Barros

and Sarjoughian 2004). A discrete event modeling approach

may be used to describe manufacturing processes and their

interactions as a collection of model components. Alter-

natively, given historical data, a continuous model can be

developed to show how inventory holding varies in rela-

tion to factory throughput. Optimization models may be

developed to understand logistics and financial impact of

satisfying customer demand.

Manufacturing supply chains and military systems of

systems are two well known network systems that are of-

ten modeled at varying levels of details and from different

aspects. Depending on the system’s different types of be-

haviors, system simulation models may be developed using

a monolithic modeling paradigm in one extreme and a

combination of modeling paradigms at the other extreme.
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For example, a manufacturing process may be modeled us-

ing a single modeling approach (e.g., agents or Petri-net).

However, to effectively design, assess, and operate a man-

ufacturing supply chain in an optimal fashion, it is useful

to employ discrete-event and optimization models (Kempf

2004). Similarly, to evaluate possible system design al-

ternatives given a variety of operational and engagement

patterns among a sensor, weapons, and command/control,

and communication models, discrete-event, agent, and GIS

models are important to be used (Hall 2005).

2 MULTI-LAYER MODELING

Many real world network systems can be abstracted to

consist of two parts – one is a plant and another is a

controller (see Figure 1). At a high level of abstractions,

the plant and controller models of a network system can

be considered as computations which exchange data (i.e.,

states) and control (i.e., commands) under some well-defined

constraints. The plant/controller pair can form a symbiotic

relationship, where one is concerned with operations of

a network process and the other is concerned with the

control of the network management. The plant dynamics

can be described in a variety of forms – e.g., discrete,

continuous, or some combination thereof. The controller can

be based on feedback control, event-based, and fuzzy control.

For example, a plant can have stochastic discrete-event

operations taking place at the present time and the controller

can be an optimization-based feedback control. The plant’s

operations occur from one time instant to the next – i.e., the

dynamics of the plant can be modeled as deterministic (or

stochastic) continuous and discrete equations. The controller

operations can be based on the current or future state of the

plant as well as present and expected inputs that can affect

controller’s decision making.

The plant and controller is considered a two-layer sys-

tem – plant and controller are at lower and higher levels

of abstractions, respectively. The plant is responsible for

carrying out low-level operations, some of which are re-

quested from the control. It carries out some operations

given some inputs and generates some outputs. The con-

troller is responsible to carry out higher level operations

given details provided from the plant. Its responsibility is

to constrain the operations of the plant to those that are

deemed desirable or acceptable for some finite time period

in the future.

The controller itself can be viewed as plant and its

operations sanctioned by another controller. This leads to

multi-layer plant/controller specifications. This separation

offers fundamental benefits in terms of developing separate

and hybrid models and simulations (for example see Prae-

hofer 1991, van Beek et al. 1997, Barros 2002). It provides

conceptual separation of knowledge. Plant and controller

models play distinct roles where one supplies data and the
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Figure 1: A Two-Level Plant and Control Model

other provides control. It also enables supporting multiple

levels of control for a plant. One (tactical) controller pro-

vides tactical commands to the plant and another controller

provides strategic plans to the tactical controller. Another

advantage is that alternative modeling choices may be used

for the plant or controller. For example, the plant may be

described in terms of discrete and continuous models and the

controller may be described in terms of linear optimization

or event-based control models. In the case of semiconductor

manufacturing supply chain, the plant is the manufacturing

process and the control is operational/logistics controller

(see Figure 1).

3 PLANT AND CONTROL MODELS

In the domain of semiconductor manufacturing supply chain

systems, models of discrete processes, control policies, and

decision plans are important in handling stochastic dynamics

of individual parts of manufacturing processes under tactical

control and strategic planning, given short- and long-term

supply and customer demand (Kempf 2004). These kinds of

aggregated models play a central role in the understanding

of not only physical operations of processes, but also how

they are managed using tactical control and strategic plan-

ning. Such complex industries can gain both short-term and

long-term technical competitiveness as well as financial ad-

vantages. Another crucial benefit of synthesizing different

kinds of models is the ability to better handle mismatches

(between competing objectives arising from operational vs.

decision aspects, for example).

A canonical manufacturing process can be modeled as

a collection of inventory, factory, and transportation nodes.

The inventory (and transportation) nodes store (transport)

products such as raw material, semi-finished goods, and

finished goods. The factory node processes the products it

receives from inventories and sends the processed products

to inventory or transportation nodes after some time period.

These nodes together characterize the state of the supply

chain process at any one time instant. Each factory, inven-

tory, and transportation node can have stochastic yield and
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duration which in turn results in a chain of nodes that can

exhibit complex dynamics.

A well known approach for controlling a supply chain

is to use linear optimization (LP) (Rardin 1998). An opti-

mization model describes a set of formulas and relationships

(constraints c1, c2, etc.). A solver can be used to optimize

the optimization model’s variables of interests (e.g., in-

ventory holdings) given some objective functions. Some

examples of decisions can be how much should be held in

the Finished Goods inventory, how many of which products

should a factory produce, and what transportation mode to

use for shipping products from an inventory to customer

(see Figure 2). The responsibility of the controller is to

optimize expected vs. actual demand and supply over some

future time horizon given key data about manufacturing

nodes (e.g., work-in-progress in a Finish node) (Godding

et al. 2004). Alternatively, it may be useful to use a com-

bination of optimization constraints and control-theoretic

feedback/feed-forward filters which is known as Model Pre-

dictive Control (MPC) (Qin and Badgwell 2003, Wang et al.

2004, Sarjoughian et al. 2005, Huang et al. 2006).

To integrate these models requires accounting for dif-

ferences between data types that are used in, for example,

DEVS and LP models. The structure of input and output

data for DEVS models is complex as compared with the

data for LP models. Data for DEVS models are specified

in terms of messages each defined in terms of port and

value pairs – the port is a string and the data can be an

arbitrary expression (e.g., a queue of key and value pairs).

The structure of input and output data for LP models are

simple data types which may be formed into vectors (e.g.,

array of reals). Therefore, for manufacturing process and

optimization models to interact, their data types needs to

be syntactically mapped from one to the other (Godding

et al. 2004, Huang et al. 2006). For example, the Finish

process produces a set of finished products Lots at output

port Data-Out. The number of tested products is provided

asinput to the LP model.

Aside from input and output exchanges and mappings,

it is also necessary for the behaviors of the manufacturing

process and optimization models to be well-defined – data

exchanges need to occur at appropriate times and frequency.

For example, the manufacturing process model advances

from day to day whereas the optimization model is solved

at the start of each day. In this scenario, a command

determined by the optimization model requests n products

from the Semi-Finished Goods to be released into Finish -

i.e., the Finish receives a release command on port Control-

In with value n. Details of the DEVS, LP, and MPC models

partially shown in Figure 2 can be found in Singh et al.

(2004), Godding et al. (2004), Sarjoughian et al. (2005),

Wang et al. (2005), Huang et al. (2006).
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Figure 2: A Snippet of a Semiconductor Manufacturing

Process and Optimization Model

4 MODEL COMPOSABILITY CONCEPTS AND

APPROACHES

Considering the multi-layer modeling concept, it is possible

to use a single modeling formalism to describe a plant and

its controller. However, if a system under consideration

has parts with dynamics that are intrinsically different, it

is crucial to use multiple modeling formalisms. The above

semiconductor manufacturing supply chain system is an ex-

ample where the plant (manufacturing process) is suitable

to be modeled as discrete-event model and the controller

(logistic control) as an optimization model. A key differ-

ence between these models is that the discrete-event model

describes how nodes of a manufacturing process network

affect one another and the optimization model searches for

optimal operation of the overall manufacturing process.

4.1 Modeling Formalisms

A modeling formalism can be defined to consist of two parts:

model specification and execution algorithm (Sarjoughian

and Zeigler 2000). The former is a mathematical theory

describing the kinds of structure and behavior that can be

described with it. The latter specifies an algorithm that can

correctly execute any model that is described in accordance

with the model specification.

A model A that can be specified in a modeling formalism

Ψ is denoted as MA,{Ψ} – i.e., model A adheres to the model

specification Ψ and can be executed using its execution

algorithm. A model composed of a finite number of disparate

models (e.g., A,B, . . . ,K) specified in a finite number of
51
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distinct modeling formalisms (e.g., Ψ,Φ, . . . ,Ω) is denoted

as M∪A,B,...,K,{Ψ,Φ,...,Ω}.

Approaches to model composability are classified into

mono, super, meta, and poly modeling formalisms. These

approaches provide different kinds of capabilities toward

model composition. The first two are grounded in the con-

cept that in some cases principally a single formalism is

well suited for modeling different parts of a system. In

contrast, the latter two are aimed at some other cases where

disparate modeling formalisms are crucial to describe the

parts of a complex system. Despite the differences among

model composability approaches, every approach must en-

sure interactions among composed model components are

structurally and behaviorally well-defined.

Exchange of data and control, causality of input and out-

put interactions, and synchronization of models’ executions

with respect to time must be well-defined. This requires

that not only individual model specifications are executed

correctly, but also their compositions (i.e., the execution of

multiple execution algorithms are well-defined with respect

to the composition of their model specifications).

To help describe the above model composability ap-

proaches, model specifications are shown as rectangle,

rounded rectangle, oval, and hexagon icons (see Figures 3

and 4). Process and control models are shown as rounded

rectangles and ovals, respectively. A composite model that

consists of two or more models (whether specified in one or

multiple modeling formalisms) is shown as a rectangle. For

example, Figure 3 shows that the manufacturing and control

models as well as their composition are described in Ψ.

A Knowledge Interchange Broker model (Sarjoughian and

Plummer 2002) that composes multiple models specified in

multiple modeling formalisms is shown as a hexagon (see

Figure 4).

A modeling formalism can have several implementa-

tions (i.e., software realizations) based on the choice of

programming languages – e.g., a mathematical model can

be designed and implemented using object-oriented mod-

eling concepts and a programming language. Software

realizations of a modeling formalism also can be affected

given the intended or expected modeling and simulation

applications (e.g., parallel/distributed simulation for large-

scale application domains). In addition, entity relations (ER

models) and the XML family of models are also referred

to as models. Here these are not considered since (i) such

models are primarily aimed at describing structure of data

instead of a system’s structure and the behavior and (ii) they

can be subsumed in component-based and object-oriented

modeling approaches.

Before proceeding further, it is useful to note that

model specifications are also described and implemented

using (high-level) programming languages. Therefore, a

model specification can be referred to as a mathemat-

ical model specification or a software model specifica-
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tion. Here mathematical specifications are considered (e.g.,

〈X ,Y,S,δext ,δint ,δcon f ,λ , ta〉 (Chow 1996) is the mathemat-

ical specification for Parallel DEVS atomic model). It is

also helpful to note that different terms are used for exe-

cution algorithms. An algorithm which is void of software

design choices and implementations is sometime referred

to as an abstract simulator or solver.

4.2 Mono and Super Model Composability

It is common to use a single modeling formalism to specify

one aspect of a system. Using a mono modeling approach

provides key advantages - decomposition (or hierarchical

composition) of a model into (from) parts can be carried out

systematically (e.g., Wymore 1993). Modeling formalisms

help modelers specify dynamical systems given well-defined

syntax and semantics. The syntax specifies the allowed

structures for inputs, outputs, states, and functions. This is

the model specification. The semantics specify the behavior

of the structural elements. This is the execution algorithm.

For example, discrete-event modeling is often used to

specify discrete processes. A mono modeling formalism

can also be used to specify different aspects of a system -

detailed process flow dynamics with simplified event-based

control. Using this modeling approach, models of different

parts of a system adhere to a single structure and behavior

specification. That is, MA∪B,{Ψ} may be used to model

discrete-event process model A, event-based control model

B, and their interactions using modeling formalism Ψ. For

the semiconductor manufacturing supply chain systems, the

manufacturing process and control models are identified as

A and B (see Figure 3). For example, these models can be

specified in the DEVS formalism (Zeigler, Praehofer, and

Kim 2000) (shown as in Figure 3(a)). A fundamental benefit

of using a mono modeling formalism is that manufacturing

and control models as well as their interactions are described

in Ψ. This approach significantly simplifies integration of

models and their executions.

Use of a mono modeling formalism, however, may

not be suitable if the models that are to be composed are

intrinsically different — the models are best described in

different modeling paradigms — and are not fully sup-

ported. This is because a formalism is suitable to model

only some parts of a complex, heterogeneous system while

all the remaining parts must either be abstracted away or

formulated within other modeling paradigms. To overcome

this difficulty, a super modeling formalism may be used as

shown in Figure 3(b).

In the super modeling formalism approach, a model-

ing formalism (MB̃,{Φ}) is encapsulated within the super-

formalism MA∪B,{Ψ}. Models B̃ and B are different and the

former must be encapsulated inside the latter. A general

approach is to use multiple model specification abstractions

and hide the details of an encapsulated lower-level model
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Figure 3: (a) Mono and (b) Super Modeling Formalisms

specification inside an enclosing higher-level model speci-

fication - e.g., a simple optimization model described in LP

can be encapsulated as an I/O System (i.e., atomic) DEVS

component. This allows the specification of the interactions

between models A and B to be described within Ψ. This

approach, however, has to ensure the modeling formalisms

that are encapsulated within it have a well-defined relation-

ship with respect to one another. That is, the super modeling

formalism must assert the kinds of disparate dynamics that

can be specified within it. Model encapsulation (e.g., en-

closing B̃ inside B) requires the encapsulated model to be

well-defined - the input/output structure and behavior of

the encapsulation of the optimization model is guaranteed

by the enclosing model specification. In the semiconductor

manufacturing supply chain example, a logistic controller

can be a linear optimization model B̃ in formalism Φ and B

can be a discrete-event model in formalism Ψ. This enables

composition of the plant and the controller models to be

specified with the DEVS formalism, for example.

Unlike the above scenario, it is possible for a super

modeling formalism to support model specifications that

are at the same level of abstractions. Super formalism

can support composition of state-based models rather than

composing a state-based model and an input/output model

(Fishwick 1992, Zeigler et al. 2000). This is a strong form

of super-formalism since it supports composition of different

kinds of model specifications and their composition at the

level of state-based specification rather than input/output.

For example, the DEVS formalism can support combined

DEV&DESS modeling (Zeigler 2006) – i.e., model trans-

formation (and thus user-defined model encapsulation) is

unnecessary. Another approach is Ptolemy which supports

modeling of mixed signal systems (Eker et al. 2003). It

formalizes input/output interactions among actors (model

components) under the control of directors.
153
5 META AND POLY MODEL COMPOSABILITY

A model can also be composed from models that are de-

scribed according to two or more modeling formalisms. In

the meta modeling formalism approach, different types of

model specifications are transformed or abstracted to another

modeling formalism. The meta modeling formalism must

be able to account for the differences between disparate

model specifications that can be composed.

As depicted in Figure 4(a), M
Â∪B̂,{Θ} is a composition

of models with their interactions specified in formalisms Θ .

Here models A and B specified in Ψ and Φ are mapped to Â

and B̂. This requires Ψ→Θ and Φ→Θ. The transformation

→ defines structure and behavior of formalisms Ψ and Φ

to that of the formalism Θ – i.e., the interactions between

models A and B are specified in terms of Â and B̂.

A standardized modeling approach as shown in Fig-

ure 4(a) is the High Level Architecture (HLA) (Dahmann

et al. 1999, HLA 2000a, HLA 2000b). It provides a suite

of generalized services where different simulation models

are mapped to. This approach is strongly aimed at han-

dling interoperability needs with some limited capability for

model composability as supported by the Object Model Tem-

plate (HLA 2000c). The interaction of the different types of

model specifications is supported with the publish/subscribe

technique and data management service while handling of

timed interactive behavior of execution algorithms is the

responsibility of the time management service (Allen 1997,

Fujimoto 1998).

(a) (b)
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M

Figure 4: (a) Meta and (b) Poly Modeling Formalisms

Another approach is to use meta-modeling and model

transformation (Jaramillo, Vangheluwe, and Alfonseca

2002). In this approach, meta-modeling allows determining

whether or not two models described in different modeling

formalisms can be transformed completely or partially de-
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scribed within a meta-modeling formalism. In some cases

a model described in Ψ can be transformed completely into

another model described in Φ (without any loss in model

dynamics) whereas in other cases some constraints must be

defined and placed on models described in Ψ to be repre-

sented in Φ. For example, a discrete-time model specified

in Discrete Time System Specification and a discrete-event

model specified in Petri-nets can be completely transformed

into models described in Discrete Event System Specifica-

tion (Vangheluwe 2000).

Given the semiconductor manufacturing supply chain

system, its manufacturing process and logistic control can

be specified in the DEVS and LP modeling formalisms

(denoted as Ψ and Φ in Figure 4(a)). The composition

of the meta models of A and B is denoted as M
Â∪B̂,{Θ}.

The composite (or federated) DEVS and LP models may

be specified in HLA (denoted as Θ in Figure 4(a)).

The remaining approach, called poly modeling for-

malism (or multi-formalism modeling), composes disparate

models using a model (referred to as Knowledge Interchange

Broker) which handles the differences between disparate

modeling formalisms (Sarjoughian and Plummer 2002). The

KIB formalism enables composing model specifications and

execution algorithms of disparate modeling formalisms. The

concept and formulation of KIB was developed in the context

of a simple intelligent transportation system (Sarjoughian

and Plummer 2002, Sarjoughian and Huang 2005). As

shown in Figure 4(b), MA∪C∪B,{Ω} is the composition of

MA,{Ψ} and MB,{Φ}, using MC,{Ω}. The interactions between

models A and B are specified in Ω. The KIB approach in

realistic semiconductor manufacturing supply chain systems

has been realized – i.e., detailed models described in the

DEVS, LP, and MPC modeling formalisms are developed

and composed with KIBDEV S/LP and KIBDEV S/MPC (God-

ding et al. 2004, Sarjoughian et al. 2005, Huang et al.

2006). These introduce modeling capabilities to the KIB

that can support discrete-event and optimization model in-

teractions that are essential in modeling of discrete part

manufacturing supply chain systems.

Unlike the meta modeling formalism approach, in poly

model composability approach models are not transformed

to a set of models all of which are described in accordance

to a single modeling formalism. Furthermore, poly mod-

eling formalism is distinct from the strong form of super

formalism as KIB can both support the interactions (data

and control exchanges) among different model types (e.g.,

discrete-event and linear optimization) and also support dif-

ferent kinds of data transformation and control schemes

that are described external to the models that are composed.

Using the poly model composability approach, common

forms of data transformation (i.e., aggregation and disag-

gregation) is inherently supported. Furthermore, it supports

alternative forms of common control schemes (i.e., sequen-

tial, synchronous, and asynchronous). These general data
154
transformation and control scheme concepts need to be ex-

tended based on individual the application domains that are

may be modeled.

6 MODEL SPECIFICATION AND EXECUTION

ALGORITHM

In the previous section, the composability modeling ap-

proaches were described in terms of model specifications.

However, as noted earlier, a formalism is defined as a

pair. The separation of model specification and execution

algorithm enables model specification composability and

execution algorithm interoperability differently depending

on the composability approach (Sarjoughian and Plummer

2002; Godding, Sarjoughian, and Kempf 2004; Sarjoughian

and Huang 2005; Huang et al. 2006). As shown in Fig-

ure 5, the former is concerned with composition of syntax

and semantics of different formalisms, whereas the latter is

concerned with execution protocols and their interoperation.

execution interoperability

Model

Specification

Execution

Algorithm

Execution

Algorithm

Model

Specification
Model

Specification

Execution

Algorithm

model composability

Figure 5: Separation between Model Specification and Ex-

ecution Algorithm

In the mono composability approach, one execution

protocol is used for a set of models that are all defined

using a single model specification approach. In the super

composability, execution algorithms of the enclosing models

and those that are encapsulated are interoperated under

the super formalism’s execution algorithm. That is, the

execution algorithm of the model that is encapsulated in

super formalism is viewed as an atomic operation within

the super formalism execution algorithm.

The meta composability approach, in contrast to super

composability, is primarily concerned with interoperability.

The execution algorithms of the disparate model specifica-

tions are cast into model constructs and operations (i.e., a

set of services as in HLA) that are intended for interoperat-

ing different execution algorithms. In this approach, model

composability is not strongly supported and the model spec-

ification and execution algorithm are weakly separated from

one another.
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The poly composability approach, unlike the other

approaches, is concerned with both model composability

and simulation interoperability (Sarjoughian and Plummer

2002). As shown in Figure 5, not only are modeling specifi-

cations of Ψ and Φ composed using the model specification

of Ω, but the execution algorithm is responsible for in-

teroperability between the execution algorithms of Ψ and

Φ.

In the domain of semiconductor manufacturing supply

chain systems, Ψ can be DEVS, Φ can be LP or MPC,

and Ω can be KIBDEV S/LP or KIBDEV S/MPC (Godding et al.

2004, Sarjoughian et al. 2005). In the domain of intelligent

transportation systems, Ψ can be DEVS, Φ can be RAP

(Firby and Fitzgerald 1999), and Ω can be KIBDEV S/RAP

(Sarjoughian and Plummer 2002, Sarjoughian and Huang

2005).

This separation between model composability from sim-

ulation interoperability is key given different application do-

mains (Sarjoughian and Plummer 2002). For example, the

DEV S/LP or DEV S/MPC model composability approach

(Godding et al. 2004, Sarjoughian et al. 2005, Huang et al.

2006) is based on the manufacturing process (plant) and de-

cision (control) models to interact with one another based

on a synchronous control scheme consistent with actual

operation of a semiconductor manufacturing supply chain

system. In contrast, the DEV S/RAP model composability

approach (Sarjoughian and Huang 2005) is based on asyn-

chronous interaction between plant and control models. The

differences between control schemes defined for interactions

in the KIBs play a key role in poly model composability

approaches given not only different classes of modeling

formalisms, but also different application domains.

With poly model composability shown in Figure 5 where

only two modeling formalisms are composed, another type

of model (e.g., RAP) that is not well suited to be specified

in Ψ (e.g., DEVS) or Φ (e.g., LP) needs to be cast into

either Ψ or Φ. This suggests, when more than two modeling

formalisms need to be composed, multiple or hierarchical

KIBs are needed or alternatively a combination of super,

meta, and poly formalism may be used instead.

A key practical distinction between the meta and the

poly composability approaches is that the latter can sys-

tematically support composition of syntax and semantics of

known disparate modeling formalisms – it provides map-

pings and rich data transformations. For example, the dif-

ferences between DEVS and LP/MPC syntax and semantics

is supported with a suite of general mappings and domain-

specific data transformations. This is in contrast to the

meta composability approach where differences between

different types of models can be partially accounted for in

the meta modeling formalism, thus requiring all remaining

differences to be handled on a case-by-case basis. This is

because models described in different modeling formalisms
155
need to be augmented to handle differences that cannot be

handled via meta modeling and interoperability regimes.

A common approach to overcoming differences between

different types of models is illustrated in Figure 6. Adapters

can be used to facilitate model interactions in the absence of

super, meta, and poly formalisms. Here an adapter is needed

to transform the data that is specified in Φ but also needs

to be used with models specified in Ψ. For each modeling

effort, this approach relies on uni- and bi-directional data

and control in terms of software design techniques and

their implementations developed. This approach requires

defining data mappings and transformations individually for

every model that is described either using Φ or Ψ. With this

approach, individual adapters need to be defined separately.

The consequence is that consistency among the definitions

of the adapters must be maintained for all models manually

– i.e., data mappings and transformations must be handled

for every set of models that are defined in disparate modeling

formalisms on a case-by-case. Furthermore, the control of

execution between execution algorithms must be handled as

part of the modeling effort instead of making use of well-

known sequential, synchronous, or asynchronous execution

schemes.

control

data

,{ }B
M

,{ }A
M adapter adapter

Figure 6: Model Integration with Adapters

For example, given the DEVS, RAP, LP, and MPC

formalisms, the models described in them can be augmented

with adapters written to handle the disparities among them.

For example, while inputs and outputs of DEVS model

specification are messages, the inputs and outputs of MPC

model specifications are primitive data types (e.g., integer

and string arrays). This requires customizing DEVS and

MPC models to handle data received for every model.

This is in contrast to a modeling formalism that supports

all models that can be described in the DEVS and MPC

modeling formalisms. The aggregation and disaggregation

of data and alternative control schemes can be supported at

the level of model specifications instead of using adapters

or interoperability services. For example, data and control

interactions between the manufacturing process (plant) and

the optimization control (controller) models are handled
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using modeling constructs that are given in the KIB. With

the poly model composability formalism approach, reuse is

supported at the level of modeling formalisms.

6.1 Role of Domain Knowledge

A general purpose modeling formalism supports describ-

ing and executing a model; it is not intended to account

for domain-specific modeling. Therefore, until now, model

composability has been considered independent of the ap-

plication domains to which it may be applied. However,

given the central role domain knowledge plays in developing

composable models, it is important to consider it for model

composability. Domain-neutral modeling formalism is key

for modeling specific systems (application domains). This is

because the complexity of composite models is in part due to

the application domain that is being modeled. For example,

discrete-event modeling can be used in the domains of man-

ufacturing, information systems, and event-based control.

The interactions to be modeled among disparate models

need not only to capture data transformations and execu-

tions between composed models, but also be appropriate to

the system being modeled since general purpose modeling

formalisms are void of domain knowledge. For example,

data transformation between a discrete-event model and an

LP optimization model of a manufacturing process has to

handle a list of products that are specialized to hold Finished

Goods having some defect distribution (Godding et al. 2004,

Huang et al. 2006). The frequency between the process and

controller models can also depend on the domain – e.g.,

interactions can be sequential or synchronous.

Domain specific modeling is not only central to the

mono and the super model composability approaches, but

also the meta and the poly model composability approaches.

Separating domain-neutral and domain-specific model in-

teractions is also key for handing general purpose modeling

concepts while extending them with specific needs of a do-

main. Given the separation between model specification and

the execution algorithm of a modeling formalism, the model

specification can be extended to support domain knowledge.

In the case of the mono and the super formalism model com-

posability which are based on the concept of components,

general purpose model components can be specialized for

a given domain. For example, DEVS model components

are specialized to the entities of a manufacturing process

network. In the case of the meta model composability and

HLA, in particular, domain specific federates are modeled

using specialization supported by object-oriented concepts

and methods.

In addition, data engineering (XML family of data

representations and ontologies) may also be used for han-

dling static (i.e., non-behavioral) domain-specific knowledge

(Tolk and Diallo 2005). For poly model composability, due

to strong separation between modeling formalisms that are
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composed, existing approaches to domain-specific modeling

may be used. The existence of the KIB offers a basis to

explicitly account for interaction of domain knowledge.

Given the composability approaches, each modeling

formalism provides a different degree of support for de-

scribing domain knowledge. The degree of support for

domain-specific modeling is grounded in the kind of model

composability that is enabled in each approach.

6.2 Distributed Execution of Composable Models

Another consideration for model composability is distributed

execution of execution algorithms and their interoperation.

All of the composability approaches lend themselves to

distributed execution. For example, HLA supports dis-

tributed execution of federates and federations (Fujimoto

1998). These allow distributed execution of models synthe-

sized using any of the mono, super, meta, and poly model

composability approaches.

To support distributed execution of models, it is im-

portant to develop software design and implementation that

account for efficient data exchanges and overall execution

speed. Given disparate model specification and execution

environments (e.g., DEVSJAVA (ACIMS 2001), Opl-Studio

(ILOG 2005), and Matlab/SIMULINK (Mathworks 2005)),

other considerations (e.g., scale of individual models and

data exchanges, frequency of model interactions, and length

of experiments) that can affect execution of combined mod-

els must be accounted for. This is because the separation of

model specification and execution algorithm can adversely

affect execution of the composed models. Nonetheless,

given sound software designs and implementations, models

that are specified with an eye on simple model designs and

appropriate use of programming constructs can be executed

efficiently.

7 CONCLUSIONS

A classification of model composability approaches is pre-

sented. Formulation for each of the model composability

approaches is described in terms of modeling formalisms.

These approaches are described from a multi-layer mod-

eling vantage point to highlight the importance of using

different modeling formalisms. How disparate modeling

formalisms affect model composability is described using

a simplified example from the domain of semiconductor

supply chain systems. The discussion on separating model

specifications and execution algorithms reveals the impact

of model composability choices and in particular support for

varying degrees of model compositions and consequently

limitations and complexity of specifying disparate compos-

ite models, level of support for domain-specific modeling,

and degree of support for distributed execution.
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